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Abstract

Oscillation-based neuro-computational models of speech per-
ception are grounded in the capacity of human brain oscillations
to track the speech signal. Consequently, one would expect this
tracking to be more efficient for more regular signals. In this pa-
per, we address the question of the contribution of isochrony to
event detection by neuro-computational models of speech per-
ception. We consider a simple model of event detection pro-
posed in the literature, based on oscillatory processes driven by
the acoustic envelope, that was previously shown to efficiently
detect syllabic events in various languages. We first evaluate its
performance in the detection of syllabic events for French, and
show that “perceptual centers” associated to vowel onsets are
more robustly detected than syllable onsets. Then we show that
isochrony in natural speech improves the performance of event
detection in the oscillatory model. We also evaluate the model’s
robustness to acoustic noise. Overall, these results show the im-
portance of bottom-up resonance mechanism for event detec-
tion; however, they suggest that bottom-up processing of acous-
tic envelope is not able to perfectly detect events relevant to
speech temporal segmentation, highlighting the potential and
complementary role of top-down, predictive knowledge.
Index Terms: speech perception, oscillatory-based model,
neuro-inspired computational model, syllable segmentation,
event detection, isochronous speech, P-center

1. Introduction
Speech perception involves multiple hierarchical levels of pro-
cessing, to go from the acoustic, continuous signal to speech
unit identification, to, ultimately, the perceived meaning of
utterances. Classical psycholinguistic models inspired by
interaction-activation processes such as TRACE or SHORT-
LIST [1, 2, 3, 4], as well as automatic speech recognition
(ASR) models such as Hidden Markov Models (HMMs) or
Deep Neural Networks (DNNS) [5, 6, 7], directly decode
the speech continuous stream from spectro-temporal informa-
tion through a battery of computational processes associating
phonetic-prosodic, lexical and syntactic-semantic knowledge.
However, recent studies in speech neuroscience focus on cog-
nitive processes that appear crucial for speech perception, and
that perform temporal segmentation, that is, identifying in the
speech signal temporally relevant events (e.g., syllabic bound-
aries). Through synchronization processes between different
populations of neurons operating in different frequency bands,
typically in the gamma band (40–100 Hz) for acoustic spectro-
temporal analysis, in the theta band (3–8 Hz) for syllabic seg-
mentation, and in the delta band (1–2 Hz) for rhythmic/syntactic
binding, the human brain would exploit neuronal oscillations to

perform this temporal segmentation of incoming acoustic sig-
nals [8, 9, 10].

An important consequence of the assumption that oscilla-
tory processes play a role in syllabic event detection is that reg-
ular sequences of such events should be better able to evoke
resonance phenomena in these oscillatory processes, and hence
result in stronger outputs and possibly better detection. There-
fore, in par with these oscillatory principles, it could be pre-
dicted that the syllabic segmentation of speech should be easier
when the distribution of syllabic durations is rather isochronous
than when it is not. Indeed, a recent study [11] studied the in-
telligibility of speech in noise in two languages differing by
their rhythmic properties, i.e. French, a syllable-timed lan-
guage, and English, a stress-timed language. The authors an-
alyzed the departure from syllabic isochrony among the pre-
sented sentences in both languages, and showed that more
syllabic-isochronous sentences were better decoded than non-
isochronous ones. A possible interpretation is that syllabic
isochrony enhanced acoustic event detection, which in turn en-
hanced comprehension.

If indeed cortical activity can entrain more or less to regular
features of the speech input envelope, the question remains of
the nature of events it tracks. Various proposals emerge in the
literature. The first one is classically focused on the search for
syllable boundaries which roughly correspond to energy val-
leys/troughs. Neurophysiological data and models suggest an
alternative, considering instead energy peaks that correspond
globally to vowel nuclei of syllables [12, 13, 14], or to the so-
called P-centers, corresponding to the perceptual center of the
syllabic units [15, 16] associated to the peak in envelope inten-
sity increase at the vowel onset. Indeed, it has been recently
shown that the brain neural activity is more robust to the track-
ing of P-centers than to the syllable boundaries [17]. Hence, the
question of the relative efficiency of neural oscillatory processes
to detect P-centers rather than syllabic onsets comes as an addi-
tional question of importance in the study of neural oscillatory
speech segmentation processes.

To address these questions, various models of syllabic pars-
ing based on neural oscillations in the cortex at the theta rhythm
(3–8 Hz) have been proposed in the literature [18, 19, 20, 21].
While some of these neuro-computational models exploit so-
phisticated realistic neuronal processing principles, sometimes
even at the spike level of representation, we focus here on the
model developed by Räsänen, Doyle and Frank [20] which
stands out as the simplest one, operating on simple processes
of envelope detection and linear second-order oscillators. In the
remainder, we refer to this model as the RDF model, after its
authors. The RDF model has been shown to efficiently extract
syllable onsets in various languages, exploiting realistic speech
corpora. However, it is yet unclear how such an oscillatory-
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based model would perform relative to the isochrony of speech
signals, and whether it is specific to syllable onset detection, or
could be extended to other syllabic events such as P-centers.

In this paper, we evaluate the RDF model by using it for
syllabic boundary detection on a French corpus, to widen its
evaluation set and assess its generalizability, and extending it to
the detection of P-centers on the same French corpus, to assess
its performance relative to the nature of syllabic events. We
then analyze the model’s behavior with respect to the departure
of natural speech from isochrony, to assess whether the model
yields better robustness for more isochronous inputs. We also
take the opportunity to evaluate the model’s robustness to noise.

2. Methods and Materials
2.1. Oscillatory model of syllable boundary detection

The RDF model is a neuro-computational model originally de-
veloped to study the pre-linguistic segmentation of syllables
(that is, “accessible to an infant with no phonological or lexi-
cal knowledge”). The RDF model implements neural tracking
based on an oscillatory system driven by energy fluctuations in
the speech signal [13, 18, 22, 23]. Starting from the speech sig-
nal, a set of signal processing techniques are applied in order to
obtain an estimate of the sonority of the signal. First, Gamma-
tone filter-banks [24, 25] are applied to the speech input to get
the amplitude envelope in 20 frequency bands. Their outputs
are then low-pass filtered and down-sampled to have an overall
sampling rate of 1,000 Hz. Each envelope of each frequency
band is then passed to a harmonic oscillator which resonates at
a central frequency f0 within a bandwidth ∆f . Together, these
define the oscillator Q factor, Q = f0/∆f . Finally, the N most
energetic outputs (N , in the following, is set to 8, as in [20]) are
combined by taking the sum of the logarithms of the amplitudes
to obtain the sonority output; the final values are normalized be-
tween 0 and 1 over the stimulus duration. The resulting sonority
function can be used in various ways, to identify speech relevant
events.

In their work, RDF used the oscillatory model output to
search for syllabic boundaries in the speech signal. To do so,
they identified local minima (valleys) in the sonority output. Af-
ter optimizing the model parameters, they evaluated its perfor-
mance on various languages, namely Finnish, Estonian and En-
glish, and they showed that, globally, the model performs well
for the three tested languages (see evaluation criterion later) on
various speech corpora.

2.2. Adaptation of the RDF model to detect P-centers

P-centers correspond to “psychological moment of occurrence”
of syllables [15, 26]. A precise acoustical landmark that corre-
sponds to P-centers is still lacking; however, they are classically
determined by looking at peaks of energy increase of the speech
envelope [27, 28]. We therefore extended the RDF model to de-
tect peaks in the first-order derivative of the sonority output. In
the following, we will interpret these events as corresponding to
the detection of P-centers.

2.3. Experimental corpus

In all the experiments, we used the Fharvard corpus, which
is a resource equivalent to the Harvard corpus, but in French
[29] 1. It consists of phonemically-balanced natural spoken

1Found online at https://zenodo.org/record/
1462854#.YitevozMLm4

Figure 1: Histogram of syllable duration in the Fharvard corpus
[29] (mean is 203 ms, median is 180 ms, mode is 154 ms).

French sentences uttered by a male speaker. The initial dataset
contains 700 sentences sharing similar structure. In this paper,
we only used a subset of the overall dataset that was fully an-
notated by the original authors at various levels, namely at the
word, syllable, P-center and phoneme levels. It amounts to 177
sentences composed of multi-syllabic words with a total of 646
distinct syllables. Figure 1 shows the distributions of syllable
duration in the corpus.

To evaluate the model’s robustness to noise, we added white
Gaussian noise to the initial speech data, with varying signal to
noise (SNR) ratio from -30 dB (very noisy) to 30 dB (almost
noise free) by steps of 10 dB (totalling 7 SNR values). More re-
alistic speech maskers such as long-term average speech spec-
trum noise [30] or multi-talker babble noise [31] may be used
in future studies.

2.4. Performance measure

In order to evaluate performance, we define a performance mea-
sure indicative of the quality of event detection. For this pur-
pose, we use the F-score measure [32, 33]. It is a trade-off
between precision P (the proportion of events predicted by the
algorithm that corresponds to real events) and recall R (the pro-
portion of real events correctly predicted by the algorithm). It
is calculated by F = 2PR/(P +R).

In practice, we consider that a real event is correctly pre-
dicted by the model if it has detected an event in a time window
of 50 ms around the real event. We calculate the performance
measure for all the detected events by the model, adding to these
the stimulus onset and offset events, which are supposed to be
detected prior to the analysis by the RDF model itself. This
configuration of performance evaluation is identical to the one
used by RDF [20].

2.5. Parameter calibration

The RDF model has four free parameters, that require calibra-
tion to ensure optimal use of the oscillator algorithm. To obtain
optimal values for each of these parameters, we performed a
search on a predefined grid of values. To perform calibration,
we optimised performance on a training dataset with 100 au-
dio files within the 177 available ones, while all experimental
results provided below were obtained from the remaining 77
sentences in the test set. We now recall the model parameters,
and define our 4-dimensional calibration grid.

The first parameter is the central frequency f0, that is, the
resonant frequency of the oscillator, which varies in the theta
frequency band, and is usually speaker dependent. We consid-
ered 7 calibration values (from 5 to 8 Hz with a .5 Hz step).

The second parameter is the quality factor Q, a function
of the central frequency and the bandwidth of the oscillator
Q = f0/∆f . It measures the damping rate of the oscillator.
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Figure 2: Histograms of temporal distortion values in the Fhar-
vard corpus [29], with respect to P-centers (left) and with re-
spect to syllabic boundaries (right). The lower the value, the
more isochronous the sentence.

A notable value is Q = .5, for which the oscillator is critically
damped, so that the oscillator would follow the envelope of the
signal as closely as possible. For larger values of Q (Q > .5),
under-damped oscillator), the oscillator resonates more around
its central frequency, with a slower decay of its amplitude, even
if it is no longer excited by a real signal. For smaller values of
Q (Q < .5), over-damped oscillator), the oscillator performs
more temporal smoothing, with little dependence on its central
frequency. We considered, for calibration, an empirically de-
fined set of 21 possible values for parameter Q: .15, .25, .5, .75,
from 1 to 1.9 with a .1 step, and from 2 to 5 with a .5 step.

The third parameter is the minimum detection threshold
thr, that is, the minimal difference between a local extremum
and neighbour extrema enabling to consider the local extremum
as meaningful. We considered 3 possible threshold values: .01,
.025 and .5.

The fourth parameter is a fixed delay del, to shift all de-
tected events, so as to mitigate artifacts introduced by signal
processing techniques, in particular delays due to smoothing,
filtering and windowing operations. For syllabic boundary de-
tection, we considered 15 possible values (0 to 70 ms with a
step of 5 ms); for P-center detection, we considered 7 possible
values (0 to 30 ms, step of 5 ms).

2.6. Temporal distortion metric

To characterize the departure from isochrony in speech sig-
nals, we use a previously introduced temporal distortion met-
ric noted δ [11]. It is computed for a given reference time se-
ries t (the initial temporal event series) which is transformed
into a target time series t′ (here an hypothetical isochronous
time series with the same number of events) as the following:

δ =

rPN
i=1(log τi)2diPN

i=1 di
, with d the duration between succes-

sive reference events (di = ti+1 − ti), τi the time-scale factor
between the reference and target time series: τi = d′i/di where
d′i = (tN−t1)/(N−1). The lower δ is, the more a sequence of
events is isochronous, that is, regularly spaced; on the contrary,
the higher δ is, the more temporally distorted the sequence of
events is.

We calculated temporal distortion both for P-centers and for
syllable boundaries. The distributions of P-center and syllable
distortion values for the 177 sentences in the experimental cor-
pus are shown in Figure 2.

3. Results
3.1. Performance on syllabic event detection in French

Table 1 provides the optimal values, resulting from calibration,
for model parameters, for both P-center and syllable boundary

Table 1: Parameter values resulting from calibration on the
training set, and resulting F-scores on the test set.

P-centers Syllable boundaries
f0 (Hz) 6.5 7
Q 1.4 1.9
thr 0.025 0.01
del (ms) 0 55
F-score .89 .75

Figure 3: Correlation between distortion values δ computed
with respect to syllabic boundaries (x-axis) and P-centers (y-
axis), for the 177 sentences of the experimental corpus. Linear
regression (solid line) and corresponding squared correlation
coefficient R2 are indicated in the plot.

detection tasks. To recall, calibration was performed on the
training set. We observe that optimal parameters, both for P-
center and syllable boundary detection, correspond to under-
damped oscillators (Q = 1.4 and 1.9, respectively). Interest-
ingly, the optimal f0 value at 7 Hz for syllable boundary de-
tection is higher than the inverse value of the mean syllable du-
ration (mean syllable duration is 203 ms, inverse is 4.9 Hz).
This is also the case for all simulations in [20]. However, it
is actually close to the inverse of the mode or of the median
of the asymmetric distribution of syllable duration in Figure 1,
which suggests that this statistic could better describe the over-
all speech rate in the corpus.

Table 1 also reports detection performance on the test set
for both tasks. Performance for syllable boundary detection is
measured by an overall F-score of .75, which is comparable to
previous experimental results in Finnish, Estonian and English
[20]. In contrast, performance is quite higher for P-center de-
tection, with an overall F-score of .89.

3.2. Role of isochrony in event detection

3.2.1. Relation between isochrony in the distribution of syllabic
boundaries and P-centers

Figure 3 shows the correlation between lack of isochrony for
syllabic boundaries and P-centers, for all sentences in the ex-
perimental corpus. We observe that there is no significant cor-
relation: sentences with low distortion to synchrony in syl-
labic boundaries may have large distortion for P-centers, and
vice-versa (Pearson correlation coefficient R = 0.05, p-value
p = 0.51). In the following, we use only distortion to syn-
chrony computed over the distribution of P-centers, in line with
the experimental study by Aubanel & Schwartz [11].
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Figure 4: Event detection performance (F-scores, y-axis)
against P-center temporal distortion (δ, x-axis), for P-center
detection (left) and syllable boundary detection (right). Linear
regressions (solid lines) and corresponding squared correlation
coefficients R2 are indicated in the plots.

Figure 5: Event detection performance (mean F-scores, y-axis)
against the Q parameter value (x-axis), for P-center detection
(left) and syllable boundary detection (right).

3.2.2. Relation between distortion to P-center isochrony and
event detection

Figure 4 shows the variations of event detection performance
as a function of distortion to P-center isochrony, for P-center
detection (left) and syllable boundary detection (right). We ob-
serve that for both P-center and syllable boundary detection,
there is a statistically significant negative correlation between
model performance and temporal distortion. In other words,
model performance is higher, and events are better identified,
when temporal distortion is small, that is to say, for natural sen-
tences which happen to be more isochronous.

3.2.3. Role of the resonance factor in event detection

Figure 5 shows event detection performance as a function of
the Q factor when all other model parameters are fixed, for P-
centers (left) or syllable boundaries (right). Strikingly, the best
performance is obtained for resonant systems with Q values
much larger than the so-called critical damping value Q = .5
which corresponds to a system that essentially tracks the acous-
tic envelope with no additional resonance process. While the
optimal value for the Q factor is similar for P-centers and sylla-
ble boundaries in the 1.2 − 1.5 range, the adequate range is
rather restricted for P-centers, with quasi optimal values be-
tween 1.1 and 1.8 and then a rapid decrease for too resonant
systems; in contrast, a large range of Q values above 0.75 are
adequate for syllable boundary detection, although detection
performance is lower overall.

3.3. Event detection in noise

Figure 6 shows how model performance varies as a function of
the signal to noise ratio (SNR). The RDF model appears to be
rather robust to noise, with its performance almost unchanged
up to a rather large level of noise (SNR at 0 dB), with perfor-
mance sharply decreasing for lower values of SNR.

Figure 6: Model performance (mean F-score, y-axis) with re-
spect to the noise level (SNR, x-axis) for P-center detection
(left) and for syllable boundary detection (right).

4. Conclusion & Discussion
In this paper, we have evaluated the RDF oscillatory model of
event detection [20] on a French corpus, and shown that it per-
forms as well as previous evaluations on other languages.

Importantly, our results point to the role of resonance mech-
anisms in this process. Indeed, it appears that (1) the system
performs better for resonant than for non-resonant character-
istics of the proposed algorithm (see Figure 5) and (2) acous-
tic speech signals with higher inter-P-center isochrony lead to
better event detection (see Figure 4). Furthermore, the detec-
tion process based on a resonant response to envelope modu-
lations appears more efficient to detect P-centers than syllabic
onsets (see Table 1). This is likely due to the fact that P-centers
are more robust events within the speech envelope dynamics.
It could lead to propose segmentation algorithms involving P-
center detection as a complement signal to syllable boundary
detection: although P-centers are not systematically related to
syllable onsets (see Figure 3), P-center detection is a likely sig-
nal that a syllable boundary preceded, and was possibly missed.

The event detection system of the RDF model appears
rather robust in acoustic noise. Still, our study, in line with
results from previous experiments, suggests that performance
is far from perfect (with 23 % missed events for syllabic on-
sets and 11 % for P-centers) without noise, and rapidly de-
graded for noise at SNR values under 0 dB. This suggests a
potential role for top-down processes, exploiting statistics of
sentence rhythms in relation to lexical, syntactic and prosodic
knowledge. In their study on comprehension of speech in noise,
Aubanel & Schwartz [11] showed that, while natural isochrony
improved comprehension, anisochronous speech re-timed to be-
come more isochronous is actually less well perceived, which
points to the role of top-down predictive processes in speech
segmentation. This is the core of the COSMO-Onset model we
have previously developed [34] to model how bottom-up and
top-down information could be combined for speech syllabic
segmentation. The present study provides an important base-
line: the RDF model is a purely bottom-up, signal driven event
detection model, and current works aims at complementing it
with top-down knowledge for syllabic event detection.
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