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Thermoplastic silicone elastomers as materials exhibiting
high mechanical properties and/or self-healing propensity
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ABSTRACT
Silicones are outstanding elastomers with e.g. great thermal prop-
erties and purity that make them important commercial materials.
Current R&D aims at generating filler-free, non-cross-linked mate-
rials so that to bring to them transparency, reusability, and self-
healing propensity. This mini review gives, after a short summary
of conventional thermoplastic silicone elastomers genesis, some
examples of current research in synthesis and processing of sili-
cone-based physically cross-linked elastomers.
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Introduction

Silicones are everyday life materials disposed as fluids (in cosmetic, as textile coating,
for instance) or elastomers (joints, molds, pacifiers… ). Discovered just after the
WW1, these polymers have developed their own synthetic pathway. In particular, the
processing of elastomers involves a unique integrated process, starting from sand to
silicon metal on the way to fluids, silica and final composite materials.

An academic dream not reached yet would be to generate silicone materials mold-
able several times so as to recycle them, and ultimately also to impart self-healing. This
is not achievable with conventional silicone materials. Indeed, to generate an elastomer,
two complementary steps are necessary: (i) the silicone chains are slightly crosslinked
covalently in a very loose network, to prevent them from creeping. Different chemis-
tries are available for that, namely condensation, radical or hydrosilylation reactions
(Figure 1(A)); (ii) (hard) mineral filler particles are introduced into the (soft) silicone
matrix, generally in large quantities, typically 30wt. % for reinforcing particles (fumed
silica) and more for non-interacting filler (e.g. quartz) (Figure 1(B)). Once these two
steps are fulfilled, the material cannot be recycled: interactions between silicone and sil-
ica are so strong that the two matters cannot be separated anymore. Moreover, a select-
ive breaking of crosslink nodes is not available in current elastomer families, although
recent academic reports propose reversible crosslinking reactions (vide infra).

Thus, to generate solid silicone materials at room temperature that would be
remolded thermally, one can appeal to supramolecular chemistry. It consists in
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introducing ‘sticker’ groups or sequences in the chains that will associate to physically
crosslink the material; the stiffening of the material occurs through a clustering of the
polar groups (hard segments) and their phase separation from the apolar silicone phase
(soft segments) (Figure 1(C)). Several pathways can be considered: di or triblock
copolymers of silicones and organic polymers, the grafting of associating groups onto
silicone chains as side groups or in-between silicone chains to generate so called multi-
blocks (see a recent review describing these different options [2]).

In the following, we will first summarize the features of the main family of silicone
thermoplastic materials, bisurea segmented copolymers. Then we will describe recent
studies that propose to introduce stronger associating groups (including covalent links)
that are nevertheless reversible mostly with temperature. In every part of this minire-
view, we will focus mainly on the mechanical and/or self-healing properties of the dif-
ferent materials as a mean of comparison. Figure 2 summarizes the scope of
this review.
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Figure 1. (A) Crosslinking reaction of silicones catalyzed by a peroxide under heat; (B) specific
hydrogen bond interactions between fumed silica (see fractal structure observed by TEM on the
left) and silicone chains; (C) Schematic microstructure of thermoplastic elastomers composed of
hard associated blocks (thick lines) and the soft matrix (thin lines).

Figure 2. Summary of the content of this review.
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Silicone-urea segmented copolymers

Multiblock conventional synthesis and properties

Based on thermoplastic polyurethane copolymers developed in the 1940s, Yilg€or and
other researchers have intensively worked from the 1980s to the 2010s on multiblock
copolymers, principally made of silicone-urea sequences [3]. These polymers are rela-
tively easy to prepare by reacting commercial aminosilicones with different types of
conventional diisocyanates classically in isopropanol, which is a common solvent for
precursors and final block copolymer [4]. The main difficulty here is to find the right
polyaddition conditions to promote large molar mass production. Typically, polymers
presented in Figure 3(A) were prepared by reactive extrusion i.e. in absence of solvent.
Chains beyond 30,000 g/mol entangle to favor good mechanical properties even
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Figure 3. (A) Structure and intrinsic properties (Table) vs. mechanical properties (stress/stress
curves) of representative multiblock copolymers. Names of precursors: IPDI: isophorone diisocya-
nate; HMDI; 4,40-methylene bis(cyclohexylisocyanate); TMXDI: tetramethylxylene diisocyanate; ND:
not detected. Microstructures deduced by IH NMR, molar masses by SEC in THF and thermal transi-
tions by DSC. (B) Best reported silicone –urea thermoplastic elastomer (see structure details in the
text). Left: tensile test; top right: Vicat hardness versus temperature; bottom right: TGA curve (from
ref. [5]).
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without reinforcing fillers (Figure 3(A)). One can notice that dissymmetric-based
(from isophorone diisocyanate or IPDI) and symmetric-based (from 4,40-methylene-
bis(cyclohexylisocyanate) or HMDI) copolymers of similar structure behave the same
in tensile tests. Crystallizable hard blocks (based on tetramethylxylene diisocyanate or
TMXDI) give much stronger elastomers (stress at 100% is 3 times the one of other elas-
tomers) whereas a material with five-time less urea content is really soft (tensile
strength of less than 2MPa). Alike other conventional organic polymers (polyisobuty-
lene, polyisoprene), the marked hydrophobicity of silicones promotes an efficient phase
separation of bisureas, according to the difference of solubility parameters between
hard and soft segments.[5] On the other hand, the lack of interactions between the
matrix and the polar clusters limits the final mechanical properties of these block
copolymers, compared to conventional polyurethanes for which the strong interphase
between soft and hard segments is promoted by hydrogen bonding between urea and
polyoxyalkylene chains (Table 1 and [3]). Tensile test values are nevertheless compar-
able to those measured for conventional thermoset silicone materials, typically a tensile
strength (r) of few MPa and elongation at break (k) reaching as high as above 1000%
(Figure 3(A)). The best reported material that we found in the open literature is
obtained from a large content of hard segments made of HMDI (HS of about 33wt.%)
and soft segments composed of small silicone units (molar mass of silicone precursor
is about 900 g/mol). The overall molar mass was not given in this study, but we esti-
mate it at above 50,0000 g/mol according to its intrinsic viscosity, using recently
reported Mark-Houwink parameters [6]. In that case, r tops 20MPa with a fair k of
about 400% (Figure 3(B)) [5]. The rubbery plateau is very large (from �120 �C, the Tg
of the soft segment, to 150 �C, corresponding to the relaxation of hard segments), as
observed by Vicat measurement. The thermal stability under nitrogen, as obtained by
TGA, is remarkably large with an onset of degradation around 250 �C, comparable
with conventional silicone elastomers.

These copolymers can also be prepared industrially by reactive extrusion. Wacker
Chemie Gmbh company has launched since 2004 an ambitious program of commer-
cialization of thermoplastic silicone elastomers (TPS) under the tradename of
Geniomer#. One challenge that Wacker has solved prior to this product selling was to
synthesize telechelic aminosilicones of perfect end-functionality thanks to an inhouse
functionalization technique. To our knowledge, these are the only thermoplastic elasto-
mers based on silicone-urea technology currently available on the market.
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Table 1. Comparison of ultimate mechanical properties between silicone-urea copolymers (bloc
PDMS of 2500 g/mol, acronym PSU for PDMS-based urea copolymer) and conventional polyurea
copolymers (bloc PEO of 2000 g/mol, acronym PEU for polyethylene oxide-based urea copolymer)
according to the diamine used as chain-extender.

Soft segment Urea content (%) Tensile strength (MPa) Strain at break (%)

PSU-DY-20 PDMS 20 7.9 205
PSU-HM-20 PDMS 205 8.1 195
PSU-ED-19 PDMS 19 8.3 180
PEU-DY-20 PEO 20 25.4 1320
PEU-HM-20 PEO 20 25.8 1325

ED: ethylene diamine; HM: hexamethylene diamine; DY: 2-methyl-1,5-diaminopentane (taken from [3])
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Variations around urea-based multiblock copolymers

One embodiment to generate longer polymer chains is to synthesize these copolymers
in two steps:

i. first, addition of diisocyanates in excess on aminosilicone chains
ii. second, post-reaction of these precursors with simple organic diamines, also

called ‘chain-extenders’. By doing so, one increases the size of the soft blocks and
favor entanglements, which ultimately significantly depress hysteresis in cyclic
stress-strain curves, a known weakness of thermoplastic elastomers [4,7]. By
incorporating urea-oxamide groups, the same tendency in decreased hysteresis
has been observed, this time thanks to a greater phase separation [8]. In other
studies, some researchers have tried to combine silicone blocks with other soft
segments, namely, poly(propylene oxide) (PPO) or poly(ethylene oxide) (PEO),
either directly in a solution copolymerization of corresponding diamines syn-
thons, [9] or by extruding commercial thermoplastic urethane copolymers (TPU)
with aminopolysiloxane (90/10 in wt.%) at high temperature [10]. In the first
case, a better compatibilization between the soft and hard segments in optimized
materials allowed reaching larger strains at break. Materials from the second
pathway show nodules of small sizes (<250 nm) by SEM, suggesting possible
reshuffling between the two polymers, as also proved by the apparition of urea
groups within the copolymer. It is worth mentioning the works of the Multibase
company, subsidiary of Dupont, that commercializes different masterbatches of
organic thermoplastic polymers (polypropylene, polyurethane.) and (in-situ cross-
linked) ultrahigh molecular weight silicones, mixed by extrusion [11].

Self-healing of multiblock copolymers at room temperature

Starting from the seminal work of Yilg€or et al. [2,3], numerous teams around the world
have proposed some variations of initial formulations to enhance the dynamics of the
elastomers and thus promote trigger-free, room temperature self-healing. One efficient
strategy consists in using different diisocyanate precursors and/or silicone oligomers to
generate multiblocks with weaker (i.e. reversible) H-bonding ability. For instance, com-
bining a strongly associating symmetrical methylene bis(cyclohexylisocyanate) (HMDI)
with an asymmetrical one, isophorone diisocyanate (IPDI) allows modulating the inter-
action strengths within the clusters [12]. Equally, mixing bisamino- and bisalcohol-termi-
nated silicones with HMDI introduces both strongly associating urea and weaker
urethane groups within the same copolymer chain [13]. Both types of elastomers heal in
few days without any external stimulus (Figure 4(A)). Another way of doing consists in
introducing in a commercial TPS some additives called ‘stoppers’, namely monosubsti-
tuted urea-based silicone oligomers so as to break the large supramolecular edifices and
‘dynamize’ the materials. A full cauterization is observed in few days (Figure 4(B)) [14].

Isocyanate-free chemistries and subsequent self-healing

The high reactivity of diisocyanate precursors pairs with harm and toxicity. Two syn-
thetic pathways have been recently proposed to avoid using these while still generating
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TPSs. The first route proposes to react urea directly on a telechelic aminated silicone at
high temperature and under inert atmosphere. A variety of groups, including urea-
bridging moieties and other associating groups such as imidazolidone, monoalkyl- and
dialkyl-ureas, are thus generated. This chemistry, which has been described for a long
time in the literature, was applied mainly by two groups to generate materials. One
team started from homemade carboxylated silicones in two steps [15], following the
protocol of Leibler et al. [16] Another team has proposed to start from di- or octa-
functional aminosilicones to promote efficient chain-extension (Figure 5(A)) [17]. In
both cases, the thus prepared weak materials (r below 1MPa) showed self-healing
properties. This urea-based chemistry is still partially mastered and understood, some
authors even suggesting that covalent crosslinking reaction would occur through the
synthesis of biuret groups [15b]. Another simple reaction puts in play aminated sili-
cones with a simple cyclocarbonate to generate telechelic hydroxy-urethane terminated
chains that naturally phase-separate into a material (Figure 5(B)) [18]. These elasto-
mers self-heal almost completely after 24 h (80%) even after 5 consecutive cycles.
Finally, to be complete, we can quote the works done on silicone modification by ure-
ido-pyrimidone groups (UPy) originally published by Meijer et al. [19]. Even when
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Figure 4. Recent strategies to bring self-healing properties to silicone-urea multiblock copolymers.
(A) Urea-co-urethane-silicone copolymer (base HMDI) shows moderate association strength of the
hard blocks (from [13]). (B) Mix of a commercial thermoplastic elastomer (Geniomer 80, TDI-based)
and a ‘stopper’ to promote self-healing as seen in stress-strain curves (dashed line: genuine mater-
ial, thin line: right after tearing the material; bold line: after 48�h healing at RT) (from [14]).
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using quadruple bridges, these simple synthons are not promoting material building
through phase separation. Other strongly binding lateral groups such as bis-ureas or
benzocarboxamides [20] actually do the job.

Towards stronger associations

Simple ionic interactions

Coulombic-like associations can be highly polar and of high energies (to the level of
covalent ones). Both factors favor an important demixion of the clusters from the matrix
leading to strong thermoplastic elastomers. The simplest synthetic pathway consists in
mixing an aminated silicone with molecular organic carboxylic acids. Starting from
amino-side-functionalized silicones and trifunctional citric acid, rather smooth materials
are generated (r around 0,5MPa and k averaging 350%) [21]. Combining oxalic (di)acid
with a high molar mass silicone bearing high amine content strengthens significantly the
mechanical properties (r up to 4MPa and k above 1000%), most likely thanks to partial
crystallization of the organic clusters. Unexpectedly, these elastomers are also remarkably
stable thermally, as revealed by TGA under nitrogen atmosphere, which could possibly
be due to a covalent linking reaction at high temperature (namely, conversion of some
ionic pairs into amide groups) [22]. Another strategy, reported in two articles, mixes
aminated and carboxylated silicones. The materials thus formed are mechanically weak
(r in the order of 0.2MPa) but of particular interest for their dielectric properties
brought by the high ionic conductivity of amine/acid pairs [23].

Aza-Michael reaction has so far been scarcely proposed to generate supramolecular
materials, particularly based on silicones (see a recent review here [24]). This reaction
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Figure 5. Isocyanate-free silicone (co)polymers. (A) direct reaction of urea on a mix of differently-
functionalized aminated silicones to generate a panoply of associating groups (shown in the frame)
while favoring chain extension and phase separation (reprinted from [17]). (B) amine-cyclocarbon-
ate applied to a silicone to generate a-hydroxylate urethane-silicone polymers that spontaneously
auto-associates (from [18]).
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is solvent-free, catalyst-free and is efficient even at room temperature, making it really
interesting in the context of green chemistry’s principles. For instance, the grafting of
acrylic acid onto aminosilicones bring zwitterionic chains that associate and demix into
an elastomeric material with remarkable elongation at break (Figure 6) [25]. Both TEM
and X-ray diffraction have shown the presence of a myriad of clusters of size
below 20 nm.

All materials quoted in this part self-mend at room temperature, albeit partially.

Interactions with metallic ions

(Hopefully non-toxic) metallic salts associated with ionic aggregates (non-specific inter-
actions) or specific ligands (dative interactions) in the polar clusters allow strengthening
significantly the materials. A first strategy makes use of carboxylated silicones mixed
with multivalent cations to generate very strong ionic pairs, a strategy often used in aque-
ous acrylic-based paints. The former silicone chains can be prepared either by thiol-ene
reaction on vinylated PDMSs [26], or aza-Michael reaction of (meth)acrylic acid on ami-
nosilicones [27]. Both divalent (zinc) or trivalent (iron and aluminum) cations associate
strongly to produce stiff (r of few MPa) but strongly viscoelastic elastomers, as cyclic
stress-strain tests have shown it. An elaborated second strategy consists in introducing
specific ligands (generally oxygen and/or nitrogen-based aromatic molecules) promoting
dative interactions with different types of cations [28]. Not all combination however
leads to phase demixion and elastomer building, the clusters being non-ionic and thus of
lower polarity. Moreover, the materials are generally highly colored and hence of less
interest for industry. We shall still quote the work of Bao’s team who have prepared
amazing elastomers breaking at more than 10.000% [28a], as well as the proposition of
J.-M. Lehn, back in 2008, to redistribute supramolecular networks by ligand exchange
[28b]. All materials self-heal at room temperature.

Reversible covalent crosslinking

Since the pioneering review article of Engle and Wagener [29] that was presenting back
in 1993 different types of covalent links thermally reversibly unbonded, time has passed
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Figure 6. Zwitterionic silicones obtained by Aza-Michael reaction to generate nanostructured,
transparent soft elastic materials of remarkable elongation [25].
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but this research theme has received a boost recently, and specifically on silicone mate-
rials. Two possibilities are described in the literature. One approach considers only
covalently-reversible links [30], which corresponding materials are relatively weak
mechanically; another approach brings together supramolecular and covalent networks,
which properties clearly compete with conventional elastomers [31]. Figure 7 shows
few examples of original chemistries to create these materials. Several studies report the
generation of imine derivatives [30a,30d,31e] arising from the reaction between an aro-
matic aldehyde and amine or carbohydrazide groups. More specific chemistries, includ-
ing thiol-based groups [30c,31c], vinylogous [31b] or boron-oxygen [30e] links
(present in the well-known “Silly Putty” materials), have been published. Healing of
the materials depends on the generated networks, with reaction thermally controlled or
at room temperature, in bulk or in water, with or without catalyst. On the double net-
work strategy, we have distinguished the study of silicone-urea polymers crosslinked
with tricyanurate functions that are redistributed thanks to a zinc-based catalyst [31d].
Note that for imine and disulfide bonds, direct exchanges between these bonds occur
through temperature debonding, reshuffling and reformation, whereas, for vinylogous
and crosslinked urea-based materials, an excess of original reactive functions, e.g. ami-
nated groups, is required for substituting the split junction into a new one (Figure 7).
A very interesting and recent review details these different strategies and others [32].

Upcoming challenges

As we showed in this review, combining strong mechanical properties with an upfront
self-healing behavior seems at once antagonist in polymer materials, including thermo-
plastic silicone elastomers. One way to make ends meet would be to integrate in the
supramolecular matrix a second network of percolating filler particles. Few examples
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Figure 7. Some examples of reversible covalent chemistry: (A) vinylogous functions [31b]; (B) aro-
matic imine groups [30a]; (C) redistribution of urea functions [31d]; (D) disulfide bridges [31c]. One
can note in the last case the use of silicone dendrons to generate a horde of cross-links so as to
reinforce the final material.
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reported in the literature on a conventional silicone-urea [33], an ionic material [21]
and a reversible covalent network [34] show that the upgrade in mechanical properties
is relatively small but real. In the last case typically, introducing 20wt.% of kaolin par-
ticles in the material multiplies its tensile strength by 5 (from 0.1 to 0.55MPa) and its
stress at break by almost 2 (from 110 to 180%) [34]. Another means of reinforcing the
elastomers without affecting the chemical network makes use of silicone resins that
locally introduce strong hardening points (e.g. Figure 7(D).

In term of applications, thermoplastic elastomers are of precise interest for their
‘easy’ transformation by extrusion or injection. The fact that thermoplastic silicone
elastomers are now available on the market should certainly allow similar development
as seen before in TPUs. Many applications of bulk or coated-TPS polymers were envi-
sioned lately by academic researchers in electronics, anti(bio)fouling or actuators [35].
Another particular domain concerns 3D printing, a fast-rising process covered both in
industry and in academia where TPS could certainly have their share. The filament
deposing technique (FLD) [11b,36] is one technique for which a precise matter/
machine couple must be designed; complex rheology and dynamic properties of the
materials open a great deal of investigations in the near future.

Final word

Jean-Pierre Pascault liked to ask this fundamental question about thermoplastic polyur-
ethanes: ‘is the phase separation responsible for enhanced supramolecular associations
or is it the other way round?’ This ‘egg-and-chicken’ question definitively
remains open…
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