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Improving adaptation/learning transients using a dynamic adaptation
gain/learning rate — Theoretical and experimental results*

Toan Doré Landau®, Tudor-Bogdan Airimitoaie?, Bernard Vau® and Gabriel Buche®

Abstract— The paper explores in detail the use of dynamic
adaptation gain/learning rate (DAG) for improving the per-
formance of gradient type adaptation/learning algorithms. The
DAG is an ARMA (poles-zeros) filter embedded in the gradient
type adaptation/learning algorithms and generalizes the various
improved gradient algorithms available in the literature. After
introducing the DAG algorithm and its relation with other
algorithms, its design is developed. Strictly Positive Real (SPR)
conditions play an important role in the design of the DAG.
Then the stability issues for adaptive/learning systems using a
DAG are discussed for large and low values of the adaptation
gains/learning rate. The potential of the DAG is then illustrated
by experimental results obtained on a relevant adaptive active
noise control system.

I. INTRODUCTION

In using adaptive/learning recursive algorithms there are
two important problems to be addressed. The first prob-
lem is related to the compromise between alertness (with
respect to environment changes - like plant or disturbance
characteristics) and stationary performances when using a
constant value for the adaptation gain/learning rate. The
second problem is to find conditions assuring the asymptotic
stability of the adaptive/learning system for any values of
the adaptation gain/learning rate and for any initial values of
the estimated parameters. While nobody will use an infinite
adaptation gain/learning rate, addressing these stability issues
will guarantee the safe operation of the adaptive/learning
system for a large range of possible values of the adaptation
gain/learning rate.

In order to assure a compromise between alertness of
the adaptive/learning system and steady state performance!
one uses in general low constant values for the adaptation
gain/learning rate. This penalizes the adaptation transients.
Many algorithms have been proposed with the aim to im-
prove the adaptation/learning transients provided by “gra-
dient rule” based algorithms. See [6], [15], [16], [4], [1],
[51, [13]. In [9] it was shown that all these algorithms
can be cast on an unified general form and the concept
of “dynamic adaptation gain/learning rate” (DAG) has been

*This work was not supported by any organization

“Joan Doré Landau and Gabriel Buche are with the Univ. Greno-
ble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France
firstname.lastname@gipsa-lab.grenoble—-inp.fr

bTudor-Bogdan Airimitoaie is with the Univ. Bor-
deaux, CNRS, Bordeaux INP, IMS, 33405 Talence, France
tudor-bogdan.airimitoaie@u-bordeaux. fr

“Bernard Vau is with IXBLUE, 12 avenue des coquelicots, 94385
Bonneuil-sur-Marne, France bernard.vau@ixblue.com

'The measurement noise affects the performance. The measurement noise
has in general a spectrum in the high frequencies within the range 0.25 to
0.5fs, where fs is the sampling frequency.

coined. The various ‘“gradient rule” modifications can be
interpreted as using the “gradient rule” on a filtered gradient.
The potential of using a dynamic adaptation/learning rate has
been illustrated in [9] by means of a simulated example. The
analysis of the dynamic adaptation/learning rate provided in
[9] is incomplete. One of the objectives of this paper is to
fill this gap and to provide in addition more insight into the
design of dynamic adaptation gain/learning rate.

While a general stability result for adaptive/learning sys-
tems using a dynamic adaptation gain/learning rate is given
in [9], we explore in this paper the interaction between
the design of dynamic adaptation gain/learning rate for
performance and the stability of the system and we will
provide tools for a joint design (performance and stability).
The potential of the dynamic adaptation gain/learning rate
and the use of the analysis and design tool proposed in the
paper will be illustrated by experimental results obtained on
a relevant adaptive active noise attenuation system.

The contributions of the paper can be summarized as
follows:

o The concept of dynamic (frequency dependent) adap-
tation gain/learning rate is explored and its design is
discussed in detail.

o Stability issues are discussed.

e A comprehensive illustration of the effect of the dy-
namic adaptation gain/learning rate is provided by
application to an adaptive active noise control system.

II. INTRODUCING THE DYNAMIC ADAPTATION/LEARNING
RATE

The aim of the gradient parameter adaptation/learning
algorithm is to drive the parameters of an adjustable model
in order to minimize a quadratic criterion in terms of the
prediction error (difference between real data and the output
of the model used for prediction). To formalize the problem,
consider the discrete-time model described by:

y(t+1) = —aryt) — ... —ap yt —na+1)
+byu(t) + ... bppu(t —np 4+ 1) =0T ¢(t) (1)

where the unknown parameters a; and b; form the compo-
nents of the parameter vector 6:

T
0" =la1,ag,...,an,,b1,02,...,bny]
and

oL (t) = [—y(t),...,—y(t—na+1),u(t),...,u(t—np+1)]



is the measurement vector.®> The adjustable prediction model
will be described in this case by:

9t +1) = gl(t + )|6()] = 67 (1)o(1) 2

where §°(t + 1) is termed the a priori predicted output
depending upon the values of the estimated parameter vector
0 at instant ¢:

0T (t) = [a1(t), an(t), . .. an, (t),b1(t), ba(t), . -l
3)
It is very useful to consider also the a posteriori predicted
output computed on the basis of the new estimated parameter
vector at ¢ + 1, é(t + 1), which will be available somewhere
between t + 1 and t 4+ 2. The a posteriori predicted output
will be given by:

g+ 1) = gl + VIO + 1] = 67t + )o(t) @)
One defines an a priori prediction error as:
Ct+1)=yt+1)—g°%(t+1) )
and an a posteriori prediction error as:
ct+1)=ylt+1) =gt +1)=[0—6(t+1)]"¢(t) (©6)

The objective is to find a recursive parameter adaptation
algorithm with memory. The structure of such an algorithm
is:

O(t+1) = 0(t) + AO(t+1) = 0(t) + F[O(t), p(t), (¢ + 1)]
(N
The correction term must enable to minimize the following
criterion at each step?
min J(t+1) = [e(t + 1)]? 8)
6(t+1)
A solution can be provided by the gradient rule. The cor-
responding parameter adaptation/learning algorithm (PALA)
will have the form:

8J(t+1)
o0(t)

where F' is the matrix adaptation gain/learning rate and

6‘(;%(;1) is the partial gradient of the criterion given in (8)

with respect to (t).

The estimated parameter vector 6 can be viewed as the
output of a discrete time integrator filter whose input is
the gradient (or in general a correcting term related to the
gradient) with the minus sign.

From (8), (9) and (6) one obtains (for details see [8]):

O(t +1) = 0(t) + Fo(t)e(t + 1), (10)

where F' is the matrix adaptation gain. The algorithm has
memory (for e(t +1) =0, 6(t + 1) = 6(¢)). There are two
possible choices for the matrix adaptation gain/learning rate:

O(t+1)=0(t)—F~zo J(t+1) =0(t) - F 9)

2u(t),y(t) €R, 0, ¢ € R, n = ng +np, R™ is the real n-dimensional
Euclidean space.

3Using the criterion ming ., J(t+1) = [e2(t + 1)]2, will not allow to
guarantee stability of the PALA for any value of the adaptation gain/learning
rate. See [8] for details.

(1) F =al; o> 0; (i1) F > 0 (positive definite matrix). For
the remaining of the paper we will use the option F' = al.
The term adaptation gain or learning rate is used for a.

When using a dynamic adaptation gain/learning rate
(DAG) the above equation becomes:

é(t+1):é(t)+am[—vgj(t+1)] (11)
D'(g71)
where* g,(‘f;l) is termed the “dynamic adaptation

gain/learning rate” (DAG) and has the form:
Cqg™) 1+ c1q Vg + .+ eppqg e

D'(g™Y)  1—dig ' —dyg 2~ .d}, g "P (12)
Then (10) becomes:
5 4 Cle™h)
0t+1)=0()+ amgﬁ(t)e(t +1). (13)

The effective implementation of the algorithm given in (13)
leads to:

O(t+1) = di0(t) + dob(t — 1) + ...+ dp, 0(t — np)
+ Flo(t)e(t + 1) + c1o(t — 1)e(t) + cop(t — 2)e(t — 1)
+. o F et —ne)e(t —ne + 1) (14)
where:
di=(dj—di_y) ;i=1,..np;dy=—1, d,,, =0 (15)
To implement the algorithm one needs a computable expres-
sion for €(t+1). One defines®: §°(t+1) = 6% (t)p(t) where

Oo(t) = di6(t) + da6(t — 1) + ...

+ Flerop(t — De(t) + cop(t — 2)e(t — 1) +...] (16)
The a posteriori adaptation/prediction error can be written:
e(t+1) =yt +1) £ 07 O)(t) — 07 (¢t +1)p(2)

Ot +1) — [0(t + 1) — 6o (1)) T o(t)

=t +1)— p(t)TFop(t)e(t + 1) (17)
which leads to:
Ot +1)
e(t+1) = T TR0 T E D) (18)

Relations with other algorithms

The algorithm of (11) is termed ARIMA (Autoregressive
with Integrator Moving Average algorithm) algorithm [9].
The various algorithms described in the literature are of
MALI form or ARI form. The MAI form includes “Integral+
Proportional” algorithm [8], [1] (¢; # 0,¢; = 0,V i > 1,
d; =0,V i > 0), “Averaged gradient” (¢;,i = 1,2, ..., d} =
0,V ¢ > 0) [14], [17]. The ARI form includes “Conjugate
gradient” and “Nesterov” algorithms [13], [5] (¢; = 0,7 =

4The complex variable z—! will be used for characterizing the system’s
behaviour in the frequency domain and the delay operator ¢~ will be used
for describing the system’s behaviour in the time domain.

56 (t) is the best prediction of A(t+1) based on the information available
at instant t (can be denoted also as g (t) = O(¢ + 1[t)).



1,2,..,d} # 0,d; = 0,5 > 1) as well as the “Momentum
back propagation” algorithm [7] which corresponds to the
conjugate gradient plus a normalization of o by (1—d})%. A
particular form of the ARIMA algorithms termed “ARIMA2”
(c1,¢2,¢, = 0,V @ > 2,d} # 0,d, = 0,V i > 1) will be
studied subsequently and evaluated experimentally.’

ITI. DESIGN OF THE DYNAMIC ADAPTATION
GAIN/LEARNING RATE

The dynamic adaptation gain/learning rate will introduce a
phase distortion on the gradient depending on the frequency.
Assume that the algorithms should operate for all frequencies
in the range: 0 to 0.5f5. Assume that the gradient of the cri-
terion to be minimized contains a single frequency. In order
to minimize the criterion, the phase distortion introduced by
the dynamic adaptation gain/learning rate should be less than
90° at all the frequencies. In other terms, the transfer function
DC,((ZZ _ 1)) should be SPR. In order that a transfer function be
strictly positive real, it should first by asymptotically stable.
On has the following property:

Lemma 3.1: Assume that the polynomials C(z~') and
D'(271) have all their zeros inside the unit circle, then:

[l

The proof relies on the Cauchy Integral formula.

This result allows to conclude that the average gain over
the frequency range 0 to 0.5 f, is 0 dB, i.e. on the average this
filter will not modify the adaptation gain/learning rate. It is
just a frequency weighting of the adaptation gain/learning
rate. To be more specific, Figure 1 shows the frequency
characteristics of two DAGs which will be subsequently
used in the experimental section®. It can be observed first
that the phase is within the range 4/ — 90°, i.e. they are
SPR. Then one can observe that effectively the average gain
over the frequency range 0 to 0.5fs; (fs = 2500 Hz) is
0 dB. Now examining the magnitude, one observes that both
are low pass filters amplifying low frequencies. This means
that if the frequency content of the gradient is in the low
frequency range, the effective adaptation gain/learning rate
will be larger than o which should have a positive effect
upon the adaptation/learning transient. In particular the DAG
which has a larger gain in low frequencies (ARIMA?2) should
provide better performance than the (I+P) DAG (which is
indeed the case - see section V). Since we need to have a
DAG which is SPR, we will provides subsequently the tools
for design of a SPR DAG. We will consider the case of the
ARIMA? algorithm introduced in [9]. The DAG in this case
will have the form:

I =

19)

Clg™Y)  14cg ' +eq7?
D'(g7') 1—djg!

Hpac = (20)

There are very few indications how to choose the various weights in the
above mentioned algorithms

"The algorithms mentioned above can be viewed as particular cases of
the ARIMA2 algorithm.

8 ARIMA? filter with ¢; = —0.4,c3 = 0.5, d} = 0.7 and I+P filter with
c1 =0.667,c2=0,d] =0

Bode Diagram

b ARIMAZ ‘ ARIMAZ; c1=-0.5,c2=0 4;d'1=0.7
L 14P; 61=0667:c2=d"1=0
g I+P
3 e
ER —
& C -1 7 -
= =
Gradient

Phase (deg)

200 400 800 800 1000 1200
Frequency (Hz)

Fig. 1. Frequency characteristics of two DAGs (used in the experiments).

A criterion for the selection of ¢y, ¢z and d} in order that
the DAG be SPR is given below.

Lemma 3.2: The conditions assuring that Hpag(z) =

—1 —2
% is strictly positive real (SPR) are:
%

e for co <0, ¢; must be such that
—1l—ca<ci<l+ec

o forcy >0
— if the following condition is satisfied

2y — c2) < /2o — )1~ d2) < 2(d] +c2)

the maximum bound on c; is given by

¢y < dy —3dycy+ 2\/2(02 —c3)(1—d?)
otherwise the maximum bound on ¢; is given by
1 <l4+eco

— if the following condition is satisfied

/

2y —ca) < —/2(ea — B)(1 — d2) < 2(d; +c2)

the minimum bound on ¢; is given by

¢ > dy —3dycy — \/2(02 —c2)(1—d?)
otherwise the minimum bound on ¢; is given by

c1>—1—co
The proof of this result is given in the Appendix.

From the conditions of Lemma 3.2, closed contours in the
plane ¢y — ¢; can be defined for the different values of d}
allowing to select ¢; and ¢, for a given value of d} such the
DAG be SPR. Such a diagram is presented in Figure 2.
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Fig. 2. SPR contours in the plane cz — c1 for various values of

d}(0,0.5,0.9) for the DAG of (20).

IV. STABILITY ANALYSIS
Eq. (14) can be expressed also as
O(t+1) = Hpaa(qg Hag(t)e(t +1)

where Hp 44 is a MIMO diagonal transfer operator having
identical terms. All the diagonal terms are described by:

1+ciqgt+ g7 2+ .o+ cnpqg ©

2y

M) = =0 —d — a2 - g
_ C(g™) _C(™h)
W=D DY) 22

The relation between the coefficients of polynomials D and
D’ is given in Eq. (15).

From [9], one has the following result:

Theorem 4.1: For the system described by Egs (1) through
(6) using the PALA of (14) and (18) one has lim; o (¢t +
1) = 0 for any positive adaptation gain o and initial
conditions 0(0),e(0) if H®(z~!) given in (22) is a PR
transfer function with a pole at z = 1.

For the particular case of the ARIMA2 algorithm, the
coefficients c1,cy and dj should be chosen such that the
DAG is SPR and the Hp 44 is PR, i.e.

i 1tag'+eg? 14+aq'+eaq?
Cl-digt—dag™? (1Y (1 —dig7Y)

should be PR.

The adaptive/learning system considered in the Theo-
rem 4.1, leads to an equivalent feedback representation where
the equivalent feedforward path is a constant positive gain
and the equivalent feedback path features the Hpa4 (see
[9]). However in many cases the equivalent feedforward path
will be a transfer operator. In such situations in addition to
the PR condition upon the Hp 44, there will be an additional
SPR condition upon the transfer operator characterizing the
equivalent feedforward path.

For small values of the adaptation gains/learning rates the
passivity/stability condition can be relaxed using averaging

H

(23)

[3]. Using the results of [12], under the hypothesis of an input
signal spanning all the frequencies up to half of the sampling
frequency, passivity in the average will be assured if the
frequency interval where H% is not positive real is smaller
than the frequency interval where H® is positive real. In
fact what is important is that the H* is PR in the frequency
region of operation (mainly defined by the spectrum of the
input signals to the systems).

V. EXPERIMENTAL RESULTS

The improvement of the adaptation transients using the
ARIMA? algorithm and its particular cases (corresponding
to various algorithms mentioned at the end of Section II)
has been evaluated experimentally on an active noise control
test-bench. The view of the test-bench used for experiments
and its detailed scheme are shown in Fig. 3. The speaker

— Primary Path

Secondary
Path

Simulink
Real-Time
DAS1602-16

Development
PE
Matlab

Amplifier

Fig. 3. Duct active noise control test-bench photo (top) and block diagram
(bottom).

used as the source of disturbances is labelled as 1, while
the control speaker is marked as 2. At pipe’s open end, the
microphone that measures the system’s output (residual noise
e(t)) is denoted as 3. s(t) is the disturbance. Inside the pipe,
close to the source of disturbances, the second microphone,
labelled as 4, measures the perturbation’s image, denoted as
y(t). u(t) is the control signal. The transfer function between
the disturbance’s speaker and the microphone (1—3) is
called Global Primary Path, while the transfer function
between the control speaker and the microphone (2—3)
is denoted Secondary Path. The transfer function between
microphones (4—3) is called Primary Path. The internal



coupling found between (2—4) is denoted Reverse Path.
Speakers and microphones are connected to an xPC Target
computer with Simulink Real-time®. A second computer
is used for development and operation with Matlab. The
sampling frequency is fs = 2500 Hz.

The various paths are described b;f models )(()f the form:

1 big T b ¢ Px

X(g™) = ¢~ Bl o g 1+ag<q—1+...+a§ixq’"“’<’
with By = ¢ !Bk for any X € {G,M,D}. G =
q‘dci—g, M = q_dMZ—Z, and D = q_dDZ—g denote the
identified (estimated) models of the secondary (G), reverse
(M), and primary (D) paths. The system’s order is defined
as (the indexes GG, M, and D have been omitted): n =
maz(na,ng + d).

The models of the various paths are characterized by
the presence of many pairs of very low damped poles and
zeros. These models have been identified experimentally.
The orders of the various identified models are: ng = 33,
Ny = 27 and np = 27.

The objective is to attenuate an incoming unknown wide-
band noise disturbance. The corresponding block diagram
for the adaptive feedforward noise compensation using FIR
Youla-Kucera (FIR-YK) parametrization of the feedforward
compensator (introduced in [10] for active noise control and
in [2] for active noise control) is shown in Figure 4.

777777777777777 Global primary path—————————> Residual
:(f) a0 noise
w measurement
Primary path I
Positive feedback coupling W

. Secondary
path

Measurement of the
image of the disturbance

Feedforward compensator
N

Fig. 4. Feedforward AVC with FIR-YK adaptive feedforward compensator.

The adjustable filter Q has the structure:

Q@) =do+a@1a " + o+ Gngg " (24)

and the parameters ¢; will be adapted in order to minimize
the residual error.

The algorithm which will be used (introduced in [11]) can
be summarized as follows. One defines

aT = [QO7q1aQ27"'7an] (25)
éT = [qAqulquM"a(an] (26)
o) = [alt+1),a(t),...,alt—ng+1)] 27)

where:

a(t+1) = Barj(t+1)—Apra(t+1) = Bli(t)— Apra(t+1)
(28)

One defines also the regressor vector (a filtered observation
vector) as:

or(t) = L(g~)o(t) = [ay(t+1), ap(t), ..., ay(t—nQ+1)]
(29)
where

ap(t+1)=Lig Ha(t+1) (30)

Using Ry = 0 and Sy = 1 the poles of the internal positive
closed loop will be defined by Ap; and they will remain
unchanged. The filter used in (30) becomes L = G and the
associated linear transfer operator appearing in the equivalent
feedforward path is
—1
H(q—l) _ Cf(q_ )
Glg)
(the algorithm uses an approximate gradient). The transfer
function associated to H(g~!) should be SPR in order to
assure asymptotic stability in the case of perfect matching.
This is a very mild condition as far as a good experimental
identification of the models is done.

The parametric adaptation algorithm which will be used is
the one of (13) where @ is given by (26) and ¢ is replaced by
¢y given in (29). The adjustable filter Q has 60 parameters.

A broad-band disturbance 70 - 170 Hz is used as an
unknown disturbance acting on the system. The steady state
and transient attenuation’ will be evaluated for the various
values of the parameters ¢;, co and dj given in Table L
The system will operate in open-loop during the first 15 s.
Figure 5 shows the time response of the system as well as

3D

TABLE I
PERFORMANCE OF 2ND ORDER ARIMA ALGORITHMS.

Algorithm [Hpaa — PRIDAG-PR] ¢1 [ ca [df]
Integral (gradient) Y Y 0 00
Conj.Gr/Nest.. N Y 0 0 0.5
I+P+D (ap = —2ap) N Y 0 10.99] 0
1+P Y Y [0.667] 0 | O

ARIMA 2 N Y —0.5/0.410.7

the evolution of the global attenuation when using the gra-
dient (integral) algorithm (top) and the ARIMA?2 algorithm
(bottom) with ¢; = —0.5, ¢3 = 0.4, dj = 0.7 (last row of
Table I). Figure 6 shows a comparative time evolution of the
global attenuation for the algorithms considered in Table I.
As it can be observed, there is a clear improvement in the
adaptation transient using ARIMA?2 (last row of Table I) with
respect to the gradient algorithm (first row of Table I). The
adaptation/learning transient is reduced by a factor of two
and a half. One observes also an improvement of the steady
state attenuation with respect to gradient adaptation. The
other algorithms (from Table I) provide also an improvement
with respect to the gradient algorithms. Their performance
are close each other.

9The attenuation is defined as the ratio between the variance of the
residual noise in the absence of the control and the variance of the
residual noise in the presence of the adaptive feedforward compensation.
The variance is evaluated over an horizon of 3 seconds.
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Fig. 5. Time evolution of the residual noise using the gradient (integral)
algorithm (top) and using the ARIMA?2 algorithm (bottom).

VI. CONCLUSION

The paper has emphasized the potential of a dynamic
adaptation/learning rate for improving the performance of
gradient type adaptation/learning algorithms. The design of
DAG has been addressed. The main point is that the DAG
should be characterized by an SPR transfer function if we
would like to operate correctly for any frequencies in the
range 0 to 0.5 of the sampling frequencies. This condition
can be relaxed if one operates on a reduced frequency
range. Experimental results on a relevant adaptive active
noise control system have illustrated the feasibility and the
performance improvement achieved using a DAG.

APPENDIX

Proof of Lemma 3.2: In order to assess the strict real
positivity of H’(z) on must check the condition

Re ((1 —dy2) 14z + 02272)) >0 (32)

Set z = e = cos(w) + isin(w), and the condition (32)

becomes

(1—co—dier) + (e —djcg — d}) cos(w) + 2¢q cos? (w) > 0
(33)

Global Attenuation [Real Time]
T T T

©w
@

1+P+D
Con.Gr.
30 - P
25 -
o
2,20
s A -
3 oy Gradient
5 ¥ (integral)
215F i, 1
2
<
10 b
—— ARIMA2; ¢1=-0.5;c2=04:d'1=0.7
- - -I;c1=c2=d'1=0
5r 4P €1=0.667;62=d'1=0 7
- ® =Conj. Gr.;.c1=c2=0;d'1=0.5
----- 1+P+D; ¢1=0;c2=0.99;d'1=0
0 . . n n n
0 100 200 300 400 500 600

Time [s]

Fig. 6.
Table 1.

Time evolution of the global attenuation for the algorithms of

Set X = cos(w), ¢ € [—1,1] and f(X) = 2c2X? + (1 —
d/162 — d/l)X + (1 — Co — /101).

e case cog <0
f has a finite maximum, and it is located at X,,,, =
—c1+d'1cz+d'1
If X:f:m > 1 one must verify f(—1) > 0, moreover
one has f(1) > f(—1).
If Xnae < —1 one must verify f(1) > 0, moreover
one has f(—1) > f(1).
If —1 < X,nee < 1 one must verify at the same time
f(=1)>0and f(1) > 0.
In any case one must check that min(f(—1), f(1)) > 0.
But f(1) > 0 implies that ¢; > —cg—1, and f(—1) > 0
implies that ¢; < cg 4+ 1. Thus for ¢ < 0 the passivity
condition is equivalent to —1 — co < ¢ < 1+ co.

e case cog =0
In this case f is represented by a line, and one must
again verify that f(—1) > 0 and f(1) > 0 that leads to
the passivity condition —1 < ¢; < 1

e case cg >0
In this case f has a finite minimum at X,,;, =

%1;2”1. A sufficient condition for f(X) > 0 VX
is that f(X) = 0 has a unique solution. In such a
situation the discriminant of f denoted A is given by
A = (¢1 —dycy — dy)? — 8¢a(1 — ¢ — dycp), and one
must have A = 0, which is equivalent to

Aty (=2d, +6dyco) +d P (ca+1)? +8cy(ca—1) =0

(34
Thus, one looks for the solutions of (34). The discrim-
inant A’ of (34) is A’ = 32(cy — 2)(1 — d2), and the
two solutions of (34) are

¢ty = dy — 3dyca +2y/2(c2 — )1 — dP)

¢ =dy —3dyer — 2\/2(cr — )1 - d)

On the other hand if —1 < X,,,;,, < 1 one must have
(owing to the expression of X,,;,)

—4co + d,1(22 + d,1 < <dey + dllCQ + d; 35)



[1]

[2]

[3]

[4

=

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

Now if ¢, meets (35), the upper bound on ¢ is
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dy — 3dyco + 2\/2(02 —c3)(1 —dy), otherwise this
upper bound is given by ¢; < 1 4 ¢, and similarly if
ci_ meets (35) the lower bound on ¢; is d'1 - 3d'1¢:2 —
24/2(cz — 3)(1 — d?), otherwise this lower bound is
given by c¢; > —cp — 1. This ends the proof.
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