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An invitation to rough dynamics:
zipper maps

Benoît R. Kloeckner * Nicolae Mihalache ∗

October 21, 2022

In the field of dynamical systems, it is not rare to meet irregular functions,
which are typically Hölder but not Lipschitz (e.g. the Weierstrass functions).
Our goal is to scratch the surface of the following question: what happens if
we consider irregular maps and iterate them?

We introduce the family of zipper maps, which are irregular in the above
sense, and study some of their dynamical properties. For a large set of
parameters, the corresponding zipper map admits horseshoe of all orders; as
an immediate consequence, every order on 𝑘ℓ points can be realized by 𝑘
orbits of length ℓ of the map.

These maps have infinite topological entropy, and we refine this statement
by showing that they have positive metric mean dimension with respect
to the Euclidean metric, as well as by introducing other notions of higher
complexity.

Finally, we prove that every interval map (thus including zipper maps)
have vanishing absolute metric mean dimension, proving a small case of
the conjecture that the absolute metric mean dimension coincides with the
topological mean dimension.
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1 Introduction
Dynamical systems form by now an incredibly broad and deep field, with many different
kinds of systems having been studied thoroughly. Even restricting to continuous maps
acting on a compact space, one could spend a lifetime learning about them. However, it
seems that there is still a blind spot in the literature: maps of low regularity, by which
we mean less than locally lipschitz, typically not more than Hölder-continuous. The goal
of this article is to showcase the kind of dynamical properties that one can observe in
one specific family of such irregular maps.

1.1 Zipper maps
Let us first introduce the family of maps we shall be interested in. Their graph will be a
zipper curve (hence the name); as functions, they where introduced by Bruneau [Bru74]
as extremal points in certain functional spaces; until now they seem not to have been
considered as maps that one can iterate. They have the advantage of being relatively
explicit while exhibiting quite wild dynamical properties.

By C 𝛼([0, 1]) we mean the Banach space of 𝛼-Hölder functions defined on [0, 1] with
values in R endowed with its usual norm

‖𝑓‖𝛼 = sup
𝑥 ̸=𝑦

|𝑓(𝑥) − 𝑓(𝑦)|
|𝑥 − 𝑦|𝛼

+ sup
𝑥

|𝑓(𝑥)|

and by C 𝛼
0 the convex, closed subset of the functions 𝑓 with range [0, 1] and such that

𝑓(0) = 0 and 𝑓(1) = 1 (which shall then be seen as point-valued maps rather than
scalar-valued functions). When 𝛼 = 0 we mean the space of continuous functions or
maps, endowed with the supremum norm.

Let 𝑝 =
(︁
(𝑥1, 𝑦1), (𝑥2, 𝑦2)

)︁
∈ (0, 1)2 be a pair of points in the unit square such that

𝑥2 > 𝑥1 and 𝑦2 < 𝑦1, and let Φ𝑝 : C 0
0 → C 0

0 be the map defined by

Φ𝑝𝑓(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦1𝑓
(︁ 𝑥

𝑥1

)︁
if 𝑥 ∈ [0, 𝑥1]

𝑦1 − (𝑦1 − 𝑦2)𝑓
(︁ 𝑥 − 𝑥1

𝑥2 − 𝑥1

)︁
if 𝑥 ∈ [𝑥1, 𝑥2]

𝑦2 + (1 − 𝑦2)𝑓
(︁𝑥 − 𝑥2

1 − 𝑥2

)︁
if 𝑥 ∈ [𝑥2, 1]

Then Φ𝑝 is a contraction in the uniform norm, of ratio

𝑣max = max(𝑦1, 𝑦1 − 𝑦2, 1 − 𝑦2) < 1,

and thus has a unique fixed point 𝑍𝑝 ∈ C 0
0, which we shall call the zipper map of

parameter 𝑝; the case 𝑝 =
(︁
(.3, .7), (.8, .1)

)︁
is shown in Figure 1.
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Figure 1: The graph of a zipper map. Note that 1 is mapped to 1, which is barely visible
given the extremely high speed of variation at that point.

We will further restrict to the hypersensitive case where the (piecewise affine) image
of the identity map by Φ𝑝 has all its slopes greater than 1 in absolute value:

1 < 𝜆min := min
(︂

𝑦1

𝑥1
,

𝑦1 − 𝑦2

𝑥2 − 𝑥1
,

1 − 𝑦2

1 − 𝑥2

)︂
(1)

1.2 Main results
Topological entropy is one of the paradigmatic measurement of chaos, and shifts on finite
alphabets are among the most basic models for chaotic maps; as we will recall below,
for continuous interval maps they are strongly related through “horseshoes”. Our first
result shows that many zipper maps exhibit a strong form of chaos by having horseshoes
of arbitrarily order.

Theorem A. Let 𝑇 = 𝑍𝑝 be an hypersensitive zipper map and additionally assume
either one of these conditions:

i. 𝑝 is symmetric with respect to the center of the square, i.e. 𝑥1 + 𝑥2 = 𝑦1 + 𝑦2 = 1,

or

ii. the pair of second coordinates (𝑦1, 𝑦2) of 𝑝 lies in the open set

𝐵 = {(𝑦1, 𝑦2) ∈ (0, 1)2 | 𝑦2
1 > 𝑦2 and 𝑦1 > (2 − 𝑦2)𝑦2}.

Then 𝑇 admits horseshoes of all orders.
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Figure 2: The domain 𝐵 for assumption ii in Theorem A.

The conclusion means that for all 𝑘 ∈ N there exist compact sub-intervals 𝐼1, . . . , 𝐼𝑘

of [0, 1] with pairwise disjoint interiors, such that 𝑇 (𝐼𝑖) ⊃ 𝐼𝑗 for all 𝑖, 𝑗 ∈ {1, . . . , 𝑘}. We
can also get pairwise disjoint intervals, simply by taking 2𝑘 instead of 𝑘 and keep every
other interval in the family, in the linear order of [0, 1], see Section 3.3.

It is known [Mis79] (see also [Rue17] and references therein) that having infinite topo-
logical entropy is equivalent to having horseshoes of arbitrary size 𝑘 in iterates 𝑇 𝑜(log 𝑘);
Theorem A show that some zipper map possess a much stronger property, in that we do
not need to iterate them to obtain horseshoes of all order.

The presence of these horseshoes easily imply some “universality” properties.

Corollary B. For all hypersensitive zipper map 𝑇 = 𝑍𝑝 satisfying either assumptions
of Theorem A and all 𝑘, ℓ ∈ N, every total order on 𝑘 × ℓ symbols is realised by 𝑘 orbits
of length ℓ of 𝑇 .

This means that for all total strict order ≺ on the symbols (𝑠𝑗
𝑖 )0≤𝑗≤ℓ

1≤𝑖≤𝑘
, there exist

𝑥1, . . . , 𝑥𝑘 ∈ [0, 1] such that for all 𝑖, 𝑗, 𝑖′, 𝑗′:

𝑠𝑗
𝑖 ≺ 𝑠𝑗′

𝑖′ ⇔ 𝑇 𝑗𝑥𝑖 < 𝑇 𝑗′
𝑥𝑖′ .

Let Ω ⊆ R, 𝑆 : Ω → Ω and 𝑇 : [0, 1] → [0, 1]. We say that 𝑆 is embedded in 𝑇 (as a
dynamical system) if there exists 𝜋 : Ω → [0, 1], injective, such that

𝜋 ∘ 𝑆 = 𝑇 ∘ 𝜋.

Corollary C. Let 𝑇 = 𝑍𝑝 be a hypersensitive zipper map satisfying either assumption
of Theorem A and Ω a finite set. Then any map 𝑆 : Ω → Ω is embedded in 𝑇 .
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The existence of horseshoe of arbitrary order implies that zipper maps to which The-
orem A applies have infinite topological entropy, a fact easy to establish directly for
all hypersensitive zipper maps. But we can say more, by using a variation of entropy
suitable for highly chaotic systems: metric mean dimension, whose definition is recalled
in Section 4.

Theorem D. Every hypersensitive zipper map 𝑇 = 𝑍𝑝 has positive metric mean dimen-
sion relative to the Euclidean metric:

mdim𝑀(𝑇, |·|) ≥ log 𝜆min

|log ℎmin|
> 0,

where ℎmin = min(𝑥1, 𝑥2 − 𝑥1, 1 − 𝑥2) < 1 and 𝜆min is defined in (1).

Corollary E. Every hypersensitive zipper map 𝑇 = 𝑍𝑝 admits an invariant probability
measure 𝜇 with positive Kolmogorov-Sinai mean dimension.

The Kolmogorov-Sinai mean dimension is an invariant of a measured dynamical sys-
tem (𝑇, 𝜇) which we introduce in Section 4. Its positivity means that for arbitrarily high
𝑘, there exist measurable partitions of [0, 1] into 𝑘 subsets for which the entropy grows
as a multiple of log 𝑘 as 𝑘 → ∞. Corollary E is deduced from Theorem D through an
inequality providing one half of a variational principle, Theorem 4.2: the existence of a
metric of finite dimension for which the relative metric mean dimension is positive en-
ables the construction of measures of positive Kolmogorov-Sinai metric mean dimension.
However, unlike the classical variational principle, the complexity of these measures does
not bound below the metric mean dimension of arbitrary metrics, even when controlling
their dimension:

Theorem F. Every continuous map 𝑇 : [0, 1] → [0, 1] has zero absolute metric mean
dimension; more precisely, there exist a metric 𝑑 on [0, 1], inducing the usual topology,
such that mdim𝑀(𝑇, 𝑑) = 0 and dim+

𝑀([0, 1], 𝑑) = 1.

Here dim+
𝑀 denotes the upper Minkowski dimension; it bounds from above the Haus-

dorff dimension, which must thus also be equal to 1. This result shows a small case of
the conjecture (see e.g. [LT19]) that mean dimension equals the infimum over all metrics
of the metric mean dimension.

1.3 Further directions
1.3.1 Further properties of zipper maps

We have left many questions open even when restricting to the case of zipper maps. One
could first determine the exact range of Theorem A, by determining the set of all values
of the parameter 𝑝 for which 𝑇 = 𝑍𝑝 admits horseshoes of all order.

Another intriguing question is that of topological conjugacy: for which 𝑝, 𝑝′ are the
zipper maps 𝑍𝑝, 𝑍𝑝′ topologically conjugate? Is there a continuum of conjugacy classes
among the 𝑍𝑝? Note that one does not hope for any sort of topological stability here: the
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numerous local extrema can change their relative positions even under arbitrary small
perturbations of 𝑝.

Zipper maps have numerous invariant measures, e.g. when Theorem A applies one
can consider any invariant measure of a finite shift {1, . . . , 𝑘}N and use a horseshoe of
order 𝑘 to build from it an invariant measure for 𝑍𝑝. They are however localized in a
tiny part of the space and only witness a tiny amount of the dynamics at play. Is there a
way to single out a “most natural” measure? How many physical measures does a given
or typical zipper map possess? Is there something alike a measure of maximal entropy
(which shall be defined in a way to be specified, more restrictively than only asking for
the Kolmogorov-Sinai entropy to be infinite, for otherwise there would be no hope for
uniqueness).

1.3.2 Rough dynamics for other specific maps

While zipper maps already provide an interesting playground, the original question that
sparked this work was about the more classical Weierstrass functions such as

𝑊𝑎,𝑏(𝑥) =
∑︁
𝑛∈N

𝑎𝑛 cos(2𝜋𝑏𝑛𝑥)

with 𝑎𝑏 > 1, 𝑎 < 1. Letting 𝐼 be the range of 𝑊𝑎,𝑏, what are the dynamical properties
of the map 𝑇 = 𝑊𝑎,𝑏 from 𝐼 to itself? While Weierstrass appear as function in several
works of dynamical flavor, they do not seem to have been considered as maps to be
iterated.

Another class of irregular maps that one could study is the graph of Brownian motion.
Brownian motion (𝐵𝑡)𝑡∈R is a continuous-time stochastic process, i.e. it is constructed
as a measurable map 𝜔 ↦→ (𝐵𝑡(𝜔))𝑡∈R from a standard probability space (Ω, F ,P) to
the space of continuous functions R → R. In this definition, the domain R is thought
as time and the range R as space; but for almost any event 𝜔 ∈ Ω, we can consider the
map 𝑇 : 𝑡 ↦→ 𝐵𝑡(𝜔). It is well known that |𝐵𝑡(𝜔) − 𝐵𝑠(𝜔)| is very roughly of the order
of |𝑡 − 𝑠| 1

2 , in particular much larger than |𝑡 − 𝑠| when 𝑡, 𝑠 are close, but much smaller
than |𝑡 − 𝑠| when they are far away. The map 𝑇 is thus almost surely locally 𝛼-Hölder
for all 𝛼 < 1

2 , but far from Lipschitz. What are its typical (e.g. almost sure) dynamical
properties? With the usual normalization, 𝑇 (0) = 0 and 𝑇 (𝑡) = 𝑜(𝑡), so that there is
a compact interval of non-empty interior 𝐼 such that 𝑇 (𝐼) = 𝐼, and every orbit of 𝑇 is
attracted to 𝐼 extremely fast. One can thus restrict to study the dynamics of 𝑇 on the
random interval 𝐼.

1.3.3 Rough dynamics for generic maps

In [Yan80], Yano proved that a 𝐶0-generic continuous map of a manifold has infinite
entropy; this was refined in term of metric mean dimension in [CRV22]. A general theory
of rough dynamics should include the answer to the following problems:

• find other “hyperchaotic” dynamical properties of 𝐶0-generic continuous maps of
manifolds,
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• what happens for generic 𝛼-Hölder maps, 𝛼 ∈ (0, 1)?

In both cases, the presence of horseshoes of arbitrary order is likely to be easy to prove.

1.3.4 First-order logic of continuous interval maps

We would like to suggest the study of first-order logic of continuous interval maps in a
similar way to first-order logic of groups. Let us briefly recall the case of groups first.

One considers sentences build from logical connectives, quantifiers, the group opera-
tions * and −1 and variable names to be interpreted as element of a particular group.
For example, a sentence such as 𝑥 * 𝑦 = 𝑦 * 𝑥 expresses that two elements 𝑥, 𝑦 commute,
while the closed sentence1 ∀𝑥, 𝑦, 𝑥 * 𝑦 = 𝑦 * 𝑥 expresses commutativity of the group.
The elementary theory of a group 𝐺 is the set of closed sentences that are true in 𝐺,
and two groups are called elementary equivalent when they have the same elementary
theory. Observe that variables are to be interpreted solely as group elements, so that it
is not allowed to quantify on other type of variables such as integers. Fueled by Tarski’s
problem, the first-order logic of groups has played an important role in relation to group
theory and geometric group theory, see e.g. [Sel06, Per08]. Typical questions revolve
around algebraic and geometric properties of groups that are preserved under elementary
equivalence.

Corollary B hints that a similar theory could be developed for continuous maps of the
interval [0, 1], by including as symbols usable in sentences: 𝑇 to denote application of
the map, and < for the usual order. First-order sentences are well-formed sentences in
the symbols {𝑇, <, =, or, and, not, (, ), ∀, ∃} ∪ 𝑉 where 𝑉 = {𝑥, 𝑦, 𝑧, . . . } is a countably
infinite set of variable names to be interpreted as taking value in [0, 1]. For example,

∃𝑥, (𝑇 (𝑥) ̸= 𝑥 and 𝑇 2(𝑥) = 𝑥)

is a first-order sentence expressing the existence of an orbit of period 2. However the
sentence

∃𝑧, ∀𝑥, 𝑦, ∃𝑛 ∈ N, 𝑥 ≥ 𝑦 or 𝑥 < 𝑇 𝑛(𝑧) < 𝑦

expressing topological transitivity is not a valid first-order sentence, since there is a
quantified variable taking values in N.

To each continuous map 𝑇 : [0, 1] → [0, 1] is thus associated its elementary theory, the
set of closed sentences it satisfies. The question is then: which dynamical properties of
𝑇 are shared by all maps elementary equivalent to 𝑇? Corollary B says that all maps
𝑍𝑝 to which Theorem A applies share the part of the elementary theory where only the
existential quantifier is used. Are they all elementary equivalent? What about Baire-
generic continuous maps of the interval? What about classical maps, e.g. the quadratic
family? Does the elementary theory identify the topological conjugacy class inside such
a family? Are properties such as topological transitivity invariant under elementary
equivalence?

1I.e. sentence without free variables, all variables being introduced by a quantifier.
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As an example of the dynamical relevance of first-order logic, it is left as an exercise
to the reader to prove that if two continuous interval maps 𝑇, 𝑆 : [0, 1] → [0, 1] are
elementary equivalent, then they have the same topological entropy. Hints: we only
need that they satisfy the same existential sentences; do not try to translate ℎ(𝑇 ) = 𝑦
as a single sentence; use Misiurewicz’ theorem according to which entropy is arbitrary
close to be realised by horseshoes in iterates of the map [Mis79].

2 Basic properties of zipper maps
2.1 Additional notations
There are several Iterated Function Systems hiding behind the contraction Φ𝑝, that will
be useful in various arguments. First, there are the horizontal and vertical IFS on [0, 1]:

𝐻0(𝑥) = 𝑥1 · 𝑥 𝑉0(𝑦) = 𝑦1 · 𝑦

𝐻1(𝑥) = (𝑥2 − 𝑥1)𝑥 + 𝑥1 𝑉1(𝑦) = (𝑦2 − 𝑦1)𝑦 + 𝑦1

𝐻2(𝑥) = (1 − 𝑥2)𝑥 + 𝑥2 𝑉2(𝑦) = (1 − 𝑦2)𝑦 + 𝑦2

that will be used to define relevant sub-intervals of [0, 1], and we can combine them into
the IFS on the square [0, 1]2 defined by the three contractions 𝑃𝑖(𝑥, 𝑦) =

(︁
𝐻𝑖(𝑥), 𝑉𝑖(𝑦)

)︁
,

whose attractor is the graph of 𝑍𝑝. A word with letters in the alphabet {0, 1, 2} will
be written under the form 𝜔 = 𝑖1𝑖2 . . . 𝑖ℓ, where ℓ ∈ N is called its length and is also
denoted by |𝜔|. We use exponents to denote repetition of a letter, e.g. 0𝑘 = 0 · · · 0 (𝑘
times). The set of words of length 𝑛 is denoted by {0, 1, 2}𝑛, and the set of finite words
by {0, 1, 2}*. Given 𝜔 = 𝑖1𝑖2 . . . 𝑖ℓ ∈ {0, 1, 2}* we set 𝐻𝜔 = 𝐻𝑖1 ∘ 𝐻𝑖2 ∘ · · · ∘ 𝐻𝑖ℓ

and we
define similarly 𝑉𝜔 and 𝑃𝜔.

We define intervals 𝐼𝜔 = 𝐻𝜔([0, 1]) and 𝐽𝜔 = 𝑉𝜔([0, 1]) (in particular 𝐼0 = [0, 𝑥1],
𝐼1 = [𝑥1, 𝑥2] and 𝐼2 = [𝑥2, 1]; 𝐽0 = [0, 𝑦1], 𝐽1 = [𝑦2, 𝑦1] and 𝐽2 = [𝑦2, 1]); they satisfy the
relations

𝑍𝑝(𝐼𝜔) = 𝐽𝜔

𝐼𝜔 ⊂ 𝐼𝜎 and 𝐽𝜔 ⊂ 𝐽𝜎 whenever 𝜎 is a prefix of 𝜔

and for each ℓ, the family (𝐼𝜔)|𝜔|=ℓ is a tiling of [0, 1] (the intervals have disjoint interiors
and their union is [0, 1]) while the family (𝐽𝜔)|𝜔|=ℓ is a covering of [0, 1]. Given a word 𝜔 =
𝑖1𝑖2 . . . 𝑖ℓ, we will sometimes use the word parent to mean the word 𝜔′ = 𝑖1𝑖2 . . . 𝑖ℓ−1, i.e.
the largest strict prefix. Similarly, the parent of an interval 𝐼𝜔 or 𝐽𝜔 is the corresponding
interval 𝐼𝜔′ or 𝐽𝜔′ . These intervals combine into rectangles 𝑅𝜔 = 𝐼𝜔 × 𝐽𝜔 = 𝑃𝜔([0, 1]2),
whose diagonals have slopes at least 𝜆

|𝜔|
min. Observe that since 𝜆min > 1, the top-right

vertex (𝑥1, 𝑦1) of 𝑅0 lies above the diagonal and the bottom-left vertex (𝑥2, 𝑦2) of 𝑅2 lies
below the diagonal.

We introduce the following quantities (again implicitly depending upon 𝑝):

𝑣min = min(𝑦1, 𝑦1 − 𝑦2, 1 − 𝑦2)
ℎmin = min(𝑥1, 𝑥2 − 𝑥1, 1 − 𝑥2) ℎmax = max(𝑥1, 𝑥2 − 𝑥1, 1 − 𝑥2)
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i.e. 𝑣min is the smallest height of the rectangles 𝑅0, 𝑅1, 𝑅2 while ℎmin is their smallest
width, ℎmax their maximal width. For all 𝛼 ∈ (0, 1] we also set:

𝜆0(𝛼) = 𝑦1

𝑥𝛼
1

𝜆1(𝛼) = 𝑦1 − 𝑦2

(𝑥2 − 𝑥1)𝛼
𝜆2(𝛼) = 1 − 𝑦2

(1 − 𝑥2)𝛼

𝜆min(𝛼) = min
(︁
𝜆0(𝛼), 𝜆1(𝛼), 𝜆2(𝛼)

)︁
𝜆max(𝛼) = max

(︁
𝜆0(𝛼), 𝜆1(𝛼), 𝜆2(𝛼)

)︁
In particular 𝜆min = 𝜆min(1).

2.2 Regularity
To study the regularity of zipper maps, we first search for conditions on 𝑝 ensuring that
Φ𝑝 preserves C 𝛼

0 and contracts the 𝛼-Hölder semi-norm (up to a constant).

Lemma 2.1. For all 𝑓 ∈ C 𝛼
0 , Hol𝛼(Φ𝑝𝑓) ≤ max

(︁
𝜆max(𝛼) Hol𝛼(𝑓), (𝑥2 − 𝑥1)−𝛼

)︁
.

Proof. Let 𝑥 < 𝑥′ be two points on [0, 1]. If both lie in the same 𝐼𝑗 for some 𝑗 ∈ {0, 1, 2},
a direct computation yields

|Φ𝑝𝑓(𝑥) − Φ𝑝𝑓(𝑥′)| ≤ 𝜆𝑗(𝛼) Hol𝛼(𝑓)|𝑥 − 𝑥′|𝛼 ≤ 𝜆max(𝛼) Hol𝛼(𝑓)|𝑥 − 𝑥′|𝛼.

When 𝑥 ∈ 𝐼0 and 𝑥′ ∈ 𝐼1, using Φ𝑝𝑓(𝐼𝑗) = 𝐽𝑗 it comes

|Φ𝑝𝑓(𝑥) − Φ𝑝𝑓(𝑥′)| ≤ max(|Φ𝑝𝑓(𝑥) − 𝑦1|, |𝑦1 − Φ𝑝𝑓(𝑥′)|)
≤ 𝜆max(𝛼) Hol𝛼(𝑓) max(|𝑥 − 𝑥1|𝛼, |𝑥′ − 𝑥1|𝛼)
≤ 𝜆max(𝛼) Hol𝛼(𝑓)|𝑥 − 𝑥′|𝛼.

The same argument applies when 𝐼0, 𝐼1 are replaced by 𝐼1, 𝐼2. Last, if 𝑥 ∈ 𝐼0 and 𝑥′ ∈ 𝐼2,
we have |𝑥′ − 𝑥| ≥ 𝑥2 − 𝑥1 and therefore

|Φ𝑝𝑓(𝑥) − Φ𝑝𝑓(𝑥′)| ≤ 1

≤ |𝑥′ − 𝑥|𝛼

(𝑥2 − 𝑥1)𝛼
.

Proposition 2.2. The zipper map 𝑇 = 𝑍𝑝 is 𝛼min-Hölder where

𝛼min = max{𝛼 | 𝜆max(𝛼) ≤ 1} = min
(︂ log 𝑦1

log 𝑥1
,

log(𝑦1 − 𝑦2)
log(𝑥2 − 𝑥1)

,
log(1 − 𝑦2)
log(1 − 𝑥2)

)︂
> 0.

Proof. Fix 𝛼 = 𝛼min and let 𝑓𝑘 = Φ𝑘
𝑝(Id[0,1]): we have 𝑓𝑘 → 𝑇 in the uniform norm and

𝜆max(𝛼) = 1. The previous Lemma and an induction yields for all 𝑘 that Hol𝛼(𝑓𝑘) ≤
max

(︁
Hol𝛼(Id[0,1]), (𝑥2 − 𝑥1)−𝛼

)︁
= (𝑥2 − 𝑥1)−𝛼 and is thus bounded independently of 𝑘.

It follows that 𝑇 is 𝛼-Hölder with Hol𝛼(𝑇 ) ≤ (𝑥2 − 𝑥1)−𝛼.
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2.3 Roughness
We now want to express an “irregularity”; we cannot hope for an inequality of the form
𝑐|𝑥 − 𝑥′|𝛽 ≤ |𝑇 (𝑥) − 𝑇 (𝑥′)| since 𝑇 = 𝑍𝑝 is not even locally one-to-one. We introduce
the following terminology.

Definition 2.3. A continuous map 𝑓 : 𝐼 → 𝐽 between intervals is said to be 𝛽-
hypersensitive if there exists 𝐶 > 0 such that for all interval 𝐴 ⊂ 𝐼 it holds

|𝑓(𝐴)| ≥ 𝐶|𝐴|𝛽

(where |·| denotes the length of an interval). A map is said to be hypersensitive if it is
𝛽-hypersensitive for some 𝛽 ∈ (0, 1).

Hypersensitivity is a kind of strengthening of the property of being expanding suitable
for irregular, not locally one-to-one maps: small intervals grow super-exponentially in
size when 𝑓 is applied repeatedly. This choice of terminology reconciles with the use of
the word in the introduction:

Proposition 2.4. The zipper map 𝑇 = 𝑍𝑝 is hypersensitive if and only if 𝜆min > 1 (with
exponent 𝛽 = 1 + log 𝜆min

log ℎmin
∈ (0, 1)).

Proof. If 𝜆min ≤ 1, let 𝑖 ∈ {0, 1, 2} be such that 𝑅𝑖 has diagonals of slopes at most 1 and
consider the word 𝑖ℓ = 𝑖𝑖 · · · 𝑖 of length ℓ ∈ N. Then |𝑍𝑝(𝐼𝑖ℓ)| = |𝐽𝑖ℓ | ≤ |𝐼𝑖ℓ | while |𝐼𝑖ℓ|
can be made arbitrarily small by taking ℓ large enough. This prevents 𝑍𝑝 from being
hypersensitive.

Assume now 𝜆min > 1. Let 𝐴 ⊂ [0, 1] be an interval, and let 𝑘 be the minimal positive
integer such that for some word 𝜔 of length 𝑘, 𝐼𝜔 ⊂ 𝐴; since the length of 𝐼𝜔 is between
ℎ𝑘

min and ℎ𝑘
max, such a 𝑘 must exist and we have

log|𝐴|
log ℎmin

≤ 𝑘 ≤
log |𝐴|

2
log ℎmax

+ 1

(if the second inequality did not hold, the tiling of depth 𝑘 − 1 would have all its
elements of size less than |𝐴|

2 , so that at least one of them would be a sub-interval of 𝐴,
contradicting the minimality of 𝑘). The same argument yields |𝐼𝜔| ≥ ℎmin

2 |𝐴|, otherwise
either the parent of 𝐼𝜔 or a neighbor of its parent would be contained in 𝐴.

We obtain

|𝑍𝑝(𝐴)| ≥ |𝑍𝑝(𝐼𝜔)| = |𝐽𝜔| ≥ 𝜆𝑘
min|𝐼𝜔| ≥ 𝜆

log|𝐴|
log ℎmin
min

ℎmin

2 |𝐴| ≥ ℎmin

2 |𝐴|1+ log 𝜆min
log ℎmin

3 Horseshoes of arbitrary order
In this section we prove Theorem A, then deduce Corollaries B and C.
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3.1 Symmetric parameters
We start with the case when 𝑇 = 𝑍𝑝 satisfies assumption i in Theorem A. This is the
easiest case, while providing a good introduction to the second case.

Since the parameter 𝑝 is symmetric, 1
2 is a fixed point of 𝑇 . The idea is to zoom in

to this point and use hypersensitivity to find many thin and high rectangles (𝑅𝜔)𝜔∈𝐴 in
the vicinity of (1

2 , 1
2).

Lemma 3.1. Assume 𝑝 is symmetric (assumption i in Theorem A). Then for all 𝑘 ∈ N,
there exist a set 𝐴 of words on the alphabet {0, 1, 2}, with cardinal at least 𝑘, such that
for all 𝜔, 𝜎 ∈ 𝐴:

• 𝐼𝜔 and 𝐼𝜎 have disjoint interior whenever 𝜔 ̸= 𝜎,

• 𝐽𝜔 ⊃ 𝐼𝜎.
Case i of Theorem A follows right away since 𝑇 (𝐼𝜔) = 𝐽𝜔 ⊃ 𝐼𝜎 for all 𝜔, 𝜎 ∈ 𝐴.
An interpretation of the proof below which will prove useful in the sequel is that we

shall use 𝑃 −1
𝜔0 as a zoom-in map, which renormalises a small (rather tall and very thin)

rectangle 𝑅𝜔0 into the unit square, sending the diagonal of [0, 1]2 to an almost horizontal
line. That line is the graph of the identity map in “local coordinates” provided by 𝑃𝜔0 ;
in those coordinates, the identity map has a certain “range” (contained in [1

2 − 𝜂, 1
2 + 𝜂]

below). We then only have to choose 𝜔0 in a way ensuring that many rectangles 𝑅𝜔+

have their vertical sides cover this “range” of the identity map; the words of the form
𝜔0𝜔+ will constitute 𝐴.

Proof. For each 𝑛 ∈ N we consider the word 1𝑛 (the word 11 . . . 1 of length 𝑛) and
consider 𝑃 −1

1𝑛 : 𝑅1𝑛 → 𝑅 = [0, 1]2. The image 𝐷1𝑛 = 𝑃 −1
1𝑛 ({(𝑥, 𝑦) ∈ 𝑅1𝑛 | 𝑥 = 𝑦}) of the

diagonal is a line containing the point (1
2 , 1

2) and of slope 𝜆−𝑛
1 where 𝜆1 = 𝑦1−𝑦2

𝑥2−𝑥1
> 1.

We will choose 𝑛 and a 𝜂 > 0 ensuring two conditions, the first one being that 𝐷1𝑛 is
contained in [0, 1]×(1

2 −𝜂, 1
2 +𝜂) (which is equivalent to 𝐻1𝑛([0, 1]) ⊂ 𝑉1𝑛((1

2 −𝜂, 1
2 +𝜂)));

for this it is sufficient to have
𝜂 >

1
2

(︂
𝑥2 − 𝑥1

𝑦1 − 𝑦2

)︂𝑛

. (2)

The second condition we want to ensure is that 𝐽1ℓ𝑖 ⊃ (1
2 − 𝜂, 1

2 + 𝜂) for all ℓ ≤ 𝑘 and
𝑖 ∈ {0, 1, 2}. By writing 𝐽1ℓ𝑖 = 𝑉 ℓ

1 (𝐽𝑖) and using 𝑉1(1
2) = 1

2 and (𝑦2, 𝑦1) ⊂ 𝐽𝑖, we see that
for this condition to hold it is sufficient to have

𝜂 <
(︁1

2 − 𝑦2
)︁
(𝑦1 − 𝑦2)𝑘 (3)

By choosing 𝜂 small enough and then 𝑛 large enough, we can ensure that both (2) and
(3) are satisfied. We then set 𝐴 =

{︁
1𝑛+ℓ𝑖 | 0 ≤ ℓ ≤ 𝑘, ℓ even, 𝑖 ∈ {0, 2}

}︁
.

Given 𝜔 ̸= 𝜎 ∈ 𝐴, the intervals 𝐼𝜔 and 𝐼𝜎 have disjoint interior since 𝜔 and 𝜎 are not
prefixes one of the other. Last, for all 𝜔 = 1𝑛+ℓ𝑖 and 𝜎 = 1𝑛+𝑚𝑗 in 𝐴:

𝐼𝜎 = 𝐻1𝑛(𝐼1𝑚𝑗) ⊂ 𝐻1𝑛([0, 1]) ⊂ 𝑉1𝑛

(︂(︂1
2 − 𝜂,

1
2 + 𝜂

)︂)︂
⊂ 𝑉1𝑛(𝐽1ℓ𝑖) = 𝐽𝜔.
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To treat the second case of Theorem A, the difficulty will be that we do not have the
fixed point (1

2 , 1
2) as reference. We will have to ensure that the almost horizontal line

𝐷𝜔0 stays far from the upper and lower sides of the unit square, as otherwise the “range”
of the identity in our local coordinates will be impossible to cover with intervals 𝐽𝜔+ .

3.2 An open region of the parameter space
We turn to the case when 𝑇 = 𝑍𝑝 satisfies assumption ii in Theorem A.

We consider for each (𝑦1, 𝑦2) the affine Iterated Function System (𝑉𝜔)𝜔∈{0,2} generated
by 𝑉0 and 𝑉2 as defined above (dependence on (𝑦1, 𝑦2) kept implicit), which is related to
(asymmetric) Bernoulli convolutions.

Recall that 𝐵 = {(𝑦1, 𝑦2) ∈ (0, 1)2 | 𝑦2
1 > 𝑦2 and 𝑦1 > (2 − 𝑦2)𝑦2}, i.e. 𝐵 is the set of

parameters such that 𝑉00(1) > 𝑉2(0) and 𝑉22(0) < 𝑉0(1).

3.2.1 Properties of the vertical IFS

We start with some basic properties of (𝑉𝜔)𝜔∈{0,2}* , assuming (𝑦1, 𝑦2) ∈ 𝐵. We consider
the functional 𝑆 acting on the space of bounded functions R → R by

𝑆𝑓(𝑥) := 𝑓 ∘ 𝑉 −1
0 (𝑥) + 𝑓 ∘ 𝑉 −1

2 (𝑥) = 𝑓
(︂

𝑥

𝑦1

)︂
+ 𝑓

(︂
𝑥 − 𝑦2

1 − 𝑦2

)︂

and we denote by 1 the characteristic function of the interval [0, 1], and by 1𝐼 the
characteristic function of an interval 𝐼. Observe that 𝑆1𝐼 = 1𝑉0(𝐼) +1𝑉2(𝐼) so that for all
𝑛 ∈ N and 𝑥 ∈ [0, 1], 𝑆𝑛1(𝑥) is the number of words 𝜔 ∈ {0, 2}* of length 𝑛 such that
𝑥 ∈ 𝑉𝜔([0, 1]).

Lemma 3.2. For all 𝜀 > 0, there exist 𝛿 > 0 and 𝑛 ∈ N such that 𝑆𝑛1[𝛿,1−𝛿] ≥ 21[𝜀,1−𝜀].

Proof. Let 𝑎, 𝑏 ∈ (0, 1) such that 𝑎 < 𝑏. Whenever 𝑎 is small enough and 𝑏 large enough,
more precisely whenever 𝑉2(𝑎) < 𝑉0(𝑏), we have:

𝑆1[𝑎,𝑏] = 1[𝑉0(𝑎),𝑉0(𝑏)] + 1[𝑉2(𝑎),𝑉2(𝑏)] = 1[𝑉0(𝑎),𝑉2(𝑏)] + 1[𝑉2(𝑎),𝑉0(𝑏)].

Observe that 𝑉0(𝑎) < 𝑎 and 𝑉2(𝑏) > 𝑏, so we can apply this to 1[𝑉0(𝑎),𝑉2(𝑏)] to compute

𝑆21[𝑎,𝑏] = 1[𝑉00(𝑎),𝑉22(𝑏)] + 1[𝑉20(𝑎),𝑉02(𝑏)] + 1[𝑉02(𝑎),𝑉00(𝑏)] + 1[𝑉22(𝑎),𝑉20(𝑏)].

Since (𝑦1, 𝑦2) ∈ 𝐵, 𝑉00(1) > 𝑉2(0) = 𝑉20(0) and 𝑉22(0) < 𝑉0(1) = 𝑉02(1). For 𝑎 small
enough and 𝑏 large enough we thus have 𝑉00(𝑏) > 𝑉20(𝑎) and 𝑉22(𝑎) < 𝑉02(𝑏), from which
it follows

𝑆21[𝑎,𝑏] ≥ 1[𝑉00(𝑎),𝑉22(𝑏)] + 1[𝑉02(𝑎),𝑉20(𝑏)].

Fix 𝑎 and 𝑏 satisfying all above hypotheses: 𝑉2(𝑎) < 𝑉0(𝑏), 𝑉00(𝑏) > 𝑉20(𝑎) and 𝑉22(𝑎) <
𝑉02(𝑏). Using that for all 𝑥 ∈ (0, 1), 𝑉2(𝑥) > 𝑥 and 𝑉0(𝑥) < 𝑥, for all 𝑛 we have

𝑉02𝑛0(𝑏) > 𝑉00(𝑏) > 𝑉20(𝑎) > 𝑉20𝑛+1(𝑎)
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and similarly 𝑉20𝑛2(𝑎) < 𝑉02𝑛+1(𝑏). This is exactly what is needed to prove by induction
that for all 𝑛 ∈ N,

𝑆𝑛+11[𝑎,𝑏] ≥ 1[𝑉0𝑛+1 (𝑎),𝑉2𝑛+1 (𝑏)] + 1[𝑉0𝑛2(𝑎),𝑉2𝑛0(𝑏)].

Applying this to 𝑎 = 𝛿 and 𝑏 = 1− 𝛿 for 𝛿 > 0 small enough and using lim𝑛 𝑉0𝑛+1(𝛿) =
lim𝑛 𝑉0𝑛2(𝛿) = 0 and lim𝑛 𝑉2𝑛+1(1 − 𝛿) = lim𝑛 𝑉2𝑛0(1 − 𝛿) = 1, we obtain the desired
conclusion.

Lemma 3.3. For all 𝜀 > 0 and all 𝑘 > 0, there exist 𝛿 > 0 and 𝑛 ∈ N such that
𝑆𝑛1[𝛿,1−𝛿] ≥ 𝑘1[𝜀,1−𝜀].

Proof. Fix 𝜀 > 0 and 𝑘 > 0. The previous lemma permits for any ℓ ∈ N to find
𝛿1, . . . , 𝛿ℓ > 0 and 𝑛1, . . . , 𝑛ℓ ∈ N such that 𝑆𝑛11[𝛿1,1−𝛿1] ≥ 21[𝜀,1−𝜀] and for all 𝑗 ∈
{2, . . . , ℓ},

𝑆𝑛𝑗1[𝛿𝑗 ,1−𝛿𝑗 ] ≥ 21[𝛿𝑗−1,1−𝛿𝑗−1].

It is then sufficient to choose ℓ such that 2ℓ ≥ 𝑘 and set 𝑛 = 𝑛1 + · · ·+𝑛ℓ and 𝛿 = 𝛿ℓ.

Before we deduce the result we shall need in the proof of Theorem A, let us note
that an experimental exploration indicates that the set of parameters (𝑦1, 𝑦2) for which
the conclusion of Lemma 3.3 holds is larger than 𝐵, but smaller than the triangle
{𝑦1 > 𝑦2 ∈ (0, 1)}. Our proof does not use (𝑦1, 𝑦2) ∈ 𝐵 behind this point, so we could
replace condition ii in Theorem A by the conclusion of Lemma 3.3; this would be more
general, but less explicit.

Proposition 3.4. For all 𝜀 > 0 and all 𝑘 > 0, there exist 𝜂 > 0 and 𝑛 ∈ N such that
for all 𝑦 ∈ [𝜀, 1 − 𝜀],

#
{︁
𝜔 ∈ {0, 2}𝑛

⃒⃒⃒
[𝑦 − 𝜂, 𝑦 + 𝜂] ⊂ 𝑉𝜔([0, 1])

}︁
≥ 𝑘.

Proof. Let 𝜀 > 0 and use Lemma 3.3 to find 𝑛 ∈ N and 𝛿 > 0 such that 𝑆𝑛1[𝛿,1−𝛿] ≥
𝑘1[𝜀,1−𝜀]. Let 𝑣 = min(𝑦1, 1 − 𝑦2) and 𝜂 = 𝛿𝑣𝑛. Let 𝑦 ∈ [𝜀, 1 − 𝜀]; then there are at least
𝑘 words 𝜔 ∈ {0, 2}𝑛 such that 𝑦 ∈ 𝑉𝜔([𝛿, 1 − 𝛿]). For each such 𝜔, we have 𝑉𝜔(0) ≤
𝑉𝜔(𝛿) − 𝛿𝑣𝑛 ≤ 𝑦 − 𝜂 and similarly 𝑦 + 𝜂 ≤ 𝑉𝜔(1), so that [𝑦 − 𝜂, 𝑦 + 𝜂] ⊂ 𝑉𝜔([0, 1]).

3.2.2 Finding horseshoes

Given 𝜀 > 0, a line 𝐿 is said to be 𝜀-transverse to 𝑅 = [0, 1]2 whenever ∅ ̸= 𝐿 ∩ 𝑅 ⊂
[0, 1]×[𝜀, 1−𝜀]. 𝐿 is said to be 𝜀-transverse to 𝑅𝜔 if 𝑃 −1

𝜔 (𝐿) is 𝜀-transverse to 𝑅. Writing
𝑅𝜔 = [𝑎, 𝑏] × [𝑐, 𝑑], this condition is equivalent to ∅ ̸= 𝐿 ∩ 𝑅𝜔 ⊂ [𝑎, 𝑏] × [𝑐 + 𝜀(𝑑 − 𝑐), 𝑑 −
𝜀(𝑑 − 𝑐)]. This definition is illustrated in Figure 3.

We prove Theorem A under condition ii in two steps, the first stated as a lemma. The
general strategy is to zoom in using 𝑃 −1

𝜔 to replace the diagonal by an almost horizontal,
somewhat vertically centered line, as illustrated by Figure 4.
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Figure 3: If 𝜀 is the height of the light grey bands, then the blue line is not 𝜀-transverse
to 𝑅, but is 𝜀-transverse to 𝑅0.

Lemma 3.5. There exist 𝜀 = 𝜀(𝑝) > 0 and ℓ0 = ℓ0(𝑝) ∈ N such that for all ℓ ≥ ℓ0, one
can find a word 𝜔 of length ℓ such that the diagonal 𝐷 = {(𝑥, 𝑥) : 𝑥 ∈ R} is 𝜀-transverse
to 𝑅𝜔.

Proof. The strategy of proof is to “zoom in” using some 𝑃 −1
𝜔0 to get an almost horizontal

line transversal to 𝑅. Then, using almost horizontality, it will be easy to expand 𝜔0
while preserving transversality.

Given any word 𝜔, we set 𝐷𝜔 = 𝑃 −1
𝜔 (𝐷) (note that 𝑃𝜔 extends to an affine bijection

of R2, and whenever needed 𝑃 −1
𝜔 denotes the inverse of this extension). For some 𝜔,

𝐷𝜔 ∩𝑅 = ∅ but we will choose our words so that these lines are not considered. Observe
that the slope of 𝐷𝜔 is at most 𝜆

−|𝜔|
min in absolute value.

Let ℒ be the set of lines meeting the interior of at least one of the vertical sides of 𝑅,
and of slope in (−1, 0). Since 𝜆min > 1, the diagonal must meet the interior of at least
one of the vertical sides of the central rectangle 𝑅1, thus 𝐷1 ∈ ℒ.

Consider any 𝐿 ∈ ℒ. It must meet at least one of the interiors of the vertical sides of
at least one of 𝑅0 or 𝑅2, so that we can find 𝑖 ∈ {0, 2} such that 𝑃 −1

𝑖 (𝐿) ∈ ℒ. Starting
from 𝐷1, we can thus construct inductively a sequence (𝐷𝜔𝑛)𝑛>0 (with |𝜔𝑛| = 𝑛) of
elements of ℒ whose slopes converge exponentially fast to 0 from below.

Fix 𝜀 = 𝜀(𝑝) > 0 small enough to ensure that all lines of slope in [−𝜀, 0] and 𝜀-
transversal to 𝑅 are 𝜀-transversal to at least one of 𝑅0 or 𝑅2 (this is possible since
𝑦2 < 𝑦1 and we consider lines of negative slope). Taking 𝑛 = 𝑛0 large enough, we can
ensure the slope of 𝐷𝜔𝑛0

is in [−𝜀, 0). If 𝐷𝜔𝑛0
is 𝜀-transverse to 𝑅, then we take 𝜔0 = 𝜔𝑛0 ,

ℓ0 = |𝜔0| and we are done: by assumption, we can inductively extend the word 𝜔0 into
words 𝜔 of arbitrary length such that 𝐷𝜔 is 𝜀-transverse to 𝑅, i.e. 𝐷 is 𝜀-transverse to
𝑅𝜔.

Otherwise, we continue applying 𝑃 −1
0 or 𝑃 −1

2 ; what is left to prove is that it is possible
to ultimately produce a line 𝐷𝜔𝑛1

that is 𝜀-transverse to 𝑅. Up to reducing 𝜀 further, we
can assume that 𝑃 −1

0 ([0, 𝑥1] × [0, 2𝜀]) ⊂ [0, 1] × [0, 1 − 2𝜀] and 𝑃 −1
2 ([𝑥2, 1] × [1 − 2𝜀, 1]) ⊂

14



Figure 4: Upper-left: the square 𝑅 and the diagonal 𝐷 (blue), with successive 𝑅𝜔 we
shall zoom in to in shades of grey. Each successive picture is an affine zoom-in
of the light grey area in the previous one. The choice of the letter is done to
ensure good transversality.
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[0, 1] × [2𝜀, 1]. Since its slope is between −𝜀 and 0, for 𝐷𝜔𝑛0
not to be 𝜀-transverse to

𝑅 one of the two following conditions must hold: either 𝐷𝜔𝑛0
meets the interior of the

left side of 𝑅 at height less than 2𝜀, or it meets the interior of the right side of 𝑅 at
height more than 1 − 2𝜀. We treat the first case, the second one being symmetrical.
We set 𝜔𝑛0+𝑘 = 0𝑘𝜔𝑛0 , i.e. 𝐷𝜔𝑛0+𝑘

= 𝑃 −𝑘
0 (𝐷𝜔𝑛0

), where 𝑘 is the least integer such that
𝐷𝜔𝑛0+𝑘

meets the left side of 𝑅 at height at least 2𝜀. For 𝜀 small enough (precisely,
𝜀 < 𝑦1(2 + 2𝑦1)), by minimality this height is between 2𝜀 and 1 − 𝜀, and 𝐷𝜔𝑛0+𝑘

is
𝜀-transverse to 𝑅.

Proof of Theorem A under assumption ii. We fix 𝑘 ∈ N. We shall find a word 𝜔 and a
set 𝐴 of at least 𝑘 words, no one a prefix of another, such that 𝐽𝜔𝜎 ⊃ 𝐼𝜔 for all 𝜎 ∈ 𝐴.
Then the (𝐼𝜔𝜎)𝜎∈𝐴 will have pairwise disjoint interiors, and 𝑇 (𝐼𝜔𝜎) = 𝐽𝜔𝜎 ⊃ 𝐼𝜔 ⊃ 𝐼𝜔𝜏 for
all 𝜎, 𝜏 ∈ 𝐴.

Let ℓ0 ∈ N, 𝜀 > 0 be as given by Lemma 3.5, then let 𝜂 > 0 and 𝑛 ∈ N be as given by
Proposition 3.4. Let ℓ ≥ ℓ0 and 𝜔 be as given by Lemma 3.5 with ℓ large enough that
the slope of 𝐷𝜔 is less than 2𝜂 in absolute value. We consider the “range” of 𝐷𝜔, i.e.
the interval [𝑎, 𝑏] where 𝑎, 𝑏 are the heights at which 𝐷𝜔 meets the right and left sides of
𝑅; by construction 𝑏 − 𝑎 < 2𝜂 and 𝜀 ≤ 𝑎 ≤ 𝑏 < 1 − 𝜀. Let 𝑦 = 𝑎+𝑏

2 , so that 𝑦 ∈ [𝜀, 1 − 𝜀]
and [𝑎, 𝑏] ⊂ [𝑦 − 𝜂, 𝑦 + 𝜂]. Finally, let

𝐴 = #
{︁
𝜎 ∈ {0, 2}𝑛

⃒⃒⃒
[𝑦 − 𝜂, 𝑦 + 𝜂] ⊂ 𝑉𝜎([0, 1])

}︁
.

Elements of 𝐴 are not prefix one to another, since they all have the same length. By
Proposition 3.4, there are at least 𝑘 elements in 𝐴 and 𝑉 −1

𝜔 (𝐼𝜔) ⊂ 𝑉𝜎([0, 1]) for all 𝜎 ∈ 𝐴.
By applying 𝑉𝜔, this means 𝐽𝜔𝜎 ⊃ 𝐼𝜔, as desired.

3.3 Realisation of orders by orbits
We now prove Corollaries B and C. We dismiss the notation of the beginning of the
section, and prove the corollaries for any continuous map 𝑇 satisfying the conclusion of
Theorem A (which is easily seen to be actually equivalent to the conclusion of Corollary
B).

Proof of Corollary C. Assume |Ω| = {1, . . . , 𝑘} and let (𝐼1, . . . , 𝐼𝑘) be a horseshoe of 𝑇 .
For each periodic orbit (𝑖1, . . . , 𝑖𝑝) of 𝑆 : Ω → Ω, we can find a 𝑝-periodic point 𝑥 of 𝑇
in 𝐼𝑖1 , whose orbits goes through (𝐼𝑖1 , . . . , 𝐼𝑖𝑝) in order ; we then define 𝜋(𝑖𝑗) = 𝑇 𝑗−1(𝑥)
for all 𝑗 ∈ {1, . . . , 𝑝}. All orbits of a finite dynamical system are ultimately periodic,
so we only have left to define 𝜋 inductively on pre-periodic points, an 𝑆-antecedent 𝑗
of a point 𝑖 on which 𝜋 is already defined being sent to any 𝑇 -antecedent of 𝑇 ∘ 𝜋(𝑖) in
𝐼𝑗.

Proof of Corollary B. Assume 𝑇 : [0, 1] → [0, 1] is a continuous map that admits horse-
shoes of arbitrary order. Let 𝑘, ℓ ∈ N and consider any total strict order ≺ on the
symbols (𝑠𝑗

𝑖 )1≤𝑖≤𝑘,0≤𝑗≤ℓ. We seek for points 𝑥1, . . . 𝑥𝑘 ∈ [0, 1] such that for all 𝑖, 𝑗, 𝑖′, 𝑗′:

𝑠𝑗
𝑖 ≺ 𝑠𝑗′

𝑖′ ⇔ 𝑇 𝑗𝑥𝑖 < 𝑇 𝑗′
𝑥𝑖′ .

16



Given two closed subsets 𝐼, 𝐽 ⊂ [0, 1], we write 𝐼 ≤ 𝐽 whenever max 𝐼 ≤ min 𝐽
and 𝐼 < 𝐽 whenever max 𝐼 < min 𝐽 . Let 𝑁 be a positive integer that we shall made
precise later on. Let 𝐼0

1 , 𝐼0
2 , . . . , 𝐼0

2𝑁 be a horseshoe of 𝑇 numbered in increasing order,
i.e. 𝐼0

𝑖 ≤ 𝐼0
𝑖+1 for all 𝑖 ∈ {1, . . . , 2𝑁}. Then the family (𝐼𝑖 = 𝐼0

2𝑖)1≤𝑖≤𝑁 is a horseshoe for
𝑇 with disjoint intervals (not only intervals of disjoint interiors). In particular < induces
a total strict order on (𝐼𝑖)1≤𝑖≤𝑁 .

For all word 𝜔 = 𝛼0𝛼1 . . . 𝛼𝑛 ∈ {1, . . . , 𝑁}*, we let 𝐼𝜔 = 𝐼𝛼0 ∩𝑇 −1(𝐼𝛼1)∩· · ·∩𝑇 −𝑛(𝐼𝛼𝑛),
i.e. 𝐼𝜔 is the set of points whose orbit under 𝑇 runs over the 𝐼𝑖 as specified by 𝜔. We
know each 𝐼𝜔 is a non-empty compact set, we can thus choose a point 𝑦𝜔 ∈ 𝐼𝜔 for each
word 𝜔 of length ℓ, and by construction 𝑇 𝑗(𝑦𝛼0𝛼1...𝛼ℓ

) < 𝑇 𝑗′(𝑦𝛽0𝛽1,...𝛽ℓ
) ⇔ 𝐼𝛼𝑗

< 𝐼𝛽𝑗′ .
Assuming 𝑁 ≥ 3𝑘 + 2, we can find a map 𝛼0 : {1, . . . , 𝑘} → {1, . . . , 𝑁} such that

• 𝐼𝛼0(𝑖) < 𝐼𝛼0(𝑖′) ⇔ 𝑠0
𝑖 ≺ 𝑠0

𝑖′ , and

• there is a distance at least 𝑁0 = 𝑁−𝑘
𝑘+1 − 1 ≥ 1 between any two numbers in the

family (0, 𝛼0(1), . . . , 𝛼0(𝑘), 𝑁)

i.e. 𝛼0 selects intervals in the horseshoe that reflect the order on the 𝑠0
𝑖 and are almost

evenly spread inside {1, . . . , 𝑁}.
Assuming 𝑁 is large enough, we can in the same way construct inductively on 𝑗 from

0 to ℓ a sequence of positive integers 𝑁𝑗 and maps 𝛼𝑗 : {1, . . . , 𝑘} → {1, . . . , 𝑁} such
that

• 𝐼𝛼𝑗(𝑖) < 𝐼𝛼𝑗′ (𝑖′) ⇔ 𝑠𝑗
𝑖 ≺ 𝑠𝑗

𝑖′ , and

• there is a distance at least 𝑁𝑗 = 𝑁𝑗−1−𝑘

(𝑗+1)𝑘+1 − 1 ≥ 1 between any two numbers in the
family containing 0, 𝑁 and all the 𝛼𝑗′(𝑖) for 0 ≤ 𝑗′ ≤ 𝑗 and 1 ≤ 𝑖 ≤ 𝑘.

Then the points 𝑥𝑖 = 𝑦𝛼0(𝑖)𝛼1(𝑖)...𝛼ℓ(𝑖) have the desired property and the proof of Corol-
lary B is complete.

4 Relative metric mean dimension and other
high-complexity measurements

Let us recall the metric mean dimension introduced by [LW00]. If 𝑇 : Ω → Ω is a
dynamical system on a compact space Ω endowed with a metric 𝑑, one defines the
Bowen metrics by

𝑑𝑛(𝑥, 𝑦) = max{𝑑(𝑇 𝑘(𝑥), 𝑇 𝑘(𝑦)) | 0 ≤ 𝑘 < 𝑛} ∀𝑛 ∈ N, ∀𝑥, 𝑦 ∈ Ω.

A set 𝑆 ⊂ Ω is said to be (𝑛, 𝜀)-separated when 𝑑𝑛(𝑥, 𝑦) ≥ 𝜀 for all 𝑥 ̸= 𝑦 ∈ 𝑆.
Denoting by 𝑁(𝑑, 𝑇, 𝜀, 𝑛) the cardinal of a largest (𝑛, 𝜀)-separated set, one defines the
metric mean dimension relative to 𝑑 by

mdim𝑀(𝑇, 𝑑) := lim inf
𝜀→0

lim sup
𝑛→∞

log 𝑁(𝑑, 𝑇, 𝜀, 𝑛)
𝑛 log 1

𝜀

.
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In other words, a map with metric mean dimension (relative to 𝑑) 𝛿 has 𝑁(𝑑, 𝑇, 𝜀, 𝑛)
roughly of the order (1/𝜀𝛿)𝑛 for small fixed 𝜀 as 𝑛 → ∞, or “entropy of the order of 1/𝜀𝛿

at scale 𝜀.”
This is not a topological invariant, it depends on the choice of metric. For example,

for every 𝛼 ∈ (0, 1) the function 𝑑𝛼 is still a metric, and the mean dimension relative
to 𝑑𝛼 is 1/𝛼 times the mean dimension relative to 𝑑: as soon as 𝑇 has positive mean
dimension relative to some metric, one can find metrics for which it has arbitrarily high
metric mean dimension. Lindenstrauss and Weiss introduced the topological invariant
(absolute) metric mean dimension

mdim𝑀(𝑇 ) := inf
𝑑

mdim𝑀(𝑇, 𝑑)

where 𝑑 runs over all metrics on Ω inducing its topology. We shall use the adjective
“absolute” when there is a risk of confusion with the metric mean dimension relative
to a particular metric, but usually mdim𝑀(𝑇 ) will simply be called the metric mean
dimension of 𝑇 .

The main goal of this quantity was to bound from above another topological invariant
of high-complexity maps, the (topological) mean dimension, introduced by Gromov. We
shall not give the definition here, as this quantity is of little interest in our case: as soon
as Ω has finite topological dimension, the mean dimension of every continuous map on
Ω vanishes. Examples of positive mean dimension system include the shifts on ([0, 1]𝑘)N,
which have mean dimension 𝑘 by a theorem of Lindenstrauss and Weiss (and are thus
not topologically conjugated one to another for different 𝑘).

A prominent question is whether metric mean dimension is always equal to mean
dimension (a positive answer is conjectured; see e.g. [LT19]). As mentioned above, it
is known from [LW00] that the metric mean dimension is never lower than the mean
dimension, and no example is known where they differ. While during the course of
this research we had hoped that mdim𝑀(𝑍𝑝) > 0 for some 𝑝, we will on the contrary
prove in Section 5 that mdim𝑀(𝑇 ) = 0 for all interval maps, proving a small case of the
conjecture.

However, zipper maps and similar examples deserve an invariant that quantifies their
level of chaos beyond infinite entropy. The purpose of this section is to propose and
study several quantities playing this role and bound them in the case of zipper (or more
general) maps.

4.1 Metric mean dimension relative to the Euclidean metric
We first bound from below the metric mean dimension relative to the Euclidean metric
|·| for the class of hypersensitive maps, with Theorem D as a consequence in view of
Proposition 2.4.

Theorem 4.1. If 𝑇 : [0, 1] → [0, 1] is a 𝛽-hypersensitive interval map, then

mdim𝑀(𝑇, |·|) ≥ 1 − 𝛽.
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Proof. By assumption there is some 𝐶 > 0 such that |𝑇 (𝐴)| ≥ 𝐶|𝐴|𝛽 for all interval
𝐴 ⊂ [0, 1]. Let 𝜀 ∈ (0, 1

4) and consider any partition [0, 1] = 𝐼1 ∪ 𝐼2 . . . 𝐼𝑘 into 𝑘 = ⌊ 1
2𝜀

⌋
intervals, each of length at least 2𝜀 and at most 2𝜀 + 8𝜀2. Let 𝐼 ′

𝑗 be the centered
subinterval of 𝐼𝑗 of length 𝜀. For each 𝑗 ∈ {1, . . . , 𝑘} it holds |𝑇 (𝐼𝑗)| ≥ 𝐶𝜀𝛽, and thus
𝑇 (𝐼𝑗) contains at least 𝐶 ′𝜀𝛽−1 intervals 𝐼ℓ of the partition for some 𝐶 ′ not depending on
𝜀.

Construct a directed graph 𝐺 whose set of vertices is {1, 2, . . . , 𝑘}, and where there
is an edge from 𝑗 to ℓ whenever 𝑇 (𝐼 ′

𝑗) ⊃ 𝐼ℓ. By the intermediate value theorem, for any
directed path 𝑗0 → 𝑗1 → · · · → 𝑗𝑛−1 in 𝐺 there is some starting point 𝑥 ∈ Ω such that
𝑇 𝑖(𝑥) ∈ 𝐼 ′

𝑗𝑖
for all 𝑖 ∈ J0, 𝑛 − 1K. By construction, any two different paths corresponds

to (𝑛, 𝜀) separated starting points. Since 𝐺 has minimal out-degree at least 𝐶 ′𝜀𝛽−1, for
any 𝛽′ > 𝛽 and any small enough 𝜀 the graph 𝐺 has at least 𝜀𝑛(𝛽′−1) paths of length 𝑛.
It follows that mdim𝑀(𝑇 ) ≥ 1 − 𝛽′, and the desired conclusion follows from letting 𝛽′

approach 𝛽.

4.2 Mean dimension for measured dynamical systems
In this section, we develop an analogue of the Kolmogorov-Sinai entropy for mean di-
mension. Endow the (metric, compact) phase space Ω with its Borel 𝜎-algebra, let
𝑇 : Ω → Ω be a measurable map and assume 𝜇 is a 𝑇 -invariant probability measure on
Ω.

4.2.1 Kolmogorov-Sinai mean dimension

Let 𝜉 = (𝐵1, . . . , 𝐵𝑘) be a (measurable) partition of Ω, and recall that one defines

𝐻(𝜇; 𝜉) := −
𝑘∑︁

𝑖=1
𝜇(𝐵𝑖) log 𝜇(𝐵𝑖).

The entropy of (𝑇, 𝜇) relative to the partition 𝜉 is

ℎ(𝑇, 𝜇, 𝜉) = lim
𝑛→∞

𝐻
(︁
𝜇; ⋀︀𝑛−1

𝑗=0 𝑇 −𝑗(𝜉)
)︁

𝑛

and the Kolmogorov-Sinai entropy of (𝑇, 𝜇) is then defined as ℎ(𝑇, 𝜇) = sup𝜉 ℎ(𝑇, 𝜇, 𝜉)
where 𝜉 runs over all partitions into finitely many subsets.

In a spirit similar to the metric mean dimension, let us modify this definition to make
it meaningful in the case of infinite entropy, by looking how the asymptotic complexity
of the dynamically refined partitions ⋀︀𝑛−1

𝑗=0 𝑇 −𝑗(𝜉) increase with the number of elements
in 𝜉. Let 𝒫𝑘 be the set of measurable partitions into at most 𝑘 subsets. We define the
Kolmogorov-Sinai mean dimension of (𝑇, 𝜇) by

mdim𝐾𝑆(𝑇, 𝜇) := lim inf
𝑘→∞

sup
𝜉∈𝒫𝑘

ℎ(𝑇, 𝜇, 𝜉)
log 𝑘
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Observe that if 𝜉 ∈ 𝒫𝑘, then ⋀︀𝑛−1
𝑗=0 𝑇 −𝑗(𝜉) has at most 𝑘𝑛 elements, so that

𝐻
(︁
𝜇;

𝑛−1⋀︁
𝑗=0

𝑇 −𝑗(𝜉)
)︁

≤ 𝑛 log 𝑘.

The Kolmogorov-Sinai mean dimension is thus bounded above by 1, and we shall see
that the relation with the metric mean dimension will involve some dimension of Ω.
The Kolmogorov-Sinai mean dimension is more a proportion (of the maximal possible
complexity) than a dimension, but we still chose this name in order to draw a parallel
between entropies and mean dimensions.

If 𝜆 is the Lebesgue measure on [0, 1], then the shift on [0, 1]N preserves 𝜆⊗N and it is
easy to see that in this case the Kolmogorov-Sinai mean dimension is 1. Any measurable
dynamical system with finite Kolmogorov-Sinai entropy has vanishing Kolmogorov-Sinai
dimension. We will not compute any Kolmogorov-sinai mean dimension here, but will
prove lower bounds. It is an intriguing problem to find explicit examples (𝑇, 𝜇) where
one can compute mdim𝐾𝑆(𝑇, 𝜇) and with 0 < mdim𝐾𝑆(𝑇, 𝜇) < 1.

4.2.2 Half a variational principle

In this section, we shall prove that on finite-dimensional phase spaces, the metric mean
dimension can be used to build invariant measure of positive Kolmogorov-sinai mean
dimension (and Corollary E will follow immediately).

We shall use the upper Minkowski dimension for metric spaces:

dim+
𝑀(Ω, 𝑑) = lim sup

𝜀→0

log 𝑁(Ω, 𝑑, 𝜀)
log 1

𝜀

where 𝑁(Ω, 𝑑, 𝜀) is the maximal cardinal of an 𝜀-separated subset of Ω.

Theorem 4.2. For all continuous map 𝑇 : Ω → Ω and all metric 𝑑 on Ω such that
dim+

𝑀(Ω, 𝑑) ∈ (0, ∞),

sup
𝜇∈P𝑇 (Ω)

mdim𝐾𝑆(𝑇, 𝜇) ≥ mdim𝑀(𝑇, 𝑑)
dim+

𝑀(Ω, 𝑑)

Proof. We follow a standard construction [Mis77, KH95]. Set 𝐷 = dim+
𝑀(Ω, 𝑑) and fix

any 𝜂 > 0. For each 𝑘 ∈ N, set 𝜀(𝑘) = ( 1
𝑘
)

1
𝐷+𝜂 . By definition of the upper Minkowski

dimension, whenever 𝑘 is large enough, 𝑁(Ω, 𝑑, 𝜀(𝑘)/2) ≤ 𝑘 (the factor 1/2 is harmless
and will be used later on). Consider from now on a fixed, large enough 𝑘 ∈ N and let
𝜀 = 𝜀(𝑘).

Let 𝑛 ∈ N, consider 𝐸𝑛 a maximal (𝑛, 𝜀)-separated set with respect to 𝑇 , and define

𝜈𝑛 = 1
|𝐸𝑛|

∑︁
𝑥∈𝐸𝑛

𝛿𝑛, 𝜇𝑛 = 1
𝑛

𝑛−1∑︁
𝑖=0

𝑇 𝑖
*𝜈𝑛

Let 𝜇 be a cluster point of the sequence (𝜇𝑛); since 𝑇 is continuous, 𝜇 is 𝑇 -invariant.
Let {𝑥1, . . . 𝑥𝑘′} be a maximal 𝜀/2-separated set; by maximality it is an 𝜀

2 covering and
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we can then construct as in Lemmas 4.5.1 and 4.5.2 of [KH95] a partition 𝜉 of Ω into 𝑘′

elements such that lim sup𝑛
log|𝐸𝑛|

𝑛
≤ ℎ𝜇(𝑇, 𝜉). We get

sup
𝜉∈𝒫𝑘

ℎ𝜇(𝑇, 𝜉)
log 𝑘

≥ lim sup
𝑛→∞

log 𝑁(𝑑, 𝑇, 𝜀(𝑘), 𝑛)
𝑛(𝐷 + 𝜂) log 1

𝜀(𝑘)

mdim𝐾𝑆(𝑇, 𝜇) ≥ lim inf
𝑘→∞

lim sup
𝑛→∞

log 𝑁(𝑑, 𝑇, 𝜀(𝑘), 𝑛)
𝑛(𝐷 + 𝜂) log 1

𝜀(𝑘)

≥ lim inf
𝜀→0

lim sup
𝑛→∞

log 𝑁(𝑑, 𝑇, 𝜀, 𝑛)
𝑛(𝐷 + 𝜂) log 1

𝜀

≥ mdim𝑀(𝑇, 𝑑)
𝐷 + 𝜂

sup
𝜇∈P𝑇 (Ω)

mdim𝐾𝑆(𝑇, 𝜇) ≥ mdim𝑀(𝑇, 𝑑)
𝐷

.

We cannot hope for equality in Theorem 4.2 since in Section 5 we will construct for
each continuous 𝑇 : [0, 1] → [0, 1] a metric 𝑑 on the interval such that dim+

𝑀([0, 1], 𝑑) = 1
and mdim𝑀(𝑇, 𝑑) = 0. However, the possibility of a full variational principle is briefly
discussed in the next section.

4.2.3 Other topological invariants

Let us consider other topological invariants that could be used to distinguish highly
irregular dynamical systems on finite-dimensional spaces, circumventing the vanishing
of absolute mean dimension for interval maps.

First, recall that whenever 𝑑 is a metric on the phase space Ω and 𝛼 ∈ (0, 1), 𝑑𝛼

also is a metric (this operation is sometimes called snowflaking), with dim+
𝑀(Ω, 𝑑𝛼) =

𝛼−1 dim+
𝑀(Ω, 𝑑) and mdim𝑀(𝑇, 𝑑𝛼) = 𝛼−1 mdim𝑀(𝑇, 𝑑). A first possibility would thus

be to consider
sup

𝑑

mdim𝑀(𝑇, 𝑑)
dim+

𝑀(Ω, 𝑑)
with the small inconvenient that, since 𝑁(𝑑, 𝑇, 𝜀, 𝑛) ≤ 𝑁(Ω, 𝑑, 𝜀)𝑛, we get a quantity that
is bounded above by 1 whenever defined, as in the Kolmogorov-Sinai mean dimension.
The same default appears with the more natural version where dim+

𝑀(Ω, 𝑑) is replaced
by the lower Minkowski dimension.

A second possibility is to take a supremum over a restricted set of “minimal” distances.
For example,

sup
{︁

mdim𝑀(𝑇, 𝑑) : dim+
𝑀(Ω, 𝑑) = dim Ω

}︁
where dim is the topological dimension. A third possibility is to prevent snowflaking by
asking geometric condition on the metrics, for example by considering:

sup
{︁

mdim𝑀(𝑇, 𝑑) : (𝜔, 𝑑) is a length space
}︁
.
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The last two quantities are suitable when Ω is a manifold, but not when it is a Cantor
space (then its topological dimension is 0 and it has no length metric).

All three of these quantities are topological invariants, and positive for hypersensitive
maps of the interval by Theorem 4.1; but we will not name them here, as it would take
more examples to decide which ones are ultimately relevant; two clues that would help
make this decision are:

• to use one of these invariants to prove that two explicit dynamical systems are not
topologically conjugated;

• to obtain a full variational principle, i.e. an equality between sup𝜇 mdim𝐾𝑆(𝑇, 𝜇)
and one of these quantities (possibly normalized by a metric dimension).

These problems are beyond the scope of the current article, and we leave them open
to further investigations.

5 Vanishing of the absolute metric mean dimension for
interval maps

In this section we prove Theorem F. Let 𝑇 : [0, 1] → [0, 1] be a continuous map. We will
construct the metric 𝑑 by conjugating the Euclidean metric, i.e.

𝑑(𝑥, 𝑦) = |ℎ(𝑥) − ℎ(𝑦)|, ∀𝑥, 𝑦 ∈ [0, 1],

where ℎ : [0, 1] → [0, 1] is a homeomorphism to be constructed. We actually design ℎ
with little reference to 𝑇 , only using its modulus of continuity; it will compress large
regions of the interval and expand tiny regions, making all specific features of 𝑇 only
appear at very small scales in ℎ ∘ 𝑇 ∘ ℎ−1.

5.1 A family of homeomorphism of the interval
We construct a family of homeomorphisms of [0, 1], among which ℎ shall be chosen, in
a way similar to the construction of zipper maps. Here we only use increasing changes
of coordinates, so as to send homeomorphisms to homeomorphisms, and we use 4 pieces
to intertwine two regions of high slope with two region with small slopes. For each
𝛼 ∈ (0, 1

2) (to be thought of as very small), we define a map Ψ𝛼 : C 0
0 → C 0

0 by

Ψ𝛼𝑓(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 𝛼

2 𝑓
(︁ 2

𝛼
𝑥

)︁
if 𝑥 ∈ [0, 𝛼

2 ]
1 − 𝛼

2 + 𝛼

2 𝑓
(︁ 2

1 − 𝛼
𝑥 − 𝛼

1 − 𝛼

)︁
if 𝑥 ∈ [𝛼

2 , 1
2 ]

1
2 + 1 − 𝛼

2 𝑓
(︁ 2

𝛼
𝑥 − 1

𝛼

)︁
if 𝑥 ∈ [1

2 , 1+𝛼
2 ]

1 − 𝛼

2 + 𝛼

2 𝑓
(︁ 2

1 − 𝛼
𝑥 − 1 + 𝛼

1 − 𝛼

)︁
if 𝑥 ∈ [1+𝛼

2 , 1]
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The graph of Ψ𝛼(Id) is shown in Figure 5. As in the definition of zipper maps, it will
be convenient to rephrase this definition through a two-dimensional iterated function
system acting on graphs of functions: for all 𝛼 ∈ (0, 1

2), all 𝑥, 𝑦 ∈ [0, 1]2 we set

𝐻𝛼
0 (𝑥) = 𝛼

2 𝑥 𝑉 𝛼
0 (𝑦) = 1 − 𝛼

2 𝑦 𝑃 𝛼
𝑖 (𝑥, 𝑦) = (𝐻𝛼

𝑖 (𝑥), 𝑉 𝛼
𝑖 (𝑦))

𝐻𝛼
1 (𝑥) = 1 − 𝛼

2 𝑥 + 𝛼

2 𝑉 𝛼
1 (𝑦) = 𝛼

2 𝑦 + 1 − 𝛼

2 ∀𝑖 ∈ {0, 1, 2, 3}

𝐻𝛼
2 (𝑥) = 𝛼

2 𝑥 + 1
2 𝑉 𝛼

2 (𝑦) = 1 − 𝛼

2 𝑦 + 1
2

𝐻𝛼
3 (𝑥) = 1 − 𝛼

2 𝑥 + 1 + 𝛼

2 𝑉 𝛼
3 (𝑦) = 𝛼

2 𝑦 + 1 − 𝛼

2

For any 𝑓 ∈ C 0
0 of graph 𝐺𝑓 , Ψ𝛼𝑓 has graph ∪𝑖𝑃𝑖(𝐺𝑓 ) and sends each interval 𝐼𝑖 :=

𝐻𝑖([0, 1]) onto 𝐽𝑖 := 𝑉𝑖([0, 1]).

Figure 5: The image of the identity map under Ψ𝛼 (in blue). Each box has length 1−𝛼
2

and width 𝛼
2 , so that the slopes of the blue segments are 1−𝛼

𝛼
and 𝛼

1−𝛼
.

Consider a sequence 𝑠 = (𝑠𝑛) ∈ (0, 1
2)N. For all 𝑛 ∈ N, Ψ𝑠1 ∘ · · · ∘ Ψ𝑠𝑛 is a contraction

on C 0
0 of ratio bounded by

(︁
1−𝛼

2

)︁𝑛
and sends increasing homeomorphisms to increasing

homeomorphisms. The sequence
(︁
ℎ𝑛 = Ψ𝑠1 ∘ · · · ∘ Ψ𝑠𝑛(Id)

)︁
𝑛

is thus a Cauchy sequence
and converges to a non-decreasing map ℎ = ℎ𝑠 ∈ C 0

0.

Lemma 5.1. For all 𝑠 = (𝑠𝑛) ∈ (0, 1
2)N, the map ℎ = ℎ𝑠 is a homeomorphism of [0, 1]

to itself.

We introduce some more notation that will be used here and later on. Letting the
dependency on 𝑠 implicit, for each finite word 𝜔 = 𝑖1 . . . 𝑖ℓ ∈ {0, 1, 2, 3}* we consider the
intervals

𝐼𝜔 = 𝐻𝑠1
𝑖1 ∘ · · · ∘ 𝐻𝑠ℓ

𝑖ℓ
([0, 1]) and 𝐽𝜔 = 𝑉 𝑠1

𝑖1 ∘ · · · ∘ 𝑉 𝑠ℓ
𝑖ℓ

([0, 1]).
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Proof. We already know that ℎ is in C 0
0 and is non-decreasing, we have left to prove

it is increasing. By construction, each ℎ𝑛 (and thus ℎ) sends 𝐼𝜔 to 𝐽𝜔 for each 𝜔 =
𝑖1 . . . 𝑖ℓ ∈ {0, 1, 2, 3}*. Observe that |𝐼𝜔| ≤ 1

2ℓ (this is the motivation to subdivide
the interval in no less than 4 parts), thus goes uniformly to zero as ℓ goes to infinity.
For any 𝑥1 < 𝑥2 ∈ [0, 1], there exist a finite word 𝜔 such that 𝐼𝜔 ⊂ (𝑥1, 𝑥2); then
𝐽𝜔 ⊂ [ℎ(𝑥1), ℎ(𝑥2)] and since |𝐽𝜔| > 0, we obtain ℎ(𝑥2) > ℎ(𝑥1).

5.2 Choosing the parameters 𝑠

We consider 𝑠 = (𝑠𝑛)𝑛≥1 a decreasing sequence and the corresponding homeomorphism
ℎ; we will add assumptions on 𝑠 at several points below, but we prefer to introduce
them only when needed. We denote by 𝑑 the corresponding metric on [0, 1], given by
𝑑(𝑥, 𝑦) = |ℎ(𝑥) − ℎ(𝑦)|.

We consider the rectangles 𝑅𝜔 = 𝐼𝜔 × 𝐽𝜔. The depth of 𝐼𝜔, 𝐽𝜔 and 𝑅𝜔 is simply the
length |𝜔| of their defining word. For any positive integer 𝑝, the rectangles of depth
𝑝 cover the graph of ℎ and form a chain 𝑅0...00, 𝑅0...01, . . . 𝑅3...32, 𝑅3...33, with successive
rectangles touching only at vertices and non-sucessive rectangles disjoint.

A rectangle of depth 𝑝 have area 4−𝑝 ∏︀𝑝
𝑗=1 𝑠𝑗(1 − 𝑠𝑗), independent of the specifics of

the word 𝜔 = 𝑖1 . . . 𝑖𝑝. Let 𝑗(𝜔) ⊂ J1, 𝑝K be the set of indices 𝑗 such that 𝑖𝑗 is even; then

|𝐼𝜔| = 2−𝑝
∏︁

𝑗∈𝑗(𝜔)
𝑠𝑗

∏︁
𝑗 /∈𝑗(𝜔)
1≤𝑗≤𝑝

(1 − 𝑠𝑗) ,

|𝐽𝜔| = 2−𝑝
∏︁

𝑗∈𝑗(𝜔)
(1 − 𝑠𝑗)

∏︁
𝑗 /∈𝑗(𝜔)
1≤𝑗≤𝑝

𝑠𝑗 .

We will assume that (𝑠𝑛) decreases very fast, more precisely∏︁
𝑖≥1

(1 − 𝑠𝑖) > 1 − 2−10 , (4)

∀𝑛 ≥ 1, 𝑠𝑛 < 2−𝑛−10
𝑛−1∏︁
𝑗=1

𝑠𝑗 =: 𝑃𝑛 . (5)

In particular, the aspect ratio of any rectangle 𝑅𝜔 of depth 𝑝 is mostly determined by
the last letter of 𝜔 alone; when that letter is even,

|𝐼𝜔| < 2−𝑝𝑠𝑝 < 2−2𝑝−10
𝑝−1∏︁
𝑗=1

𝑠𝑗 ≤ 2−2𝑝−9(1 − 𝑠𝑝)
𝑝−1∏︁
𝑗=1

𝑠𝑗 ≤ 2−𝑝−9|𝐽𝜔| ,

and 𝑅𝜔 is called a vertical rectangle; similarly when that letter is odd,

|𝐼𝜔| > 2−𝑝
(︂ 𝑝−1∏︁

𝑗=1
𝑠𝑗

)︂1
2 > 29𝑠𝑝 > 2𝑝+9|𝐽𝜔|

and 𝑅𝜔 is called a horizontal rectangle. For all 𝑝, the chain of rectangles of depth 𝑝
alternates between vertical and horizontal rectangles.
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Let 𝜀 ∈ (0, 1); for rounding issues, we set 𝜀′ = 1/(⌊1/𝜀⌋ + 1) so that 𝜀′ is the inverse of
an integer with 𝜀

2 ≤ 𝜀′ < 𝜀. We consider the following cover of [0, 1] by sets of 𝑑-diameter
bounded by 𝜀:

ℐ𝜀 :=
{︁
ℎ−1([𝑘𝜀′, (𝑘 + 1)𝜀′]) : 𝑘 ∈ J0, 1/𝜀′ − 1K

}︁
.

We group them by size, denoting for all 𝑘 ≥ 1:

ℐ𝜀(𝑘) :=
{︁
𝐼 ∈ ℐ𝜀

⃒⃒⃒
𝑠𝑘 ≤ |𝐼| < 𝑠𝑘−1

}︁
and ℒ𝜀(𝑘) =

𝑘⋃︁
𝑗=1

ℐ𝜀(𝑘) ,

where by convention 𝑠0 = 1 and ℒ stands for “large”: ℒ𝜀(𝑘) is the set of intervals in ℐ𝜀

whose length is at least 𝑠𝑘.
Finally, 𝑝0 = 𝑝0(𝜀) denotes the integer such that 𝜀′ ∈ [𝑠𝑝0 , 𝑠𝑝0−1).

Lemma 5.2. Let 𝑚 ∈ N, consider an interval 𝐼 ⊂ [0, 1] and set 𝐽 = ℎ(𝐼).

i. If |𝐼| ≥ 𝑠𝑚, then there exist a horizontal rectangle 𝑅𝜔 of depth 𝑚 such that |𝐼∩𝐼𝜔| >
0, and also |𝐽 ∩ 𝐽𝜔| > 0,

ii. if |𝐼| < 𝑠𝑚, then there exist at most 3 rectangles 𝑅𝜔 of depth 𝑚 such that 𝐼∩𝐼𝜔 ̸= ∅.

iii. if |𝐽 | ≥ 𝑠𝑚, then there exist a vertical rectangle 𝑅𝜔 of depth 𝑚 such that |𝐽 ∩𝐽𝜔| >
0, and also |𝐼 ∩ 𝐼𝜔| > 0.

Proof. Assume |𝐼| ≥ 𝑠𝑚. Then there are no vertical rectangle 𝑅𝜔 of depth 𝑚 such that
𝐼 ⊂ 𝐼𝜔, since they have width |𝐼𝜔| < 𝑠𝑚. Since the chain of depth 𝑚 rectangle alternates
between horizontal and vertical ones, there must exist a horizontal rectangle 𝑅𝜔 of depth
𝑚 such that |𝐼 ∩ 𝐼𝜔| > 0. Since 𝐽 = ℎ(𝐼) and 𝐽𝜔 = ℎ(𝐼𝜔), we also have |𝐽 ∩ 𝐽𝜔| > 0.

Assume |𝐼| < 𝑠𝑚, then horizontal rectangles 𝑅𝜔 of depth 𝑚 have width |𝐼𝜔| > 29𝑠𝑚 >
|𝐼|, so that among rectangles of depth 𝑚, at most two successive horizontal rectangle
and the vertical rectangle between them can satisfy 𝐼 ∩ 𝐼𝜔 ̸= ∅.

The last item is proved as the first one, inverting coordinate axes.

Lemma 5.3. For all 𝑘 ≥ 1 and all 𝜀 ∈ (0, 1),

Card(ℒ𝜀(𝑘)) ≤ 4max(𝑘,𝑝0)

Proof. Write 𝑚 = max(𝑘, 𝑝0). Let 𝐼 ∈ ℒ𝜀(𝑘) and set 𝐽 = ℎ(𝐼); then |𝐼| ≥ 𝑠𝑘 ≥ 𝑠𝑚

and |𝐽 | = 𝜀′ ≥ 𝑠𝑝0 ≥ 𝑠𝑚. Applying Lemma 5.2, there exist a horizontal rectangle 𝑅𝜔 of
depth 𝑚 such that |𝐽𝜔 ∩ 𝐽 | > 0. Such a rectangle has height |𝐽𝜔| < 𝑠𝑚 ≤ |𝐽 |, and 𝐽𝜔

can therefore meet at most two of the possible 𝐽 when 𝐼 runs over ℒ𝜀(𝑘), since these 𝐽
have disjoint interior. We obtain the desired conclusion by counting that there are 1

24𝑚

horizontal rectangle of depth 𝑚.

Now we add the last assumption to 𝑠, which will depend on the modulus of continuity
of the considered map 𝑇 : [0, 1] → [0, 1]. We take 𝑠1 small enough to ensure that (5)
implies (4), and additionally, inductively on 𝑘 ∈ N we take 𝑠𝑘 small enough to ensure
both (5) and

sup
{︁
|𝑇 𝑗(𝐼)| : 0 ≤ 𝑗 ≤ 𝑘, 𝐼 ⊂ [0, 1] an interval with |𝐼| ≤ 𝑠𝑘

}︁
< 𝑃𝑘. (6)
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5.3 Relating intervals of the cover and rectangles
Given a collection ℐ of intervals and an interval 𝐼0, we set

𝐼0 t ℐ = {𝐼 ∈ ℐ | 𝐼 ∩ 𝐼0 ̸= ∅} .

Lemma 5.4. Let 𝑘 ≥ 𝑝0. For any interval 𝐼0 ⊂ [0, 1] such that |𝐼0| < 𝑠𝑘−2 and 𝑞 ≥ 0,

Card
(︁
𝐼0 t ℒ𝜀(𝑘 + 𝑞)

)︁
≤ 4𝑞+3 .

Proof. Since |𝐼0| < 𝑠𝑘−2, by Lemma 5.2 there are at most 3 rectangles 𝑅𝜔 of depth 𝑘 − 2
such that 𝐼0 ∩ 𝐼𝜔 ̸= ∅. Since each rectangle contains exactly 4 rectangles of one more
depth, there are at most 3 · 4𝑞+2 rectangles 𝑅𝜔 of depth 𝑘 + 𝑞 such that 𝐼0 ∩ 𝐼𝜔 ̸= ∅,
among which at most 6 · 4𝑞+1 are vertical.

Let 𝐼 ∈ 𝐼0 t ℒ𝜀(𝑘 + 𝑞). Since |ℎ(𝐼)| = 𝜀′ ≥ 𝑠𝑝0 ≥ 𝑠𝑘+𝑞, Lemma 5.2 ensures that there
exists a vertical rectangle 𝑅𝜔 of depth 𝑘+𝑞 such that |𝐼∩𝐼𝜔| > 0. Since |𝐼𝜔| < 𝑠𝑘+𝑞 ≤ |𝐼|,
any such 𝐼𝜔 can meet at most 2 of the elements of ℒ𝜀(𝑘 + 𝑞).

On one hand, since ℐ𝜀(𝑘 + 𝑞) is a tiling, at most two of the elements of 𝐼0 t ℒ𝜀(𝑘 + 𝑞)
are not contained in 𝐼0, one containing each endpoint of 𝐼0. On the other hand, given
an element of 𝐼0 t ℒ𝜀(𝑘 + 𝑞) contained in 𝐼0 and a vertical rectangle 𝑅𝜔 of depth 𝑘 + 𝑞
such that |𝐼 ∩ 𝐼𝜔| > 0, we have 𝐼0 ∩ 𝐼𝜔 ̸= ∅. We thus have at most 3 · 4𝑞+2 + 2 elements
in 𝐼0 t ℒ𝜀(𝑘 + 𝑞).

Corollary 5.5. For all 𝑘 ≥ 𝑝0, 𝑞 ≥ 0, 𝑗 ∈ J0, 𝑘K and all 𝐼 ∈ ℐ𝜀(𝑘),

Card
(︁
𝑇 𝑗(𝐼) t ℒ𝜀(𝑘 + 𝑞)

)︁
≤ 4𝑞+3 .

This means that when coding the orbits of 𝑇 by the elements of ℐ𝜀 they visits, visiting
a small interval (in some ℐ𝜀(𝑘) with large 𝑘) means there are only a limited number of
ways to continue the orbit while not visiting even much smaller intervals.

We now bound the maximal depth of intervals of ℐ𝜀.

Lemma 5.6. Let 𝐾𝜀 := ⌈log2
1
𝜀
⌉+2. Then ℐ𝜀 = ℒ𝜀(𝐾𝜀), i.e. for all 𝑘 > 𝐾𝜀, ℐ𝜀(𝑘) = ∅.

Proof. Let 𝐼 ∈ ℐ𝜀. For every 𝜔 of depth 𝐾𝜀,

|𝐽𝜔| < 2−𝐾𝜀 ≤ 𝜀

4 ≤ 𝜀′

2 = 1
2 |ℎ(𝐼)| ,

and if 𝑅𝜔 is horizontal, |𝐽𝜔| ≪ 1
2 |ℎ(𝐼)|. There must thus be an horizontal rectangle 𝑅𝜔

such that
𝐽𝜔 ⊂ ℎ(𝐼) .

Indeed, consider 𝜔1 such that 𝐽𝜔1 contains the minimum of ℎ(𝐼); if 𝑅𝜔1 is vertical, take
𝜔 the next word, otherwise the subsequent one.

Now |𝐼𝜔| > 𝑠𝐾𝜀 and 𝐼𝜔′ ⊂ 𝐼, therefore 𝐼 ∈ ℒ𝜀(𝐾𝜀).
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5.4 End of the proof of Theorem F
Let 𝑇 : [0, 1] → [0, 1] be continuous. There exists a decreasing sequence 𝑠 satisfying
conditions (4), (5) and (6). We consider the homeomorphism ℎ := ℎ𝑠 of [0, 1] given by
Lemma 5.1. We use the metric 𝑑 := 𝑑ℎ, given for all 𝑥, 𝑦 ∈ [0, 1] by 𝑑(𝑥, 𝑦) = |ℎ(𝑥)−ℎ(𝑦)|,
and we have to show that

lim
𝜀→0

lim
𝑛→∞

log 𝑁(𝑑, 𝑇, 𝜀, 𝑛)
𝑛 log 1

𝜀

= 0 ,

where 𝑁(𝑑, 𝑇, 𝜀, 𝑛) is the largest possible cardinal of a (𝑛, 𝜀)-separated set.
Let us fix 0 < 𝜀 ≪ 1 for now, and as above set 𝜀′ = 1/(⌊1

𝜀
⌋ + 1) and 𝑝0 = 𝑝0(𝜀) such

that 𝜀′ ∈ [𝑠𝑝0 , 𝑠𝑝0−1). We may assume that 𝑝0 > 3 by taking 𝜀 small enough. Condition
(5) and 𝑠𝑗 < 1

2 ensure the (very conservative) estimate

log2
1
𝜀

≥ log2
1
𝜀′ − 1 ≥ (𝑝0 + 9)(𝑝0 − 2) − 1 > 𝑝2

0 . (7)

Define a vertex-labeled oriented graph 𝐺 = (𝑉, 𝐸, 𝛿) by the vertex set 𝑉 = ℐ𝜀, the
edge set 𝐸 of all (𝐼, 𝐼 ′) such that 𝑇 (𝐼) ∩ 𝐼 ′ ̸= ∅, and the labeling map ℓ : 𝑉 → N such
that 𝐼 ∈ ℐ𝜀(ℓ(𝐼)) for all 𝐼 ∈ ℐ𝜀. For each 𝑛 ∈ N, let 𝐺𝑛 be the set of oriented paths
in 𝐺 of length 𝑛. It provides an (𝜀, 𝑛)-cover of [0, 1] for the metric 𝑑: by associating to
a path 𝛼 = (𝐼0, . . . , 𝐼𝑛−1) the set 𝑂(𝛼) = ∩𝑗𝑇

−𝑗(𝐼𝑗), for all 𝑥 ∈ [0, 1] there is 𝛼 ∈ 𝐺𝑛

such that 𝑥 ∈ 𝑂(𝛼), and by construction each 𝑂(𝛼) has diameter at most 𝜀 for the
dynamical metric 𝑑𝑛. As is well-known, 𝑁(𝑑ℎ, 𝑇, 𝜀, 𝑛) is bounded above by Card 𝐺𝑛: no
two elements of any given (𝜀, 𝑛)-separated set can lay on the same element of any given
(𝜀, 𝑛)-cover.

For 𝛼 = (𝐼𝑡)0≤𝑡<𝑛 ∈ 𝐺𝑛, we consider its “depth/label sequence”

𝐿(𝛼) := (ℓ(𝐼𝑡))0≤𝑡<𝑛 ,

and for each 𝐿 = (ℓ𝑡)0≤𝑡<𝑛 ∈ J1, 𝐾𝜀K𝑛 we denote by 𝐴𝐿 the set of paths 𝛼 ∈ 𝐺𝑛 such
that 𝐿(𝛼) = 𝐿. Thanks to Lemma 5.6, it is sufficient to estimate the cardinal of the 𝐴𝐿

since

log2 Card 𝐺𝑛 = log2
∑︁

𝐿∈J1,𝐾𝜀K𝑛

Card 𝐴𝐿

≤ 𝑛 log2(𝐾𝜀) + max
{︁

log2(Card 𝐴𝐿) : 𝐿 ∈ J1, 𝐾𝜀K𝑛
}︁

,

log2 Card 𝐺𝑛

𝑛 log2
1
𝜀

≤
log2(log2

1
𝜀

+ 3)
log2

1
𝜀⏟  ⏞  

→0

+
max

{︁
log2(Card 𝐴𝐿) : 𝐿 ∈ J1, 𝐾𝜀K𝑛

}︁
𝑛 log2

1
𝜀

.

Fix any 𝐿 = (ℓ0, . . . , ℓ𝑛−1) ∈ J1, 𝐾𝜀K𝑛. The cardinality of 𝐴𝐿 is easy to bound in some
specific cases:
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i. If the depth stays below 𝑝0, i.e. 𝐿 ∈ J1, 𝑝0K𝑛: then by Lemma 5.3 and inequality
(7),

log2 Card 𝐴𝐿

𝑛
≤ log2 4𝑝0 ≤ 2

√︃
log2

1
𝜀

.

ii. If the depth starts above 𝑝0 but does not raises above this starting value and the
run is short enough, i.e. if 𝐿 ∈ {𝑘} × J1, 𝑘K𝑛−1 for some 𝑘 ∈ J𝑝0, 𝐾𝜀K and 𝑛 ≤ 𝑘:
then By Lemma 5.3 and Corollary 5.5,

log2 Card 𝐴𝐿

𝑛
≤ 2𝑘 + 3𝑛

𝑛
,

which will be small if 𝑛 is equal (or close to) 𝑘.

iii. More generally, if the depth increases several times above the previous extremal
value within the time window given by Corollary 5.5, i.e. if 𝐿 ∈ ∏︀𝑞

𝑖=1{𝑘𝑖} ×
J1, 𝑘𝑖K𝑛𝑖−1 for some 𝑝0 < 𝑘1 < · · · < 𝑘𝑞 ≤ 𝐾𝜀, (𝑛𝑖)1≤𝑖≤𝑞 with 𝑛𝑖 ≤ 𝑘𝑖 for all 𝑖 and
𝑛 = ∑︀

𝑖 𝑛𝑖 ≥ 𝑘𝑞, then with the convention 𝑘0 = 0:

log2 Card 𝐴𝐿

𝑛
≤ 1

𝑛
log2

(︂ 𝑞∏︁
𝑖=1

4𝑘𝑖−𝑘𝑖−1+3 · 43(𝑛𝑖−1)
)︂

≤ 2
𝑛

∑︁
𝑖

(𝑘𝑖 − 𝑘𝑖−1 + 3𝑛𝑖)

≤ 2𝑘𝑞

𝑘𝑞

+ 6 = 8 < 2
√︃

log2
1
𝜀

,

as soon as 𝜀 is small enough. We now cut 𝐿 into blocks for which case i or iii applies
(except possibly for the last one, which can be too short for case iii). Define 𝑡0 = 0 and
recursively:

• if ℓ𝑡𝑖
≤ 𝑝0, 𝑡𝑖+1 is the first time after 𝑡𝑖 at which ℓ𝑡𝑖+1 > 𝑝0 (so that 𝐿𝑖 := (ℓ𝑗)𝑡𝑖≤𝑗<𝑡𝑖+1

falls into case i above),

• if ℓ𝑡𝑖
> 𝑝0, 𝑡𝑖+1 is the largest integer after 𝑡𝑖 such that 𝐿𝑖 belongs to case iii above,

until no such time exists, at which point we set 𝑡𝑖+1 = 𝑛 and 𝑖 + 1 =: 𝑚. We obtain a
sequence of integers 0 = 𝑡0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑚 = 𝑛 such that for each 𝑖 ∈ J0, 𝑚 − 2K,
the subsequence 𝐿𝑖 satisfies

log2 Card 𝐴𝐿𝑖

(𝑡𝑖+1 − 𝑡𝑖)
≤ 2

√︃
log2

1
𝜀

.

By taking 𝑛 > 𝐾4
𝜀 , we ensure that 𝑡𝑚 − 𝑡𝑚−1 ≤

√
𝑛 so that

log2 Card 𝐴𝐿𝑚−1

𝑛
≤ log 𝐾𝜀√

𝑛
.
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Then finally, recalling the definition 𝐾𝜀 = ⌈log2
1
𝜀
⌉ + 2, we have

log Card 𝐴𝐿

𝑛
= 1

𝑛

𝑚−1∑︁
𝑖=1

log Card 𝐴𝐿𝑖

≤ log Card 𝐴𝐿𝑚

𝑛
+ 1

𝑡𝑚−1

𝑚−2∑︁
𝑖=0

log Card 𝐴𝐿(𝑡𝑖)

≤ log 𝐾𝜀√
𝑛

+ max
0≤𝑖≤𝑚−2

{︂ log Card 𝐴𝐿𝑖

𝑡𝑖+1 − 𝑡𝑖

}︂
,

lim sup
𝑛→∞

log Card 𝐴𝐿

𝑛 log2
1
𝜀

≤ 2√︁
log2

1
𝜀

→ 0 (as 𝜀 → 0).
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