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TOTAL MEAN CURVATURE AND FIRST DIRAC EIGENVALUE

SIMON RAULOT

Abstract. In this note, we prove an optimal upper bound for the first Dirac eigen-
value of some hypersurfaces in Euclidean space by combining a positive mass theorem
and the construction of quasi-spherical metrics. As a direct consequence of this esti-
mate, we obtain an asymptotic expansion for the first eigenvalue of the Dirac operator
on large spheres in three dimensional asymptotically flat manifolds. We also study this
expansion for small geodesic spheres in a three dimensional Riemannian manifold. We
finally discuss how this method can be adapted to yield similar results in the hyperbolic
space.

1. Introduction

A smooth and connected n-dimensional Riemannian manifold (M, g) is asymptotically
flat if there exists a compact set K ⊂M and a diffeomorphism Φ :M \K → Rn \B, for
a closed ball B, such that in the asymptotically flat coordinates x = (x1, · · · , xn) given
by Φ, we have

gij = δij + σij , (1.1)

where σij are smooth functions satisfying

σij = O(|x|−τ), ∂kσij = O(|x|−τ−1), ∂k∂lσij = O(|x|−τ−2)

as |x| → +∞ for some constant τ > n−2

2
and for all i, j, k, l = 1, · · · , n. Moreover, we

require that the scalar curvature R of g is integrable. In this situation, the ADM mass
of (M, g) is defined as

mADM(M, g) :=
1

2(n− 1)ωn−1

lim
r→+∞

n∑

i,j=1

∫

Sr

(∂gij
∂xj

− ∂gjj
∂xi

)
νidSr

where ωn−1 is the area of the unit sphere Sn−1 ⊂ Rn and Sr ⊂ M is a large coordinate
sphere of radius r with outward normal ν. It is a well-known fact that the limit in
the right-hand side above is finite and that its values does not depend on the chosen
asymptotically flat coordinates so that it defines a geometric invariant of (M, g) (see
[Bar86, Chr86]). When (M, g) is a space-like slice of a time-symmetric isolated gravi-
tational system, the ADM mass measures the energy of this system. In this situation,
the scalar curvature expresses the energy density of the system so that it is natural to
conjecture that if R ≥ 0 then mADM(M, g) ≥ 0 with equality if, and only if, (M, g) is
isometric to the Euclidean space. This is the famous positive mass theorem which is
known to be true by the works of Schoen and Yau [SY81, SY19] and Witten [Wit81].
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If n = 3, the positive mass theorem is equivalent to a result of Shi and Tam [ST02]
which states that if (Ω0, g) is a compact Riemannian manifold with nonnegative scalar
curvature and whose boundary is a 2-sphere with positive Gauss curvature and positive
mean curvature H then

∫

Σ

HdΣ ≤
∫

Σ

H0dΣ. (1.2)

Here H0 denotes the mean curvature of the unique strictly convex isometric embedding
of (Σ, γ), γ := g|Σ, in the Euclidean space (R3, δ) whose existence and unicity are
ensured by the Weyl’s embedding theorem [Nir53, Pog52]. In a certain sense, the Shi-
Tam’s inequality localizes the positive mass theorem. The proof of the inequality (1.2)
is based on a low regularity positive mass theorem which can be obtained using the
Witten’s method. This approach requires the existence of a spin structure on M which
allows to define spinors as well as the Dirac operator associated to the Riemannian
metric g. One of the key point in Witten’s proof is that both the scalar curvature and
the mass appear in the corresponding Bochner formula, the first as the curvature term
in its pointwise version and the second as the boundary-at-infinity contribution in its
integral version.

In this note, we remark that the Shi-Tam’s approach can be used to derive a new
upper bound for the first nonnegative eigenvalue of the extrinsic Dirac operator of some
compact hypersurfaces in Euclidean space. More precisely, we will prove:

Theorem 1.1. Let Σ be a compact, orientable, mean-convex and star-shaped hypersur-
face with positive scalar curvature in the n-dimensional Euclidean space. Then the first
nonnegative eigenvalue λ1(Σ, γ) of the extrinsic Dirac operator D/ γ of (Σ, γ) satisfies

λ1(Σ, γ) ≤
∫
Σ
H0 dΣ

2|Σ| . (1.3)

Here H0 denotes the mean curvature function of Σ in Rn and |Σ| its volume. Equality
occurs if, and only if, the hypersurface is a round sphere.

Note that λ1(Σ, γ) corresponds to the absolute value of the first eigenvalue of the
intrinsic Dirac operator of (Σ, γ) which has to be positive by the Friedrich inequality
[Fri80] since we assumed that its scalar curvature is positive. We refer to the mono-
graph [BHM+15] where the reader can find most of the proofs of the results we used
in this paper concerning spin geometry. When (Σ, γ) is a 2-sphere with positive Gauss
curvature, the Weyl’s embedding theorem implies the following intrinsic upper bound:

Corollary 1.1. Let (Σ, γ) be a 2-sphere with positive Gauss curvature then

λ1(Σ, γ) ≤
∫
Σ
H0 dΣ

2|Σ| .

Equality occurs if, and only if, (Σ, γ) is a round sphere.

The proof of Theorem 1.1 is a direct combination of the construction of Bartnik
[Bar86] and Shi-Tam [ST02] of quasi-spherical metrics (and more generally its gener-
alization by Eichmair, Miao and Wang [EMW12]) and a positive mass theorem for
manifolds with boundary due to Herzlich [Her97, Her02].
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This new estimate leads to several applications. First, it allows to study the as-
ymptotic behavior of the first nonnegative Dirac eigenvalue of large spheres in three
dimensional asymptotically flat manifolds. More precisely, we have:

Theorem 1.2. Let (M, g) be an asymptotically flat 3-dimensional manifold and let Sr

be a coordinate sphere of radius r > 0 in some chart at infinity. Then if λ1(Sr, gr)
denotes the first nonnegative eigenvalue of the extrinsic Dirac operator on Sr endowed
with the metric gr induced by g, it holds that

λ1(Sr, gr)|Sr| =
1

2

∫

Sr

Hr dSr + 4πmADM(M, g) + o(1). (1.4)

Here Hr represents the mean curvature of Sr in (M, g) and |Sr| the area of (Sr, gr).
An immediate consequence of Theorem 1.2 and the positive mass theorem is:

Corollary 1.2. Let (M, g) be an asymptotically flat 3-manifold with nonnegative scalar
curvature. Then

lim
r→+∞

(
λ1(Sr, gr)|Sr| −

1

2

∫

Sr

Hr dSr

)
≥ 0,

and equality holds if, and only if, (M, g) is isometric to the Euclidean space R3.

Another direct consequence of Corollary 1.1 is provided by the small-sphere limit of
the first eigenvalue of the Dirac operator. More precisely, we prove:

Theorem 1.3. Let (M, g) be a 3-dimensional Riemannian manifold, p be a fixed interior
point of M and Sr be the geodesic sphere of radius r centered at p with induced metric
γr. For r small enough, we have

λ1(Sr, γr) = λ1(Sr, δr) +
R(p)

36
r +O(r3) (1.5)

where λ1(Sr, δr) = 1/r is the first eigenvalue of the Dirac operator on a 2-dimensional
round sphere of radius r.

This means that, at least for n = 3, the scalar curvature at a point can be recovered
from the first eigenvalues of the Dirac operator on small geodesic spheres. We also
deduce immediately a result similar to Theorem 1.2 in this situation, namely:

Corollary 1.3. Let (M, g) be a Riemannian manifold of dimension 3, p be a fixed
interior point of M and Sr be the geodesic sphere of radius r centered at p with induced
metric γr. For r small enough, we have

λ1(Sr, γr)|Sr| =
1

2

∫

Sr

Hr dSr +
π

3
R(p)r3 +O(r5). (1.6)

In particular, if R(p) ≥ 0, then

lim
r→0

1

r3

(
λ1(Sr, γr)|Sr| −

1

2

∫

Sr

Hr dSr

)
≥ 0,

and equality occurs if, and only if, (M, g) is flat at p.

It turns out that this approach can easily be extended to the hyperbolic setting.
More precisely, if (Σ, γ) is a compact hypersurface isometrically embedded in the n-
dimensional hyperbolic space Hn(−κ2) with constant sectional curvature −κ2 for some
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κ > 0, we are naturally lead to consider the first nonnegative eigenvalues λ±1 (Σ, γ) of
zero order modifications D/ ±

γ of the extrinsic Dirac operator D/ γ (see Section 5 for precise
definitions). Then we prove the following upper bound regarding these eigenvalues:

Theorem 1.4. Let (Σ, γ) be a hypersurface isometrically embedded into Hn(−κ2) with
mean curvature H0 and which is homeomorphic to a (n−1)-sphere with sectional curva-
ture K > −κ2. Then the first nonnegative eigenvalue λ±1 (Σ, γ) of the Dirac-type operator
D/ ±

γ satisfies

λ±1 (Σ, γ)

∫

Σ

cosh(κr) dΣ ≤ 1

2

∫

Σ

H0 cosh(κr) dΣ. (1.7)

Equality occurs if, and only if, the hypersurface is a geodesic sphere centered at the
origin.

Here, without loss of generality, we assumed that Σ encloses a region Ω which contains
o = (0, · · · , 0, 1/κ) ∈ Hn(−κ2) ⊂ Rn,1 where Rn,1 denotes the (n + 1)-dimensional
Minkowski space and r is the geodesic distance of a point from o. Combining this
estimate with a lower bound on λ±1 (Σ, γ) gives the following Minkowski-type inequality
when n = 3:

Corollary 1.4. Let (Σ, γ) be a 2-sphere with sectional curvature bounded from below by
−κ2 embedded into H3(−κ2) with mean curvature H0. Then

∫

Σ

H0 cos(κr) dΣ ≥ 4

√
π

|Σ| +
κ2

4

∫

Σ

cosh(κr) dΣ. (1.8)

Moreover, equality occurs if, and only if, (Σ, γ) is a geodesic sphere centered at the
origin.

This last inequality should be compared to similar inequalities obtained by Ge, Wang
and Wu [GWW14] and by Brendle, Hung and Wang [BHW16].

The paper is organized as follows. In Section 2, we give the proof of Theorem 1.1.
The first Dirac eigenvalue expansions on large spheres and small spheres are respectively
proved in Section 3 and Section 4. The last part is devoted to the study of the hyperbolic
setting.

2. A new upper bound for the first Dirac eigenvalue

In order to prove Theorem 1.1, we need to quickly review the proof of the Shi-Tam
inequality (1.2). The first main ingredient in their proof is the construction of quasi-
spherical metrics initiated by Bartnik [Bar93]. Let (Σ, γ) be a compact and strictly
convex hypersurface embedded in the n-dimensional Euclidean space. Then, the set
Rn \ Ω, where Ω is the compact domain enclosed by Σ in Rn, is foliated by Σρ the
hypersurface at distance ρ from Σ. In the following, we will identify Rn \ Ω with
E := Σ × [0,+∞[. Throughout this identification, the Euclidean metric on E can be
expressed as dρ2 + γρ where γρ is the induced metric on Σρ and γ0 = γ. Then it is
proved in [ST02] that for any positive function u0 on Σ, there exists a positive function
u on E such that the Riemannian metric

gu := u2dρ2 + γρ (2.1)
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is scalar flat with u(·, 0) = u0. One can say even more since in fact (E , gu) is an
asymptotically flat manifold with well-defined ADM mass. The second crucial fact in
the proof of (1.2) is that the function

ρ ∈ [0,∞) 7→
∫

Σρ

Hρ(1− u−1)dΣρ

where Hρ denotes the mean curvature of Σρ in Rn, is nonincreasing in ρ and tends to a
multiple of the ADM mass of (E , gu) as ρ goes to infinity. In particular, it holds that

∫

Σ

H0(1− u−1

0 )dΣ ≥ c(n)mADM(E , gu) (2.2)

for some positive constant c(n) depending only on n. So, as soon as one can show that
the mass of (E , gu) is nonnegative, we get

∫

Σ

H0dΣ ≥
∫

Σ

u−1

0 H0dΣ. (2.3)

This can be done when (Σ, γ) is a 2-sphere with positive Gauss curvature bounding a
compact Riemannian 3-manifold (Ω0, g) with nonnegative scalar curvature and positive
mean curvatureH . Indeed, since (E , gu) has a compact inner boundary which is isometric
to (Σ, γ) with mean curvature equals to u−1

0 H0, if we choose the initial value u0 = H0/H ,
one can glue (Ω0, g) and (E , gu) along their common boundaries to get an asymptotically
flat manifold for which the positive mass theorem holds. The inequality (2.3) exactly
yields the Shi-Tam inequality.

In our situation, we will directly apply a positive mass theorem for asymptotically
flat manifolds with compact inner boundary to (E , gu). This result, due to Herzlich
[Her97, Her02], ensures that the ADM mass is nonnegative when the first eigenvalue of
the Dirac operator of (Σ, γ) satisfies a certain lower bound. More precisely, it states:

Theorem 2.1. ([Her97, Her02]) Let (M, g) be a n-dimensional Riemannian spin asymp-
totically flat manifold with nonnegative scalar curvature and with a compact inner bound-
ary Σ. Assume that the first nonnegative eigenvalue λ1(Σ, γ) is positive and satisfies

λ1(Σ, γ) ≥
1

2
H (2.4)

where H is the mean curvature of Σ in M . Then the mass is nonnegative and if the
mass is zero, (M, g) is flat and the mean curvature is constant equals to H = 2λ1(Σ, γ).

This result is sharp since the exterior of round balls in Euclidean space are flat man-
ifolds with zero mass for which (2.4) is an equality. In our conventions, the mean
curvature of an (n− 1)-dimensional round sphere with radius r > 0 in Euclidean space
is (n− 1)/r. We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1: First assumed that (Σ, γ) is a strictly convex hypersurface in
Rn. As recalled above, one can solve the quasi-spherical metric problem on E with the
initial value

u0 =
1

2λ1(Σ, γ)
H0 > 0.

Then the metric gu defined by (2.1) yields, on E , an asymptotically flat metric with zero
scalar curvature for which the inner compact boundary is isometric to (Σ, γ) and has
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constant mean curvature equals to H = 2λ1(Σ, γ). It is immediate to see that Theorem
2.1 applies so that we deduce from (2.3) the inequality (1.3). If now we assume that
equality occurs, then the ADM mass of (E , gu) is zero and the positive mass theorem
implies that the metric gu is flat. From the Gauss formula, one can compute that the
Riemann curvature tensor Riemu of gu is given by

Riemu(ei, ej , ei, ej) = (1− u−2)Riemρ(ei, ej, ei, ej)

where Riemρ is the Riemann curvature tensor of Σρ and {ei / 1 ≤ i ≤ n− 1} is a local
orthonormal frame on (Σ, γ) parallel translated in the direction of ∂

∂ρ
. Since the metric

gu is flat and Σρ is strictly convex in R
n for all ρ ≥ 0, we conclude that u ≡ 1. Then

(Σ, γ) is a smooth embedded compact hypersurface in the Euclidean space with constant
mean curvature and so it is a round sphere. The converse is obvious since for a Euclidean
round sphere with radius r > 0, its first Dirac eigenvalue equals to (n− 1)/(2r) and its
mean curvature equals to (n− 1)/r.

If now we assume that the hypersurface Σ is star-shaped with positive scalar and mean
curvatures, we apply the method developed by Eichmair, Miao and Wang [EMW12].
Under these assumptions, there exists a smooth map F : Σ× [0,∞) → Rn such that

∂F

∂ρ
=

Hρ

R/ ρ
ν,

F (Σ, 0) = Σ and Σρ := F (Σ, ρ) has positive mean and scalar curvatures and is a strictly
convex hypersurface for ρ sufficiently large, say for ρ ≥ ρ0. Here ν is the outer unit
normal to the hypersurface Σρ, Hρ is its mean curvature and R/ ρ its scalar curvature.
Moreover, the pull-back of the Euclidean metric by F on Σ × [0, ρ0] has the form gη
given by (2.1) with η a smooth positive function. From [EMW12, Proposition 2], there
exists a smooth positive function v on Σ × [0, ρ0] such that the scalar curvature of the
metric gv is zero and with initial data

v(·, 0) = η(·, 0)
2λ1(Σ, γ)

H0.

This last condition implies that the mean curvature of Σ ≃ Σ × {0} equals to h0 =
2λ1(Σ, γ) for the metric gv. Then, as proved in [EMW12, Proposition 3], the function

ρ ∈ [0, ρ0] 7→
∫

Σρ

(
Hρ − hρ

)
dΣρ

where hρ represents the mean curvature of Σρ with respect to the metric gv, is monotone
non-increasing in ρ and so it follows that

∫

Σ

(
H0 − h0

)
dΣ =

∫

Σ

H0dΣ− 2λ1(Σ, γ)|Σ| ≥
∫

Σ

(Hρ0 − hρ0)dΣ. (2.5)

Now we can apply the original construction of Shi and Tam to the strictly convex
hypersurface Σρ0 by solving the quasi-spherical equation in such a way that the resulting
manifold (Σ × [ρ0,∞), gu) is an asymptotically flat manifold whose inner boundary is
isometric to (Σ, γρ0) with mean curvature equals to hρ0 . As before, we get from (2.3)
that ∫

Σ

(Hρ0 − hρ0)dΣ ≥ c(n)mADM(E , gu). (2.6)
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Gluing (Σ×[0, ρ0], gv) and (Σ×[ρ0,∞), gu) along their common boundary (Σ, γρ0) yields
an asymptotically flat manifold (E , g̃) with Lipschitz metric along Σρ0 , with ADM mass
equals tomADM(E , gu) and with a compact inner boundary whose mean curvature equals
to 2λ1(Σ, γ). Combining (2.5) and (2.6) with the fact that Theorem 2.1 holds in this
context (see Remark 2.3) yields the desired inequality. If equality occurs, we deduce as
before that the manifold (E , g̃) is flat away from Σρ0 and that u ≡ 1 since Σρ is convex
for ρ ≥ ρ0. On the other hand, we also deduce from the Gauss formula that u ≡ η since
Σρ has positive scalar curvature for ρ ∈ [0, ρ0]. This allows to conclude that (E , g̃) is
isometric to the exterior of Σ in the Euclidean space. The end of the proof then proceeds
as in the previous case. �

Remark 2.1. The Cauchy-Schwarz inequality gives
∫

Σ

H0dΣ ≤ |Σ|1/2
(∫

Σ

H2
0dΣ

)1/2

so that our inequality (1.3) implies the well-known upper bound

λ1(Σ, γ)
2 ≤ 1

4

∫
Σ
H2

0dΣ

|Σ|
due to Bär [Bä98]. Note however that this last inequality holds in a much more broader
context since it only assumes the existence of an isometric immersion of (Σ, γ) in a
Riemannian manifold carrying a parallel spinor field.

Remark 2.2. When Σ is homeomorphic to a 2-sphere, the first eigenvalue of the Dirac
operator on (Σ, γ) satisfies the Bär-Hijazi inequality [Hij86, Hij91, Bä92]

λ1(Σ, γ) ≥ 2

√
π

|Σ| (2.7)

with equality if, and only if, (Σ, γ) is isometric to a round sphere. If now we assume that
(Σ, γ) satisfies the assumptions of Theorem 1.1, one can apply (1.3) for n = 3 which,
with (2.7), yields the well-known Minkowski inequality

∫

Σ

H0dΣ ≥ 4
√
π |Σ|.

The equality holds only for the round spheres.

Remark 2.3. We briefly explain here how to prove Theorem 2.1 for asymptotically flat
manifolds with corners along a hypersurface. An asymptotically flat manifold (M, g)
with boundary Σ is said to have a corner along a hypersurface N if it can be written as
the disjoint union of two subsets M+ and M− where (M+, g+) is a smooth n-dimensional
asymptotically flat manifold with boundary N and (M−, g−) is a smooth n-dimensional
compact Riemannian manifold with boundary Σ ∪ N and where g± = g|M±

. The ADM
mass of (M, g) corresponds to the ADM mass of (M+, g+). Let also H+ and H− the
mean curvatures of N in (M+, g+) and (M−, g−) with respect to the unit normal pointing
toward infinity. The positive mass theorem for such manifolds asserts that if the scalar
curvature of (M, g) is nonnegative and if H− ≥ H+ then its ADM mass is nonnegative.
The proof of the positive mass theorem 2.1 relies essentially on two important points:
the existence of a harmonic spinor field satisfying the Atiyah-Patodi-Singer condition
which is asymptotic to a constant spinor, usually called a Witten spinor, and an integral
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version of the Schrödinger-Lichnerowicz formula. For the first point, it is enough to
observe that since the metric g is Lipschitz, the work of Bartnik and Chruściel [BC05]
still applies to construct an adequate spinor Φ. On the other hand, recall that the
Schrödinger-Lichnerowicz formula asserts that

D2ψ = ∇∗∇ψ +
R

4
ψ

for all spinor field ψ on M and where D, ∇ and ∇∗ are respectively the Dirac opera-
tor, the spin Levi-Civita connection and its L2-formal adjoint on (M, g). Although this
formula is no longer valid on (M, g) since the scalar curvature is not defined on N , it
remains true on (M+, g+) and on (M−, g−) separately. We can then integrate this for-
mula on M− first and then on a domain MR in M+ whose boundary is the union of N
and a coordinate sphere at infinity with radius R. Adding them together and inserting
the aforementioned Witten spinor Φ lead to

1

2
(n− 1)ωn−1mADM(M, g) =

∫

M

(
|∇Φ|2 + R

4
|Φ|2

)
dM +

1

2

∫

N

(H− −H+)|Φ|2 dN

−
∫

Σ

〈D/ γΦ +
H

2
Φ,Φ〉dΣ

as R goes to infinity. The nonnegativity of the mass then follows from the assumptions
R ≥ 0, H− ≥ H+ and (2.4).

3. Proof of Theorem 1.2

If r is large enough, the Gauss curvature of Sr endowed with the metric gr is positive.
So, by the solution of the Weyl’s embedding problem, (Sr, gr) can be isometrically
embedded in R

3 with positive mean curvature H0. This embedding is unique up to an
isometry of R3. It follows from [FST09, Lemma 2.4] that

∫

Sr

H0dSr = 4πr +
|Sr|
r

+O(r1−2τ) (3.1)

which, when combined with Corollary 1.1, yields

λ1(Sr, gr)|Sr| ≤ 2πr +
|Sr|
2r

+O(r1−2τ).

From [FST09, Lemma 2.1], the area of Sr has the following expansion

|Sr| = 4πr2 + β(r) +O(r1−2τ ) (3.2)

near infinity where

β(r) =
1

2

∫

Sr

gijr σijdSr

satisfies β(r) = O(r2−τ) so that

λ1(Sr, gr)|Sr| ≤ 4πr +
β(r)

2r
+O(r1−2τ). (3.3)

Here gijr is (gr)ij raised with respect to gij. On the other hand, the Bär-Hijazi inequality
(2.7) with (3.2) leads to

λ1(Sr, gr)|Sr| ≥ 2
√
π|Sr|1/2 = 4πr +

β(r)

2r
+ O(r1−2τ). (3.4)
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From (3.3) and (3.4) we deduce that

λ1(Sr, gr)|Sr| = 4πr +
β(r)

2r
+ o(1) (3.5)

since τ > 1

2
. Now recall from [FST09, Lemma 2.2] that

∫

Sr

HrdSr =
|Sr|
r

+ 4πr − 8πmADM(M, g) + o(1)

which, with (3.2), gives

1

2

∫

Sr

HrdSr = 4πr +
β(r)

2r
− 4πmADM(M, g) + o(1). (3.6)

The asymptotic expansion (1.4) follows directly from (3.5) and (3.6). �

Remark 3.1. In [HMZ01], Hijazi, Montiel and Zhang proved an inequality relating the
first nonnegative eigenvalue of the Dirac operator of hypersurfaces bounding compact
spin Riemannian manifolds with nonnegative scalar curvature. A direct consequence of
this result ensures that if (Ω, g) is a 3-dimensional manifold whose boundary Σ is the
union of a minimal 2-sphere ΣH and a surface ΣO with positive mean curvature HO,
the first nonnegative eigenvalue λ1(ΣO, γ) of the Dirac operator (ΣO, γ) with γ := g|ΣO

satisfies

λ1(ΣO, γ) >
1

2
min
Σ
HO. (3.7)

The proof of the inequality (3.7), in a broad sense, is given in [HMZ01, Theorem 6]. The
fact that the equality cannot hold for a domain Ω as above can be seen as follows. In
fact, it is easy to see that if equality holds in (3.7), the domain Ω carries a parallel spinor
with respect to the metric g whose restriction to ΣH gives rise to a harmonic spinor on
this boundary component. However, this is impossible since we assumed that ΣH is a
2-sphere on which such a spinor field cannot exist by the Bär-Hijazi inequality (2.7).
This inequality applies for example when (M, g) is a 3-dimensional asymptotically flat
manifold with nonnegative scalar curvature and with compact minimal inner boundary
∂M and Ωr is the compact domain whose boundary is the disjoint union of ∂M and a
coordinate sphere Sr with r > 0. The asymptotic expansion (1.4) shows explicitly that
the non-sharpness of (3.7) in this situation is directly related to the positivity of the
ADM mass of (M, g). Indeed, from the work of Bray [Bra01, Theorem 9], the presence
of a minimal compact boundary on (M, g) ensures that its ADM mass is positive and so
it follows from Theorem 1.2 that

λ1(Sr, gr) >
1

2|Sr|

∫

Sr

HrdSr ≥
1

2
min
Sr

Hr (3.8)

for r sufficiently large. Note that (3.8) improves (3.7) since it replaces a pointwise bound
by an integral one.

Remark 3.2. Assume that (M, g) is a 3-dimensional asymptotically Schwarzschild man-
ifold of mass m that is there exists a bounded set K such that M \K is diffeomorphic
to the complement of a closed ball in R3 and such that, in the coordinate charts induced
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by this diffeomorphism, the metric satisfies

gij =
(
1 +

2m

|x|
)
δij + σij ,

4∑

l=0

|x|l|∂lσij | = O(|x|−2)

where m is a real number. Note that the parameter m corresponds exactly to the ADM
mass of (M, g). In this situation, one can say more since, using the same method and the
estimates in [ST02, Section 5], we get an asymptotic expansion for the first eigenvalue,
namely

λ1(Sr, gr) =
1

r
− m

r2
+O

( 1

r3

)
.

A direct consequence of this expansion and the positive mass theorem is the following
comparison result for the first eigenvalue of the Dirac operator. If the scalar curvature
of (M, g) is nonnegative, then

lim
r→∞

r2
(
λ1(Sr, δr)− λ1(Sr, gr)

)
≥ 0

where λ(Sr, δr) = 1/r is the first eigenvalue of the Dirac operator D/ δr on the Eu-
clidean sphere of radius r. Moreover, equality occurs if, and only if, (M, g) is iso-
metric to the Euclidean space. In particular, if the mass m of (M, g) is positive, then
λ1(Sr, gr) < λ1(Sr, δr) for sufficiently large r. This is the case for example when (M, g)
has nonnegative scalar curvature and a compact inner boundary with nonpositive mean
curvature.

4. Proof of Theorem 1.3

In this section, we give a lower and an upper estimates for the first eigenvalue of the
Dirac operator which imply the expansion of Theorem 1.3. Let (M, g) be a 3-dimensional
Riemannian manifold and let p ∈ M be an interior point. Consider (x1, x2, x3) the
normal coordinates near p and let r be the geodesic distance form p. Lemma 3.2 in
[FST09] ensures that

|Sr| = 4πr2 − 2π

9
R(p)r4 +

π

675

(
4R(p)2 − 2|Ric(p)|2 − 9∆R(p)

)
r6 +O(r7) (4.1)

and so it follows from the Bär-Hijazi inequality (2.7) that

λ1(Sr, γr) ≥
1

r
+
R(p)

36
r +

L(p)

5400
r3 +O(r4) (4.2)

where we let

L(p) =
9

4
R2(p) + 2|Ric|2(p) + 9∆R(p).

Here |Ric| denotes the norm of the Ricci curvature and ∆ is the Laplacian of (M, g).
On the other hand, for r small enough, the sphere (Sr, γr) has positive Gauss curvature
in such a way that it can be isometrically embedded in R3 with positive mean curvature
H0. Then it is proved in [FST09, p. 66] that
∫

Sr

H0dSr = 8πr − 2π

9
R(p)r3 − π

2700

(
99R2(p)− 312|Ric|2(p) + 36∆R(p)

)
r5 +O(r6).



TOTAL MEAN CURVATURE AND FIRST DIRAC EIGENVALUE 11

Combining this formula with (4.1) and (1.3) yields

λ1(Sr, γr) ≤
1

r
+
R(p)

36
r +

1

5400

(
L(p) + 80

∣∣E|2(p)
)
r3 +O(r4) (4.3)

where E := Ric − (R/3)g is the traceless part of the Ricci tensor of (M, g). It is now
obvious to deduce Theorem 1.3 and Corollary 1.3 from (4.2) and (4.3).

Remark 4.1. It follows from Corollary 1.3 that, for r small enough, the integral bound

λ1(Sr, γr) >
1

2|Sr|

∫

Sr

HrdSr

holds on any geodesic spheres Sr centered at an interior point p of any 3-dimensional
Riemannian manifolds as soon as R(p) > 0. Once again this inequality improves (3.7)
in this situation.

5. A few words on the hyperbolic setting

In this last section, we give the proofs of Theorem 1.4 and Corollary 1.4. Let us briefly
recall the setting and the main results which are needed for this purpose.

When (Σ, γ) is a compact hypersurface isometrically embedded in an n-dimensional
spin Riemannian manifold (M, g) with scalar curvature bounded from below by −n(n−
1)κ2, κ > 0, it is natural to consider the operators given by

D/ ±
γ := D/ γ ±

n− 1

2
κ
√
−1c(ν)

where c(ν) represents the Clifford multiplication, with respect to g, by the inner unit
normal to Σ denoted by ν. These are first order elliptic and self-adjoint differential
operators which acts on the spinor bundle over (M, g) restricted to Σ. They appear
as natural counterparts of the extrinsic Dirac operator in the integral version of the
hyperbolic Schrödinger-Lichnerowicz formula (see for example [CH03, WY07, Kwo13,
HMR03, HMR15a]). Since the Clifford multiplication by ν sends an eigenspinor for D/ +

γ

associated to λ to an eigenspinor forD/ −
γ associated to −λ, the spectra of these operators,

denoted by Spec(D/ ±
γ ), are such that

Spec(D/ +

γ ) = −Spec(D/ −
γ ) ⊂ R

∗. (5.1)

Let λ±1 (Σ, γ) denote their first nonnegative eigenvalues. Note that since

(
D/ ±

γ )
2ψ = D/ 2

γψ +
(n− 1)2

4
κ2ψ

for all spinor fields ψ on M restricted to Σ, it is direct to deduce that

λ±1 (Σ, γ)
2 ≥ λ1(Σ, γ)

2 +
(n− 1)2

4
κ2. (5.2)

Let us now prove Theorem 1.4.

Proof of Theorem 1.4: We proceed exactly as in the proof of Theorem 1.1. From
[WY07, Kwo13], it follows that under our assumptions, there exists on Hn(−κ2) \ Ω ≃
Σ× [0,+∞[ an unique function w with initial value

w(·, 0) = 1

2λ±1 (Σ, γ)
H0



12 SIMON RAULOT

in such a way that the quasi-spherical metric gw := w2dρ2+γρ defines an asymptotically
hyperbolic metric with constant scalar curvature R = −n(n− 1)k2 and with (Σ, γ) as a
compact inner boundary with mean curvature equals to H = 2λ±1 (Σ, γ). Here Ω denotes
the compact domain of Hn(−κ2) bounded by Σ and ρ is the distance from Σ. Then it
follows from the positive mass theorem recalled in Remark 5.3 that

lim
ρ→+∞

∫

Σρ

Hρ(1− w−1)X · ζ dΣρ ≤ 0 (5.3)

for any future-directed null vector ζ ∈ Rn,1. The vector X = (x1, · · · , xn, t) is the
position vector in Rn,1, the inner product is given by the Lorentz metric and Hρ denotes
the mean curvature of Σρ in Hn(−κ2). This implies in particular that

lim
ρ→+∞

∫

Σρ

Hρ(1− w−1) cosh(κr) dΣρ ≥ 0. (5.4)

On the other hand, it is proved in [ST07, Kwo13] that there exists α > 1 such that for
any future-directed null vector ζ ∈ Rn,1 the function

ρ ∈ [0,+∞[7→
∫

Σρ

Hρ(1− w−1)Xα · ζ dΣρ

is nonincreasing in ρ where Xα = (x1, · · · , xn, αt). Combining this fact with (5.3) and
(5.4) yields

∫

Σ

(
H0 − 2λ±1 (Σ, γ)

)
Xα · ζ dΣ ≤ lim

ρ→+∞

∫

Σρ

Hρ(1− w−1)Xα · ζ dΣρ ≤ 0

and this implies that the vector
∫

Σ

(
H0 − 2λ±1 (Σ, γ)

)
Xα dΣ

is future-directed causal. In particular, its time component is nonnegative and so the
inequality (1.7) follows straightforwardly. The equality case is a direct consequence of
the characterization of the equality case in the positive mass theorem given in Remark
5.3. �

Proof of Corollary 1.4: The Bär-Hijazi inequality (2.7) and the estimate (5.2) ensure
that

λ±1 (Σ, γ)
2 ≥ 4π

|Σ| + κ2.

Moreover, equality holds only for two dimensional round spheres. Then the Minkowski-
type inequality (1.4) as well as its equality case follow directly from Theorem 1.4. �

Remark 5.1. By sending κ → 0 in the inequalities (1.7) and (1.8), we respectively
recover the estimate (1.1) and the classical Minkowski inequality for convex body in the
3-dimensional Euclidean space (see Remark 2.2).

Remark 5.2. It is obvious to deduce from the inequality (1.7) that

λ±1 (Σ, γ) ≤
1

2
sup
Σ

H0
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which imply, with the help of (5.2), a well-known inequality due to Ginoux [Gin03] and
which asserts that

λ1(Σ, γ)
2 ≤ 1

4

(
(sup

Σ

H0)
2 − (n− 1)2κ2

)
.

Note however that this last inequality holds in a much more broader context since it only
assumes the existence of an isometric immersion of (Σ, γ) in a Riemannian manifold
carrying an imaginary Killing spinor field.

Remark 5.3. In the proof of Theorem 1.4, we make appeal to a positive mass theorem for
asymptotically hyperbolic manifolds with compact inner boundary which we now explain.
This result is inspired by a work with Hijazi and Montiel [HMR15b] and which can
be seen as a hyperbolic version of the results of Herzlich [Her97, Her02]. Assume, as
in the proof of Theorem 1.4, that M := Hn(−κ2) \ Ω is endowed with respect to the
metric gw. Thus (M, gw) is an n-dimensional asymptotically hyperbolic manifold, in the
sense of [AD98], with constant scalar curvature and with compact inner boundary (Σ, γ)
whose mean curvature is constant equals to 2λ+1 (Σ, γ). It is obvious to see that M is
endowed with a spin structure and so we can consider (SM,∇, c, 〈 , 〉) the associated
Dirac bundle for the metric gw where SM denotes the bundle of complex spinors, ∇
is the corresponding spin Levi-Civita connection, c the Clifford multiplication and 〈 , 〉
the Hermitian inner product. On the other hand, on (M, hκ), hκ being the hyperbolic
metric with constant sectional curvature −κ2, there exists a set of maximal dimension
of imaginary Killing spinors which is parametrized by a ∈ C2m with m = [n/2]. This
implies that for every such a a ∈ C2m corresponds an imaginary Killing spinor field φa

which can be considered as a section of SM via the identification between the spinor
bundles over (M, gw) and (M, hκ). Then it can be shown that there exists an unique
ψa ∈ W 1,2 such that the spinor field Ψa := ψa + ηΦa ∈ Γ(SM) satisfies the following
boundary value problem: {

D+Ψa = 0 on M,
P+

+Ψa |Σ = 0 along Σ.

Here η is a cut-off function that vanishes on a compact set of M and is equal to 1 for r
large enough. Moreover, D± := c◦∇± is a zero order modification of the classical Dirac
operator D with ∇± the modified connection defined by

∇±
Z = ∇Z ±

√
−1

2
κc(Z)

for all Z ∈ Γ(TM). On the other hand, the maps P±
+ represent the L2-orthogonal

projections onto the subspace spanned by the eigenspinors corresponding to the positive
eigenvalues of D/ ±

γ which define global elliptic boundary conditions for the operators D±.
Then integrating by parts on the compact domain delimited by Σρ the identity

(∇+)∗∇+Ψa = 0

which is deduced from the Schrödinger-Lichnerowicz formula and sending ρ → +∞
finally leads to

lim
ρ→+∞

∫

Σρ

Hr(1− w−1)|Φa|2 dΣρ =

∫

M

|∇+Ψa|2 dM −
∫

Σ

〈D/ +

γ Ψa +
1

2
HΨa,Ψa〉 dΣ (5.5)
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which is nonnegative since P+
+Ψa|Σ = 0 and H = 2λ+1 (Σ, γ). The fact that the left-hand

side of the previous equality is finite is proved in [WY07, Kwo13]. Now the inequality
(5.3) follows directly since for every null vector ζ ∈ Rn,1, there exists a ∈ C2m where

ζa =
n∑

j=1

〈
√
−1c0(ej)a, a〉ej − 〈

√
−1c0(e0)a, a〉e0

such that

−2κX · ζa = |Φa|2.
Here e0 =

∂
∂t
, ej =

∂
∂xj

in Rn,1 for all j = 1, · · · , n and c0 denotes the Clifford multiplica-

tion with respect to the Lorentz inner product in Rn,1. Finally note that if the left-hand
side of (5.5) vanishes, the spinor Ψa has to be an imaginary Killing spinor and so in
particular (M, gw) is an Einstein manifold with scalar curvature equals to −n(n− 1)κ2.
Then, from the Gauss equation for the embedding of Σρ in (M, gw) we deduce that

(1− w−2)(R/ ρ + (n− 1)(n− 2)κ2) = 0

which implies that w ≡ 1 since we assumed that the sectional curvature K of (Σ, γ)
satisfies K > −κ2. This implies that Σ, as inner boundary of M , has the same second
fundamental form as boundary of the hyperbolic domain Ω. Then (Σ, γ) is a smooth
embedded compact hypersurface in the hyperbolic space with constant mean curvature
and so it is a round sphere.
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Spectr. Géom., pages 9–16. Univ. Grenoble I, Saint-Martin-d’Hères, 2002.

[Hij86] O. Hijazi. A conformal lower bound for the smallest eigenvalue of the Dirac operator and
Killing spinors. Comm. Math. Phys., 104(1):151–162, 1986.

[Hij91] O. Hijazi. Première valeur propre de l’opérateur de Dirac et nombre de Yamabe. C. R.
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