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Abstract. We study the effect of varying perturbation strength on the
fractal dimensions of Quadratic Assignment Problem (QAP) fitness land-
scapes induced by iterated local search (ILS). Fitness landscapes are
represented as Local Optima Networks (LONSs), which are graphs map-
ping algorithm search connectivity in a landscape. LONs are constructed
for QAP instances and fractal dimension measurements taken from the
networks. Thereafter, the interplay between perturbation strength, LON
fractal dimension, and algorithm difficulty on the underlying combina-
torial problems is analysed. The results show that higher-perturbation
LONs also have higher fractal dimensions. ILS algorithm performance
prediction using fractal dimension features may benefit more from LONs
formed using a high perturbation strength; this model configuration en-
joyed excellent performance. Around half of variance in Robust Taboo
Search performance on the data-set used could be explained with the aid
of fractal dimension features.

Keywords: Local Optima Network, Fractal Dimension, Quadratic Assignment
Problem, QAP, Tterated Local Search, Perturbation Strength, Fitness Land-
scapes

1 Introduction

Many systems can be characterised by their fractal geometry. Fractals are pat-
terns which contain parts resembling the whole [I]. This kind of geometry is
non-Euclidean in nature and a non-integer dimension can be computed for a
pattern — the fractal dimension. This is an index of spatial complexity and cap-
tures the relationship between the amount of detail and the scale of resolution
the detail is measured with. Not all systems can be characterised by a single
fractal dimension, however [2] and multiple fractal dimensions — a spectrum —
can be obtained through multifractal analysis. If there is diversity within the
spectrum, this is an indication that the pattern is multifractal; i.e., the spatial
complexity may be heterogeneous in nature.

Local Optima Networks (LONs) [3] are a tool to study fitness landscapes.
The nodes are local optima, and the edges are transitions between local optima



using a given search operator. Analysing the features of LONs can help explain
algorithm search difficulty on the underlying optimisation problem. LONs have
been subject to fractal analysis previously [4]; results have suggested that their
fractal dimension, and extent of multifractality, may be linked to increased search
difficulty.

Consider the ‘length’ of edges connecting local optima in LONSs: dimension
computation will involve analysis of this connectivity; therefore, their length is
salient to the resultant dimension. Where iterated local search (ILS) is used as
the foundation for constructing LONs (as has been the case in previous papers
[5U4]), the perturbation strength is the mechanism which decides this length.

The connection between perturbation strength and fractal dimension in LONs
has not been studied before. We speculate that there may be some untapped
knowledge concerning algorithm performance explanation in this area, and ad-
vance towards this aim in the present work.

The Quadratic Assignment Problem (QAP) — a benchmark combinatorial
optimisation domain — is used for this study. We extract LONs with low and
high perturbation strength, then compute fractal dimension features from them.
Separately, two metaheuristics (iterated local search and robust taboo search)
are executed on the QAP instances to collect algorithm performance information.
The interplay between perturbation strength, fractal dimensions, and algorithm
performance is then examined.

2 Methodology

2.1 Quadratic Assignment Problem

Definition. A solution to the QAP is generally written as a permutation s of
the set {1,2,...,n}, where s; gives the location of item i. Therefore, the search
space is of size n!. The cost, or fitness function associated with a permutation
s is a quadratic function of the distances between the locations, and the flow
between the facilities, f(s) = 2/ ; Y7 aijbs,s,, where n denotes the number
of facilities/locations and A = {a;;} and B = {b;;} are the distance and flow
matrices, respectively.

Instances. We consider the instances from the QAPLIHH [6] with between 25 and
50 facilities; these are of moderate size, and yet are not always trivial to solve.
Some of the instances in this group have not been solved to optimality; for those,
we use their best-known fitness as the stand-in global optimum. In the rest of this
paper, for simplicity we refer to these as the global optimum. According to
[7U8], most QAPLIB instances can be classified into four types: uniform random
distances and flows, random flows on grids, real-world problems, and random
real-world like problems. All of these are present in the instance set used in this
work.

! nttp://www.seas.upenn.edu/qaplib/
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2.2 Monotonic Local Optima Networks

Monotonic LON. Is the directed graph MLON = (L, F), where nodes are
the local optima L, and edges E are the monotonic perturbation edges.

Local optima. We assume a search space S with a fitness function f(S) and a
neighbourhood function N (s). A local optimum, which in the QAP is a minimum,
is a solution [ such that Vs € N (1), f(I) < f(s). Notice that the inequality is not
strict, in order to allow the treatment of neutrality (local optima of equal fitness),
which we found to occur in some QAP instances. The set of local optima, which
corresponds to the set of nodes in the network model, is denoted by L.

Monotonic perturbation edges. Edges are directed and based on the per-
turbation operator (k-exchange, k > 2). There is an edge from local optimum Iy
to local optimum s, if I3 can be obtained after applying a random perturbation
(k-exchange) to [; followed by local search, and f(l2) < f(I1). These edges are
called monotonic as they record only non-deteriorating transitions between local
optima. Edges are weighted with estimated frequencies of transition. We deter-
mined the edge weights in a sampling process. The weight is the number of times
a transition between two local optima basins occurred with a given perturbation.
The set of edges is denoted by FE.

2.3 Multifractal Dimensions

A fractal dimension is the logarithmic ratio between amount of detail in a pat-

%. Multifractal analysis

[2] can be used for systems where a single fractal dimension may not be suffi-
cient to characterise the spatial complexity. With this approach, a spectrum of
dimensions is instead produced. Study of the spectrum can provide information
about the multifractality (i.e., the heterogeneity of fractal complexity), as well as
dimensionality. We approach multifractal analysis using the sandbox algorithm
[9] where several nodes are randomly selected to be sandbox ‘centres’. Members
of the sandboxes are computed as nodes which are r edges apart from the centre
c. After that the average sandbox size is calculated. The procedure is replicated
for different values of r which is the sandbox radius. To facilitate the produc-
tion of a dimension spectrum the whole process is repeated for several arbitrary
real-valued numbers which supply a parameter we call g. The sandbox algorithm
has been specialised and modified to suit LONs [4] and this is the process we
use for our fractal analysis experiments. Fitness distance — as well as network
edge distance — is considered. The comparison between two local optima fitness
values is conducted through logarithmic returns: fitness difference = |In(f1/f2)]
where f; and fo are the fitnesses of two local optima at the start and end of a
LON edge. The resultant value can then be compared with a set fitness-distance
maximum allowable threshold, e. Pseudo-code for the multifractal algorithm we
use on the LONs is given in Algorithm [I] Sandbox centre selection is at Line 7 of
the Algorithm. A node n is included in the ‘sandbox’ of a central node ¢ (Line 15

tern, and the scale used to measure the detail:



of the pseudo-code) if either the LON edge distance d(n,c) =1 or d(n,c) =r—1
and the fitness-distance between the two local optima is less than a threshold:

|ln(%)| < € (see Line 14).

Algorithm 1 Multifractal Analysis of a LON

Input: LON, q.values, radius.values, fitness.thresholds, number.centres
Output: mean sandbox size

1: Initialisation:

2: centre.nodes < (), noncentre.nodes < all.nodes

3: mean.sandbox.sizes <+ ()

4: for ¢ in q.values do

5: for rd in radius.values do

6: for € in fitness.thresholds do

7 centre.nodes <— RANDOM.SELECTION(all.nodes, number.centres)
8: sandbox.sizes < ()

9: for c in centre.nodes do

10: number.boxed < 0

11: for v in all.nodes do

12: d < DISTANCE(c, v)

13: j < DIFFERENCE(f(c), f(v))

14: if (d==1)OR (d==rd-1 and j < ¢ ) then:
15: number.bored < number.boxed + 1

16: end if

17: end for

18: sandboz.sizes < sandbox.sizes U {[number.bozed)}
19: end for
20: bs <+ MEAN(sandbozx.sizes)
21: mean.sandbox.sizes[q][rd][e] « bs
22: end for
23: end for
24: end for

At the end of each ‘sandboxing’ iteration conducted with particular values
for the parameters ¢, r and e, the associated fractal dimension is calculated:

In(detail?=1)

fractal dimension = (g — 1) * In(scale)

(1)

where detail is the average sandbox size (as a proportion of the network size), ¢
is an arbitrary real-valued value, and scale is 5, with r being the radius of the
boxes and dm the diameter of the network.

3 Experimental Setup

3.1 Iterated Local Search

We use Stiitzle’s iterated local search (ILS) for both gathering performance
data and as the foundation of LON construction [8]. The local search stage



uses a first improvement hill-climbing variant with the pairwise (2-exchange)
neighbourhood. This operator swaps any two positions in a permutation. The
perturbation operator exchanges k randomly chosen items. We consider two
perturbation strengths for both constructing the LONs and computing the per-
formance metrics: % (we will henceforth refer to this as low perturbation) and
% (this will be referred to as high perturbation) with N being the problem di-
mension. Only local optima which have improved or equal fitness to the current

are accepted. Worsening local optima are never accepted.

3.2 Robust Taboo Search

Robust Taboo Search (ROTS) [I0] is a competitive heuristic for the QAP and
is also executed on the instances in this study. ROTS is a best-improvement
pairwise exchange local search with a variable-length taboo list tail. For each
facility-location combination, the most recent point in the search when the fa-
cility was assigned to the location is retained. A potential move is deemed to be
‘taboo’ (not allowed) if both facilities involved have been assigned to the prospec-
tive locations within the last s cycles. The value for s is changed randomly, but
is always from the range [0.9n, 1.1n], where n is the problem dimension.

Algorithm Performance Metric. We compute the performance gap to sum-
marise ILS and ROTS performance on the instances. In the case of ILS, runs
terminate when either the known best fitness is found or after 10000 iterations
with no improvement. For ROTS, runs complete when the best-known fitness
is found or after 100,000 iterations. The performance gap is calculated over 100
runs for each, and is defined as the mean obtained fitness as a proportion of the
best-known fitness.

3.3 LON Construction and Metrics

The LON models are constructed by aggregating the unique nodes and edges
encountered during 100 independent ILS runs with the standard acceptance
strategy. Runs terminate after 10000 non-improving iterations; this is in order
to empirically estimate the end of funnels.

At this stage, esc instances are removed from the set: their local optima
networks are uninteresting to study because there is a very high degree of LON
neutrality. Removing these anomalies left us with the remaining moderate-size
(between 25 and 50, inclusive) QAPLIB: 40 instances. There are four LONs per
problem instance (due to four perturbation strengths), totalling 160 LONs.

For each LON, thousands of fractal dimensions are produced. The exact num-
ber depends on the diameter of the network: full parameter details are given soon
in Section[3.4] The measurements we compute from the set of fractal dimensions
for a given LON are: the median fractal dimension (simply the median of all
the dimensions calculated); the maximum fractal dimension; the variance across
the whole multifractal spectrum; the multifractality (measured by negating the



absolute value of a dimension at one end of the spectrum with the absolute value
of one on the other end), and an excerpt dimension (randomly chosen from the
spectrum).

We consider some other LON metrics too: the flow towards global optima
(computed as the incoming network edge strength to global optima in the LON);
the number of local optima (simply the number of nodes in the LON); and the
number of global optima.

3.4 Multifractal analysis

We implement the multifractal analysis algorithm for LONs in C programming
language and have made it publicly available for use ﬂ some of the code func-
tionality was obtained from a monofractal analysis algorithm [11] available on an
author’s Webpageﬂ To generate multifractal spectra, a range of arbitrary real-
valued numbers is needed. We set these as ¢ in the range [3.00, 8.90] in step sizes
of 0.1. The number of ‘sandbox’ centres in each iteration is set at 50 and the
choice of these centres is randomised. A range of ten values is used for the local
optima fitness-distance threshold: e € [0.01,0.19] in step sizes of 0.02. The sizes
of sandboxes are integers in the range r € {2..diameter — 1} where diameter is
the LON diameter. Note that in the interest of reducing computation, we con-
strain the maximum considered box radius to eleven — that is, when the LON
diameter exceeds twelve (diameter —1 > 11), then the upper limit for box radii
is set to 11, to allow ten possible values r € {2..11}.

3.5 Regression Models

Predictive modelling is conducted with regression using the randomForest
package [12] in R statistical programming language. Random Forests [13] in-
clude design mechanisms intended to prevent overfitting to the training data:
bootstrapping (re-sampling of the training instances), and sub-setting of the in-
dependent variables. These overfitting-prevention mechanisms are the reason
Random Forest is chosen for this work. We separate LONs by the ILS pertur-
bation strength which was applied during their construction; in this way, for
modelling there are four distinct data-sets of size 40. Each observation is a set of
LON features such as median fractal dimension (these are the independent vari-
ables) alongside performance metrics (the dependent variables). The candidate
independent variables are:

Number of local optima

Number of global optima

Search flow towards global optima
Median fractal dimension for the LON
Variance of fractal dimension

O O O O O

2 https://github.com/sarahlouisethomson/compute-fractal-dimension-local-optima-networks
3 https://hmakse.ccny.cuny.edu/
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o Maximum fractal dimension
o Variation in the multifractal spectrum

The manner of computing the metrics was described in Section [3.3] Iterated
local search and Robust Taboo Search performance gap on the instances serve
as response variables, making this a regression setting.

We aimed for models with as few independent variables as possible, ow-
ing to the limited number of eligible QAPLIB instances of moderate size. The
one-in-ten rule [14] stipulates that roughly ten observations are required per
independent variable. Our instance sets are each comprised of 40 instances —
so we correspondingly set the maximum number of independents as four and
conduct feature selection, as described now.

Recursive Feature Elimination. Backwards recursive feature elimination (RFE)
was used to select model configurations with subsets of the predictors. We employ
the R package caret [I5] for this purpose, and use Root Mean Sqaured Error
(RMSE) as the quality metric for model comparisons. RMSE is the square-root of
the MSE, which itself is the mean squared difference between the predicted values
and true values. For the experiments, we configure RFE as follows. Random
Forest is the modelling method. We consider feature subset sizes of one, two,
three, and four from a set of eight candidates (listed earlier). The RFE cross-
validation is set to 10-fold; model configurations are compared based on the
mean RMSE over the 10 folds.

Models using selected features. After feature selection, Random Forest regres-
sion is conducted using the selected features only. There are several separate
model configurations owing to the different ILS perturbations under scrutiny
and the two optimisation performance algorithms. To attempt to mitigate the
effect of the limited training set size — which is due to the available quantity
of moderate-size QAPLIB instances — we bootstrap the selection of the training
and validation sets. This is random re-sampling of observations with replace-
ment and can be used to estimate model parameters from a limited sample. We
consider an 80-20 split for training and validation with 1000 iterations. That
means that for each model configuration, 1000 separate models are trained us-
ing randomly re-sampled sub-samples of 80%, and validated on the remaining
observations (20%). Quality metrics are computed on both the training set and
also from the predictions made on the validation set. The first included measure-

ment is the R-Squared (RSQ, computed as 1— #ife(t)’ where ¢ is the response

variable). RSQ can be interpreted as the proportion of variance explained. Also
considered is the RMSE, detailed already, which is easy to interpret because it
follows the same unit range as the response variable. The metrics are computed
as the mean value over 1000 bootstrapping iterations, and their standard error
is also included in the results. The standard error reported here is a measure-
ment for how varied the means for RSQ and RMSE are across different random
sub-samplings: it is the standard deviation of the means for these parameters.
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(f)
tai30b,p=low,dim=(7.05, tai30b,p=high,dim=(11.62,
21.91) 167.32)

Fig.1: Monotonic LONs for selected instances and the two perturbation
strengths, p = low (left) p = high (right). The median and maximum fractal
dimension are also indicated in the sub-captions as dim = (median, maximum)

Details. For all feature selection and subsequent modelling, the default hyperpa-
rameters for Random Forest in R are used, namely: 500 trees; minimum size of
terminal nodes set to five; a sample size of N (the number of observations);
re-sampling with replacement; features considered per split set to one-third
of the number of features. Independent variables are standardised as follows:



= @;T]?g)), with p being the predictor in question, F the expected value

hS

(mean), and sd the standard deviation.

4 Results

4.1 Network Visualisation

Visualisation is a powerful tool to get insight into the structure of networks.
Figure[l]illustrates MLONSs for three representative QAP instances: a real-world
instance bur26, a random flows on grids instance nug25, and a random real-
world like instance tai30b. The networks in Figure (1| capture the whole set
of sampled nodes and edges for each instance and perturbation strength. The
two perturbation strengths, low and high, are shown. In the plots, each node is a
local optimum and edges are perturbation transitions, either improving in fitness
(visualised in grey) or leading to equal fitness nodes (visualised in orange). Plots
were produced with R using force-directed layout methods as implemented in
the igraph library [16]. As indicated in the legends, node and edge decorations
reflect features relevant to search. The edges colour reflect their transition type,
to nodes with improving (grey) or equal fitness (orange). Global optima are
highlighted in red. The start nodes (without incoming edges) are highlighted as
yellow squares, while the sink nodes (without outgoing edges) are visualised in
blue.
The following can be observed from the MLON visualisations.

o Compare FiguresandThese reflect the same problem instance (Bur26a)
but with LONSs constructed using different perturbation strengths. Figure [IH|
has higher fractal dimensions and this is probably because of the lesser ex-
tent of neutrality at the local optima level (in the image, this can be seen
through the amount of orange connections), as well as fewer connection pat-
terns between local optima. There are also some long monotonic paths. All
of these factors would result in higher fractal dimension, because they would
lend to the fitness-distance and edge-distance boxing constraints in the mul-
tifractal analysis algorithm not being satisfied — and consequently, nodes
remaining un-boxed, leading to a higher level of detail being computed and
a higher fractal dimension (recall Sectior for particulars on this process).

o The LONs of instance Tai30b (Figure [lef and have the highest fractal
dimensions shown. This is probably because of the lack of LON neutrality
(lack of orange edges in the plot), as well as long and separate monotonic
pathways (notice the number of edge-steps forming some of the paths). Addi-
tionally, compared to the networks associated with the other two instances,
the LON fitness ranges are quite large for here: the minimum LON fitness
is around 73-74% of the maximum in the Tai30b LONSs, while for the other
two instances shown in Figure it is between approximately 92%-99%.
This means that the fitness-distance boxing condition in the fractal algo-
rithm will be satisfied much less for these LONs, resulting in higher fractal
dimensions. This situation also implies that the monotonic pathways contain
large fitness jumps.



4.2 Distributions

Figure 2] presents distributions for fractal dimension measurements, split by per-
turbation strength: low and high. In Figure are median fractal dimensions
for the LONs. Notice that the dimensions are noticeably higher — and more
varied — in the high-perturbation group (on the right) when compared to the
low-perturbation group on the left. Next, in Figure are the mazimum frac-
tal dimensions for the LONs. The same trend is evident here; that is, high-
perturbation LONs (on the right) have higher and more varied dimensions than
the low-perturbation LON group.

150

100
L
mulifacialty

median dimension
maximum dimension

== L | =

T
high fow high fow high

(a) median fractal dimension (b) max fractal dimension (c) multifractality

Fig. 2: Distributions of fractal dimension measurements taken from local optima
networks. Note the different scales on the y-axes.

Figure |2c| shows the amount of multifractality (heterogeneity of fractal ge-
ometry). This time it cannot confidently be said that one group contains more
multifractality than another; however, it seems clear that the high-perturbation
group have more varied multifractality values.

4.3 Predictive Modelling

Table [T] presents the configuration and quality of regression models for algorithm
performance prediction. Each column (columns two to four) is a model setting.
The first two rows are configuration information: the ILS perturbation strength
used to form the LONs whose features are used as predictors (LON perturbation)
and the features selected for the model by recursive feature elimination. All the
remaining rows convey data about the quality of the models. Provided are the
RSQ, RMSE, and RMSE as a percentage of the range of the target variable.
Each of these are reported for the training and validation data. In the Table,
abbreviations are used for feature names. Multifractality is the difference between
dimensions at the beginning and end of the multifractal spectrum; FD is short
for fractal dimension; flow GO is the combined strength of LON edges incoming
to global optima; and var FD is the variance of the fractal dimension.



Table 1: Information about models with features selected by recursive feature
elimination in a Random Forest setting.

‘ Iterated Local Search Robust Taboo Search
LON perturbation ‘ low high low high
[multifractality, miﬁiof?faﬁzw n[L:lnlff}iaanL}a;‘lﬁ;
selected features median FD , o Y oAy, [var FD, median FD)]
maz FD] mazx FD, flow GO,
median FD) maz FD)]
RSQ-train (SE) 0.1663 (0.2650) 0.7917 (0.2457) 0.8610 (0.3081)  0.7523 (0.2790)
RMSE-train (SE) 0.0001 (0.0001) 0.0000 (0.0000)  0.0005 (0.0042) 0.0010 (0.0044)
RMSE%range-train 0.1% (0.1%) 0% (0%) 0.1% (0.7%) 0.2% (0.8%)
RSQ-validation (SE) 0.8661 (0.4630) 0.9891 (0.4147) 0.5124 (1.1331) 0.4973 (1.0439)
RMSE-validation (SE) |0.0086 (0.0076) 0.0007 (0.0021) 0.0709 (0.0509)  0.0720 (0.0482)
RMSE%range-validation| 7.9% (7.0%) 0.3% (0.8%) 12.2% (8.8%) 12.4% (8.3%)

Recall from Section [3.5] that the number of local optima and the number
of global optima were candidate predictors. Notice from Table [I] row two, that
these are never selected from the pool. Instead, fractal dimension metrics and
the incoming search flow to global optima (flow GO) are chosen by the RFE
algorithm. We particularly note that multifractality, which captures how varied
the fractal complexity in a LON is, appears in three of the four model setups.
The median fractal dimension appears in all four, and maximum dimension in
three.

Differing quantities of predictors are selected. In two cases, there is the max-
imum allowable amount (recall Section chosen from eight candidates: four.
The remaining models, however, contain less selected features: two and three,
respectively.

Bold text in the Table draw the eye to the best value within a row. RMSE
values are not highlighted in this way because they do not have a common range
(owing to different response variable distributions). Instead, the RSQ and RMSE
as a percentage of the range are emphasised with emboldened text. Notice that
the model built using features of high perturbation LONs and which is modelling
ILS performance gap as a response seems to be the best of the four models; this
can be seen by comparing the second model column with the other three. RMSE
is very low on both training and validation data, suggesting that this is a good
model. While the RSQ-train is lower than for the ROTS response using low-
perturbation LONs modelling (in the next column along), the RSQ-validation is
superior to that — and indeed, the others — by a large margin.

Using features of low-perturbation LONs to model ILS performance response
results in a much weaker model (view this in the first model column). The
RSQ for training data is poor — only approximately 0.17. Even though the
RSQ for validation data is significantly higher (approximately 0.87), the low
RSQ on training data suggests that it does not accurately capture the patterns.
Comparing this model (low-perturbation LONs) with its neighbour in the Table
(high-perturbation LONs), we observe that using a higher perturbation strength



to construct LONs may result in fractal dimension metrics which are more useful
in predicting ILS performance.

Focusing now on the two models which consider ROTS performance as re-
sponse variables (model columns three and four), we can see that — on validation
data — each of them explains around 50% of variance (RSQ-validation row).
That being said, both RSQ means have very high standard errors (in brackets).
This means that while the results hold true for this set of QAP instances, we
would be cautious in extrapolating these specific results to other instance sets. A
high standard error can occur with a limited sample size and with high diversity
of training instances — both of which are present in our dataset. Nevertheless,
the fact that some ROTS variance can be explained (at least for this specific
dataset) is important because the LONs were not formed using a ROTS process;
ILS was the foundation (Section . The finding means that performance of a
separate metaheuristic can be partially explained using ILS-built LON fractal
dimension features, even when different perturbation strengths are used. No-
tice also that the low-perturbation model for ROTS is slightly better than the
high-perturbation LON model. This might be because ROTS does not conduct
dramatic perturbations on solutions. While RMSE is low on the training data
(RMSE%range-train), it is much higher on validation data (although still not
what might be considered ‘high’).

5 Conclusions

We have conducted a study of the relationship between Iterated Local Search
(ILS) perturbation strength and fractal dimensions. The ILS perturbation strength
is used when constructing Local Optima Networks (LONs), and fractal dimen-
sion can be computed from those LONSs.

We found that higher-perturbation LONs also have higher fractal dimensions.
Fractal dimension measurements drawn from LONs which were constructed us-
ing low and high perturbation strengths were related to algorithm performance
on the underlying Quadratic Assignment Problems (QAPs). The results showed
that ILS algorithm performance prediction using fractal dimension features may
benefit more from LONs formed using a high perturbation strength; this model
configuration enjoyed excellent performance. Around half of variance in Ro-
bust Taboo Search performance on the dataset used could be explained using
predictors including fractal dimension features, and the model using the low-
perturbation features was slightly stronger than the high-perturbation model.

The Local Optima Networks and algorithm performance data from this work
will be made publicly available. The fractal analysis algorithm for local optima
networks is published onlineﬂ

4 https://github.com/sarahlouisethomson/compute-fractal-dimension-local-optima-networks


https://github.com/sarahlouisethomson/compute-fractal-dimension-local-optima-networks

References

10.

11.

12.

13.

14.

15.

16.

. Mandelbrot, B.B.: Possible refinement of the lognormal hypothesis concerning the

distribution of energy dissipation in intermittent turbulence. In: Statistical models
and turbulence, pp. 333-351. Springer (1972)

Mandelbrot, B.B., Fisher, A.J., Calvet, L.E.: A multifractal model of asset returns.
Cowles Foundation discussion paper (1997)

Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of nk landscapes’ basins
and local optima networks. In: Proceedings of the 10th annual conference on Ge-
netic and evolutionary computation. pp. 555-562. ACM (2008)

Thomson, S.L., Ochoa, G., Verel, S.: The fractal geometry of fitness landscapes at
the local optima level. Natural Computing pp. 1-17 (2020)

Ochoa, G., Herrmann, S.: Perturbation strength and the global structure of qap
fitness landscapes. In: International Conference on Parallel Problem Solving from
Nature. pp. 245-256. Springer (2018)

Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB — a quadratic assignment problem
library. Journal of Global Optimization 10(4), 391-403 (1997)

Taillard, E.: Comparison of iterative searches for the quadratic assignment prob-
lem. Location Science 3(2), 87-105 (1995)

Stiitzle, T.: Iterated local search for the quadratic assignment problem. European
Journal of Operational Research 174(3), 1519-1539 (2006)

Liu, J.L., Yu, Z.G., Anh, V.: Determination of multifractal dimensions of complex
networks by means of the sandbox algorithm. Chaos: An Interdisciplinary Journal
of Nonlinear Science 25(2), 023-103 (2015)

Taillard, E.: Robust taboo search for the quadratic assignment problem. Parallel
computing 17(4-5), 443-455 (1991)

Song, C., Gallos, L.K., Havlin, S., Makse, H.A.: How to calculate the fractal di-
mension of a complex network: the box covering algorithm. Journal of Statistical
Mechanics: Theory and Experiment 2007(03), P03006 (2007)

Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3),
18-22 (2002), https://CRAN.R-project.org/doc/Rnews/

Breiman, L.: Random forests. Machine Learning 45(1), 5-32 (2001)

Harrell Jr, F.E., Lee, K.L., Califf, R.M., Pryor, D.B., Rosati, R.A.: Regression
modelling strategies for improved prognostic prediction. Statistics in medicine 3(2),
143-152 (1984)

Kuhn, M.: Building predictive models in r using the caret package. Journal of Sta-
tistical Software, Articles 28(5), 1-26 (2008), https://www.jstatsoft.org/v028/
i05

Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal Complex Systems, 1695 (2006)


https://CRAN.R-project.org/doc/Rnews/
https://www.jstatsoft.org/v028/i05
https://www.jstatsoft.org/v028/i05

	Fractal Dimension and Perturbation Strength:  A Local Optima Networks View

