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Abstract—Deep Neural Networks (DNNs) are increasingly used
in safety critical autonomous systems. We present MOZART+,
a DNN accelerator architecture which provides fault detection
and fault tolerance. MOZART+ is a systolic architecture based
on the Output Stationary (OS) data-flow, as it is is the data-flow
that inherently limits fault propagation. In addition, MOZART
achieves fault detection with on-line functional testing of the
Processing Elements (PEs). Faulty PEs are swiftly taken off-line
with minimal classification impact. We perform a detailed fault-
injection study on this systolic architecture, considering different
fault-models and comparing different measures of accuracy. We
show how to handle the case of layers with a small number
of neurons. The implementation of our approach on Squeezenet
results in a loss of accuracy of less than 3% in the presence
of a single faulty PE, compared to 15-33% without mitigation.
The area overhead for the test logic does not exceed 8%. Dropout
during training further improves fault tolerance, without a priori
knowledge of the faults.

Index Terms—neural network, accelerator, robustness, fault
tolerance, convolution

I. INTRODUCTION

THERE are many types of DNN accelerators, spanning
GPUs, FPGAs and dedicated ASICs. Researchers are

primarily focused on the design of accelerators optimized for
performance and energy efficiency [1], [2]. One of the most
promising solutions used for the hardware implementation
of DNNs are systolic architectures consisting of an array of
processing elements (PEs) since they maximize local re-use of
activations and weights [3], thus minimizing the costly data
transfers with the external memory. These accelerators, if used
in safety critical applications, have to show high robustness.
Architectural fault-tolerance techniques can achieve robustness
with minimal overhead.

Integrated circuits used in automotive applications must
comply with ISO-26262. The most critical components need
to detect and react to faults in an interval that is shorter than
the fault tolerant time interval, the maximum time the fault
can be present without posing a safety risk. As on-line testing
becomes mandatory, new techniques must be developed that
have lower overhead than traditional on-line testing.

Standards also impose stringent requirements on overall FIT
(Failures in Time) rate (e.g. ≤10 FIT for ASIL-D) which
are difficult to achieve for large DNN circuits, as highlighted
by [4]. State-of-the-art automotive DNN accelerators employ

dual-modular redundancy (DMR) [5], but this strategy is
increasingly costly and does not exploit the specificity of
DNNs.

Fault # Faulty PE
OriginalA

cc
u
ra

cy MOZART

Fault

PE

PE

PE

PE

PE

PE

Detect

PE

0

Free Safe

Fig. 1. MOZART Provides On-Line Testing and Fault Masking with Graceful
Degradation in Accuracy

In this paper, we propose an architecture called MOZART+,
which combines several new concepts which can be applied
to provide fast on-line testing and fault mitigation for the
data-path of a DNN accelerator. MOZART relies on two
major points : 1) During system operation, fault detection
is performed at-speed in order to detect critical faults on
the data-path; 2) An existing fault mitigation technique has
been adapted to provide graceful degradation in classification
accuracy, in the presence of faults, as illustrated in Figure 1.
This can be augmented by a training technique which further
increases robustness without a priori knowledge of the hard-
ware faults.

The remaining sections are organized as follows. Sec. II
presents our architecture. In Sec. III we define the case studies
used in our experiments and then in Sec. IV we present an
analysis of the impact of faults, in the absence of the Mozart
techniques. Then, in Sec. V, we show the effectiveness of our
techniques for detecting and masking faults. Sec. VI presents
related work on DNN fault tolerance and finally, we conclude
with Sec. VII.

II. MOZART ARCHITECTURE

MOZART is a systolic Output Stationary (OS) DNN accel-
erator with data-path fault detection and mitigation. The data-
flow in a DNN accelerator influences how faults propagate
through the logic towards the outputs and thus has a significant
impact on the accuracy. We show that the OS architecture
effectively contains the impact of fault, as a small number of
neurons are impacted. A PE in an OS architecture roughly
corresponds to a single neuron, thus making it possible to



use an adaptation of the dropout technique to further improve
the fault tolerance during the training phase. MOZART also
exploits the fact that DNNs can obtain high accuracy even
when certain intermediate calculations are masked to zero.

A. Systolic Architectures

Systolic architectures reduce memory transfers by reusing
data. They consist of a fixed size array of PEs which perform
multiply-accumulate (MAC) operations and the PEs transfer
data to their direct neighbours. The calculations of the abstract
network are mapped to the PE array.

There are three broad classes of systolic architectures:
weight, output and row stationary as shown in Figure 2. They
rely on re-use of either weights, activations or both. We briefly
present these architectures, however, the reader is referred
to [3] for a full explanation.
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Fig. 2. Data-flow in Systolic DNN Accelerator Architectures

1) Weight Stationary Data-flow: With a Weight Stationary
(WS) data-flow [6], each column contains weights for a given
output channel and performs the calculations for this channel.
Weights are pre-loaded into the PEs and remain stationary.
Activations flow horizontally and partial sums flow upwards.
After several cycles, the sums arrive at the top of the column.

2) Output Stationary Data-flow: Alternatively, in an output
stationary (OS) architecture (such as Shidiannao [7]), the
partial sums stay fixed in the PE. The columns share weights,
and rows share input features. Each PE is dedicated to a single
output pixel. Weights and input features flow between the PEs.

3) Row Stationary Data-flow: In a row stationary (RS)
architecture (such as Eyeriss [8]), 2-D convolutions are broken
into 1-D convolutions, which are processed in a single PE.
PEs store multiple weights for the same row and perform
simultaneous MAC operations but only need storage of one
partial sum. This architecture achieves re-use of both weights
and partial sums. We consider a PE which stores 4 weights.

B. Fault Detection and Mitigation

With the MOZART approach, we introduce an on-line
functional testing technique which ensures high coverage for
impacting faults. During the testing procedure, each PE is
taken off-line, one at a time. The PE’s outputs are set to zero,
exploiting the fact that when a single PE is forced to zero, the
impact on classification accuracy is negligible [9], [10]. This
enables deterministic scheduling of the testing of every PE.

Rather than relying on logic Built-In Self Test (BIST) to
perform on-line testing, we propose an approach based on
functional test. The inputs of the PE under test are connected
to those of its neighbour, as shown in red in Figure 3. After

computation of a partial sum, an external comparator checks
the result of the PE under test with that of its neighbour.
If the outputs don’t match, the PE under test is taken off-
line, meaning its external outputs remain set to zero. Once a
PE is tested, the next PE starts the test procedure. This fine-
grained scheduling minimizes detection time, quickly detects
the highly impacting SA1 faults and has no impact on the
latency of the calculation.

A transient fault in a PE could result in a mis-match and thus
needlessly take the PE off-line. This is prevented by including
all PEs in the periodic test procedure, even those that are off-
line. If an off-line PE shows no further errors after multiple test
iterations, it is then taken back on-line, ensuring that transient
faults don’t result in the loss of PEs.

We have synthesized a 16x16 PE array, with 8-bit integer
multipliers, 32 bit adders, and registers for the partial sums.
Synthesis results show that the area overhead of the extra test
logic is under 8%.

When a PE is found to be faulty, its external output is set to
zero, which in DNN applications produces only a minor loss
of accuracy.

pixel

weight

Test Signal

psum
p p

w

w

a

a

P.E.2

psum
p

w

w

P.E.1

b

b

Masking Signal

PE outputweight

0

Fig. 3. Schematic of MOZART PE Showing Added Circuitry for Fault Fault
Detection (red) and Output Masking (blue)

C. Output Stationary Architecture for Fault-Tolerant Training

Early on, neural network researchers identified the fact that
if faults are injected in a network during training, it can
improve the fault tolerance during inference [11], [12] and
it can avoid the problem of over-fitting. Dropout, a technique
now commonly used during training on the fully connected
layers to prevent over-fitting, consists of setting the value of
randomly selected neurons to zero (Figure 4b). This feature is
available in all major DNN frameworks.

Some recent authors [13], [14] have shown an interest
in using dropout during training to improve fault-tolerance.
Solovyev’s [13] study was done with random faults in the
weights in an abstract network and he showed that dropout
in all layers during training can improve the tolerance to
these faults. Lee [14] identified that dropout improved the
tolerance to stuck-at-zero faults, but had little benefit for
random faults, and from this we extrapolate that dropout
during training provides tolerance to hardware faults that
resemble the removal of a neuron from the network. In the
case of RS and WS architectures, PEs in an accelerator do not
map directly to neurons, thus limiting the ability of dropout to
mitigate PE hardware faults. However, in an OS architecture,
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Fig. 4. Representation of Random Dropout During Training

one abstract neuron maps to a single PE. With MOZART,
after any fault is detected, the output of the PE is masked
to zero which corresponds to disconnecting neurons from the
abstract network, very similar to what occurs during dropout.
By design, the hardware architecture of MOZART is well
suited to exploit dropout during training. Since the same PEs
are re-used to compute all layers, not only is dropout applied
to the fully-connected layers, but to all the layers (Figure 4c),

The combination of detecting and masking faulty PEs to
zero with modified dropout during training ensures that, the
classification accuracy is minimally impacted in the presence
of faults. It is important to note that the proposed dropout
technique does not require a priori knowledge of the location
of the faults nor does it result in a degradation of accuracy, in
the absence of faults.

III. CASE STUDY

To evaluate the MOZART architecture, we performed a
fault-injection study on three different DNNs which have been
mapped to multiple systolic architectures.

A. Selected DNNs

We have chosen three networks for our experimental study.
Two of the networks classify 50,000 images from the Im-
ageNet test data-set into 1000 categories. Top-1 accuracy
indicates whether the top ranked category is correct. Top-5
accuracy indicates that the correct category is among the five
top-ranked categories, and this is the metric we have used to
evaluate the classification accuracy. One modern and compact
network, SqueezeNet [15], has been selected as our primary
test case, as it is representative of the networks used in embed-
ded applications. Since many, previous fault tolerance studies
[9], [13], [16] have used VGG-16 [17] and LeNet-5, we have
also included these two networks. VGG-16 is a large network
with a huge number of weights, thus it inherently has more
redundancy. LeNet-5 is a small network that uses the MNIST
data-set for the recognition of hand-written digits and is no
longer representative of modern applications. With LeNet-5,
Top-1 accuracy is used as there are only ten categories.

These networks are summarized in Table I. An 8-bit integer
format was chosen, as this data representation has proven to be

more robust than floating point, while maintaining a minimal
loss in accuracy [18].

TABLE I
CHARACTERISTICS AND ACCURACY OF SELECTED NETWORKS

Network Num. Num. Num. Dataset Accuracy
Neurons MACs Weights Top-1 Top-5

SqueezeNet 2.6 M 352 M 1.2 M ImageNet 55% 75%
VGG-16 13.6 M 15 G 138 M ImageNet 70% 91%
LeNet-5 6518 341 K 60 K MNIST 99% -

B. Hardware Fault Model

In this study we focus on computational faults occurring at
the PE level. Therefore, we define a fault model that covers
stuck-at faults affecting the outputs of the PE, as shown
Figure 5. Our results thus hold, regardless of the specific
implementation of the PE.

The focus of our study is an improved understanding of
the propagation of data-path faults, therefore we have adopted
a high-level fault-model. We do not claim that this model
reflects all possible logic errors occurring in a PE, however, we
assert that it is sufficient to compare the propagation of faults
between PEs in the three different systolic architectures.

Previous works have studied faults in the DNN weights and
PE register files [16], [19], [20] which can be protected with
parity or ECC. Others have proposed test methodologies for
the interconnect [21]. Protecting the computational logic in
the PE is more difficult, as it requires fault tolerance strategies
that typically have high area costs, timing penalties and are
architecture dependent.

For the WS and RS architectures, we only inject faults in the
8 Most Significant Bits (MSbits) of the partial sum, because
the 20 Least Significant Bits (LSBits) are inherently discarded
in the data-path of this architecture. A fault in the LSBits could
carry into the MSBits, however, to be able to fairly compare
results, we wanted to have the same number of faulty bits (8),
in all our experiments. Furthermore, as shown later, the LSBits
are not very sensitive.
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Fig. 5. PE Fault Models in OS, WS and RS Architectures

C. Methodology

The objective is to evaluate the impact of faults on different
architectures and to evaluate the effectiveness of techniques to
mask faulty PEs. For each condition, we evaluate the clas-
sification accuracy. The distinction between average accuracy
and worst-case accuracy is important as certain, specific, faults
cause the accuracy to drop close to zero.



The evaluation is performed by selecting Nbatches different,
random faults and then, for each fault, testing the accuracy
using Nbatch size images. Our high-level algorithm is shown
in Algorithm 1. For each condition, we report an average
accuracy (for all the faults) as well as a worst-case accuracy
- that is the accuracy of the worst batch.

Algorithm 1 Fault Injection Procedure
for all Fault Mitigation in (None, Zero Masking) do

for all Architecture in (OS, WS, RS) do
for all PE Array Size in (16x16, 64x64) do

for all Network in (VGG, SqueezeNet, LeNet) do
for all Faulty PEs in (1, 2, 4) do

for all Faulty bits in (1, 2, 4) bits do
for i from 1 to Nbatches do

Fault← (random(PE, bits, value))
Inject Fault
Batch← Nbatch size random test images
Classify Batch
Record accuracy
Clear Fault

end for
Evaluate Average and Worst Case Accuracy

end for
end for

end for
end for

end for
end for

1) Batch Size: For each condition, the total number of
experiments is Nbatch size · Nbatches, which is large, thus
there is no problem evaluating the average accuracy. However,
for the measurement of the worst-case accuracy, Nbatch size

must be selected with care. Prior to injecting any faults,
we performed a series of experiments with VGG-16. In the
absence of faults, we set Nbatches = 1000 and swept the value
of Nbatch size. The results are shown in Figure 6 where the
average accuracy is shown with the green line. The blue line
show the worst case accuracy observed for each batch size.
For example, with a Nbatchsize = 25, we see that at least one
batch had an accuracy as low as 64%. In this case, the worst
case value is not the result of faults, just the random selection
of test images.

Based on these results, we selected to use Nbatch size = 100
for the remainder of the experiments. With this value, the
worst-case accuracy, in the absence of faults, is 10% lower
than the average. In the presence of faults, if we observe a
worst case accuracy that is more than 10% below the average,
we can conclude it was indeed the result of the faults, and not
a statistical anomaly.

D. Tool Flow

The N2D2 open-source neural network framework [22]
was used for performing the experiments. It has support for
quantized networks and the ability to output a ’C’ model.
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Fig. 6. VGG-16 Worst Accuracy versus Batch Size

By modifying the ’C’ model we emulated the effect of
faults in the PEs, injecting the types of faults described in
Sec III-B. The model was modified so that for each MAC
operation, we determined on which PE it would be executed,
and depending on whether this PE was faulty, the result of
the MAC was corrupted. In this way, the effect of faults in
a systolic hardware architecture were emulated using a much
faster model. The tool flow is shown in Figure 7.
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IV. EXPERIMENTAL RESULTS

This section presents the results of our fault injection study,
prior to applying the Mozart techniques for detection and mit-
igation and it is organized as follows. Sec. IV-A presents the
impact of faults on the three architectures, without mitigation.
In Sec IV-B and IV-C we evaluate the impact of faults in
different bit positions and different layers in the network.

A. Impact of Architecture

Before considering any mitigation techniques, we studied
the inherent fault tolerance of the three different architectures.
In an OS data-flow, each neuron is mapped to a single PE.
However, due to folding, which is required to fit the input
map into the PE array, and the fact that the PE array is re-
used for multiple channels and layers, a given PE is re-used
for computing multiple neurons. When there is a fault in a PE,
it affects a limited set of specific neurons.
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Fig. 8. Propagation of a Fault in a PE in Different Architectures

On the other hand, in a WS architecture, each PE contributes
to the computation of every neuron for a channel. In this
architecture a fault in a PE propagates to all the neurons for



an output channel. As only one term in the sum is affected,
the numerical impact of the fault is lower.

In a RS architecture, a fault in a PE impacts the result of
a 1-D convolution, propagates to multiple output pixels and
it is thus similar to a WS architecture. This fault propagation
behaviour is illustrated in Figure 8.

We performed a series of fault injections to study the fault
propagation process and assess the fault tolerance of the three
architectures. For this analysis, we limited the fault injection
scenarios from one to four PEs, as beyond this number, the
drop in accuracy is unacceptable. For each data point on the
graphs, 1000 randomly selected PEs and bit positions were
selected and then 100 randomly selected images were analyzed
in order to evaluate the top-5 classification accuracy (top-1 for
LeNet-5). The results are summarized in Figure 9 and we see
that in all cases, the OS architecture has a higher accuracy.
Note, when not stated otherwise, we present results for an
array of 256 PEs.
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Fig. 9. Average Accuracy of Three Systolic Architectures (OS, RS, WS) in
the Presence of a Single Faulty Bit

B. Impact of Faults by Bit Position and Number of Bit Flips

Li [4] performed a study on the impact on accuracy of
faults in different bit positions, however, in this paper, we
show how this sensitivity varies for two systolic architectures.
We performed 40,000 fault injection in each bit position,
separately for SA0 and SA1 faults and for both OS and WS
architectures and the results are plotted in Figure 10. We
observe that with the OS architecture (in blue), faults in the
LSBits (6..0) have virtually no impact, and that in the MSBits,
only SA1 faults cause the accuracy to drop. This is in contrast
to the WS architecture (in green), where SA1 faults in all bit
positions are critical and SA0 faults cause a significant drop in
accuracy. We note that the impact of SA0 faults in the MSBits
of the WS architecture is slightly lower than the LSBits and
this is because, due to the distribution of the weights, in many
cases, these MSBits are already zero. This bit-by-bit analysis
confirms the coarse-grained results presented in the previous
section and corroborates the insights about fault propagation
illustrated in Figure 8, namely that with an WS architecture,

even minor faults in the LSBits propagate and significantly
impact the final result.
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We also investigated the impact of the number of stuck-at
bits on the final classification accuracy for the OS architecture
and the results are shown in Figure 11. Each graph, has curves
for the case of 1, 2 or 4 faulty PEs, and the number of faulty
bits varies on the horizontal axis. The important thing to note,
is that the trend in the drop of accuracy, is similar, regardless
of the number of stuck-at bits. With VGG-16, we see that with
a single faulty PE, with four stuck-at bit faults, the accuracy is
about 60%, with two faulty PEs, each with two stuck-at faults,
the accuracy is about 60% and with a four faulty PEs, each
with a single stuck-at fault, the accuracy is still around 60%.
From these graphs, it appears that with the OS architecture,
the drop in accuracy depends on the total number of stuck-at
faults, regardless how they are distributed across PEs. For the
remainder of the paper, we have limited our fault model to a
single SA bit per faulty PE.
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C. Impact of Faults by Layer

Several authors [4], [23]–[25] have studied the impact
of faults in different layers of DNNs, focusing on specific
accelerators. We performed a series of experiments, for two
architectures, where single bit faults were inserted in the each
layer of VGG-16 and the results are shown in Figure 12. In
this figure, the dots show the average accuracy and error bars
show worst-case accuracy. The first observation, is that the
OS architecture (in blue) is more robust for every layer, and,
even for worst-case accuracy, only a few layers show a drop
in accuracy. On the other hand, with the WS architecture



(in green), the worst-case accuracy drops to zero for all
convolutional layers, and in the middle layers, even the drop
in average accuracy is significant.

It is interesting to contrast these results to those from [25],
who also studied the sensitivity of the layers of VGG-16 but
executing on a GPU. In their study, they report that the first
layers are most critical (which is similar to the findings of
Li [4]. We see a similar trend, where the worst-case OS accu-
racy drops significantly for the first two layers. However, with
the WS, the middle convolutional layers are most sensitive.
We believe this is because the features being treated in the
middle convolutional layers are coarse grained, and due to the
broad fault propagation with the WS architecture, these faults
are likely to impact the final classification.

Considering the results in Figure 12 and previous works,
it becomes clear that it is difficult to draw general conclu-
sions about the sensitivity of specific layers, as this depends
significantly on the fault model and the data-flow.
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D. Accuracy Measured by Top-1 versus Top-5

Many authors [26] have used the ImageNet dataset when
evaluating the fault tolerance of DNN hardware. Most have
chosen Top-5 accuracy as their measure of the impact of faults,
however, this metric alone, does not tell us whether the ranking
was changed. We simply measure whether the image being
analyzed dropped out of the Top-5 ranking. To ensure that
our conclusions would hold if the stricter Top-1 metric were
used, we evaluated both metrics in the presence of faults. In
Figure 13, for the OS architecture, we plot the accuracy in
the presence of single-bit SA faults with 1, 2 or 4 faulty PEs.
We note that the relative drop in accuracy is similar with both
metrics. Thus, for the remainder of this work, we only report
results for Top-5 accuracy, so that our measurements can be
compared with those from other studies.

V. MOZART DETECTION AND MASKING TECHNIQUES

In this section, we show how the Mozart techniques provide
effective fault detection and masking. Sec. V-A shows the
effectiveness of the proposed functional test strategy. Sec. V-B
shows the behaviour of the networks when PEs are masked
to zero. Sec. V-D analyzes the efficiency of the dropout
technique. Sec V-C shows how a shortcoming in the original
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Fig. 13. Top-1 and Top-5 Average Accuracy versus Number of Faulty PEs
for OS Architecture

proposal can be applied, when dealing with small networks.
Finally, Sec. V-E demonstrates the scalability of the approach.

A. Effectiveness of On-Line Test

A key element of the MOZART approach is on-line testing,
which continuously checks the sanity of the PEs, as stuck-at-
1 (SA1) faults on a single erroneous PE can severely impact
the accuracy. The main idea is to sequentially take individual
PEs out of the computation and compare the result with their
neighbour’s. The PE under test is advanced each round of
calculation, that is, the computation of the neurons in the array
completes and the array is reloaded. For VGG-16, to compute
a single image, the array is loaded 55 679 times.

To evaluate the detection capability of this technique, we
injected SA0, SA1 fault injections on every bit of the outputs
of each of the 256 PEs (4096 faults). For each fault, 100
randomly selected images were evaluated to see if the fault
could be detected by comparing the partial sum of the PE
with that of its neighbour. Table II shows the percentage of
all SA1 faults detected after a given number of images.

TABLE II
PERCENTAGE OF SA1 FAULTS DETECTED AFTER N IMAGES

Percentage of SA1 Faults Number of Images
Detected After N Images 1 2 4 8

SqueezeNet 100% 100% 100% 100%
VGG-16 100% 100% 100% 100%
LeNet-5 94% 98% 99% 100%

For the larger networks, a single image was sufficient to de-
tect all the SA1 faults. This was true for any of the 100 random
images we used as stimulus for VGG16 and SqueezeNet. For
LeNet-5 with a single image, 94% of the SA1 faults could be
detected, which is already a good level of coverage. In fact,
for LeNet-5, more images are required because, with a small
network, the number of operations performed per image is
is small (see Table I). These experiments show that the low-
overhead approach to on-line test can quickly detect the highly
impacting SA1 faults.

Detecting SA0 faults is more difficult because the neuron
output values are often zero, especially the MSBits of the
integer representation. In Figure 14a, for Squeezenet, we show
the fraction of SA faults that were detected after a single round
of computation. SA1 faults are easily detected, especially in
the MSBits. Conversely, SA0 faults in the MSBits are hard to
detect. This is not an important issue, as a single SA0 fault



has a negligible impact on classification accuracy, as shown
in Figure 14b. These results are consistent with [10], [19].
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Fig. 14. Detection Rate and Accuracy with Single Bit SA Faults on
Squeezenet

To understand if SA0 faults can be detected with func-
tional test, we performed two further experiments, focusing
on Squeezenet and VGG. First, we considered the 2048
possible SA0 faults, and for each of these faults, we applied
100 randomly selected images. In Figure 15a, we report the
percentage of these faults that are detected after a given
number of images. We see that after 100 images, all SA0
faults were detected for VGG-16 and 94% are detected for
Squeezenet. This difference can be explained since in VGG-16
a typical PE is tested 215 times for every input image, versus
only 42 for Squeezenet. With LeNet-5, as the 16x16 PE array
is under-utilized, the SA0 detection is poor and not presented.
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Fig. 15. Number of Images Required to Detect Latent SA0 Faults

To obtain a bound on the worst case number of images
required to detect any SA0 faults in Squeezenet, we performed
a second experiment. For every possible SA0 fault, 10,000
images were evaluated. We then ranked the images from the
one which detected the fewest faults to the one that detected
the most. In Figure 15b we present the cumulative detection
rate, starting on the left with the image with the lowest
coverage. Thus, from this graph, we can observe a worst case
detection time for SA0 faults. After 10,000 images, we succeed
in detecting 97% of the SA0 faults, which is reasonable, given
that these faults are benign.

One might argue that with a more accurate fault model (eg.
faults inside the arithmetic logic of the MAC), by relying on
the incoming images as stimuli for the on-line testing, there is
a risk of latent faults not being detected. If such faults exist,
and if the current, real-world stimuli do not activate them, they
are not immediately of concern. If the stimulus changes, and
the previously latent fault is activated, then the fault is quickly
detected by our continuous on-line testing.

B. Fault Masking

In the previous section, we have discussed the procedure for
on-line testing. To ensure a fault tolerant design, after detecting
a faulty PE, we suppress the potentially serious impact of the
fault by forcing the outputs of the faulty PE to zero, removing
it from subsequent computations.

1) Average Accuracy: In Figures 16a to 16c we show the
average classification accuracy when the output of one, two or
four PEs is masked to zero, for each of the three architectures
(OS,WS,RS).

A key point is that for these networks, the output masking
technique is most effective for the OS architecture and for
Squeezenet and VGG-16, the drop in accuracy when a single
PE’s output is masked is very small. As more PEs are masked,
with the OS architecture, the loss in accuracy is gradual.

LeNet5 has only 10 neurons in the output layer so the impact
of faults in this layer has a high probability of corrupting the
final result. In this case the OS architecture is more sensitive
but the loss in accuracy with 4 masked PEs is only 1.5%.
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Fig. 16. Average Accuracy with PEs Masked to Zero

2) Worst Case Accuracy: Figure 16 only shows the average
accuracy. To study the worst-case, we performed a second
series of experiments. We generated ≈100,000 groups of 100
randomly selected images and analyzed the accuracy with each
architecture. For the unprotected architectures, we injected
random faults (1,2 or 4 PEs, with 1 SA faults). For the
architectures protected with zero masking, we set to zero 1,2 or
4 PEs. In Table III, we report the minimal observed accuracy
across all the groups. First, note that with the unprotected
architectures, in the worst case, the accuracy drops to zero for
the large networks, even with faults on a single PE. This is a
key observation for safety applications.

The second observation is that, with zero masking, the worst
case accuracy of the MOZART architecture is significantly
better than RS and WS, especially for SqueezeNet. With WS
and RS architectures, there exist certain faults that cause a
drastic drop in accuracy, unlike the OS architecture which



limits the extent of propagation, as illustrated in Figure 8.
This is an important take away when designing fault tolerant
systolic accelerators.

TABLE III
WORST CASE ACCURACY FOR GROUPS OF 100 IMAGES (HIGHER IS

BETTER)

Network Unprotected Zero Masking
Fault Fault OS WS RS OS WS RS
Type Free (Mozart)

1 PE

SqueezeNet 64 0 0 0 58 2 52
VGG 82 0 0 0 82 82 79
Lenet 95 5 5 4 95 96 77

2 PEs

SqueezeNet 64 0 0 0 53 1 45
VGG 82 0 0 0 80 77 74
Lenet 95 2 3 2 92 95 72

4 PEs

SqueezeNet 64 0 0 0 53 0 16
VGG 82 0 0 0 79 73 63
Lenet 95 4 2 2 90 95 58

C. Mozart+

In the previous section, the MOZART approach pro-
vided improved fault tolerance for the larger Squeezenet and
VGG-16 networks, but for LeNet-5 (figure 16c) we see that
the WS architecture actually performs better. The problem is
that in LeNet-5 there are only ten output neurons. If any one
of these is faulty, and thus masked to zero, an entire output
class is lost, resulting in a major loss in accuracy.

When processing fully connected layers, in a systolic archi-
tecture, it is necessary to use batching to fully utilize the PE
matrix. Multiple images are processed simultaneously, with
each line processing a different image. To avoid the problem
of losing an output class, we propose an alternate and simple
technique for the last layer (called Mozart+). Namely, after a
one (or several) faulty PE(s) are detected, when processing the
last layer, we propose to reduce the batching factor by two.
The images in the reduced size batch are mapped to rows that
contain non-faulty PEs. With this approach, we can handle
up to N/2 faulty PEs, where N is the size of the array. The
improved fault tolerance for LeNet is shown in figure 17. In
table IV shows the compute overhead due to the reduced batch
size. This is shown as the number of additional times the array
needs to be loaded.
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Fig. 17. Fault Tolerance of LeNet with Mozart+ Technique - Accuracy versus
Number of Faulty PEs

TABLE IV
NUMBER OF LOADS OF A 16X16 OS PE ARRAY FOR EACH NETWORK

Network All but last Last FC Mozart+
FC Layer Layer Overhead

Lenet 83 1 1.2%
VGG 55 616 63 0.1%

SqueeezeNet 11 554 - -

D. Dropout During Training

Dropout during training can be used to improve the robust-
ness during inference. We trained Squeezenet with 5% dropout
on all layers, whereas typically dropout is only applied to
the last layers. The training time increased (≈ 3x), but the
resulting configuration provided additional fault tolerance, as
shown in Figure 18. Using the newly trained network and
a MOZART architecture, we injected single bit faults in a
varying number of PEs. With faults in 4 PEs, due to the
new training, the accuracy increased from 67% to 72%. This
modified training was performed once, with no knowledge of
the faults. This is different from [9], where the re-training was
done based on knowing the position of the faults.
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Fig. 18. Squeezenet Accuracy with Faulty PEs when Trained with Dropout

E. Scalability

Up to now, data has been presented for a 256 PE (16x16)
array. We tested the MOZART architecture for different PE
array sizes and the results are shown in Figure 19. These
results are for Squeezenet with a single SA fault on a single
PE. As expected, when the array size increases, the impact of
a single faulty PE is reduced. In all cases, MOZART provides
a significant improvement.
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Fig. 19. Squeezenet Accuracy for Varying Array Sizes (1 SA fault on 1 PE)

VI. RELATED WORK

Historically, the fault tolerance of systolic arrays has been
studied with the objective that the final computed result be
identical in the presence of a fault [27]. For DNNs, this
constraint can be relaxed, since classification accuracy is never
perfect and the requirement is only that it remain acceptable.



Until recently, most studies of DNN fault tolerance worked
with an abstract model of the network, independent of the
hardware. In [16], the authors perform a sensitivity study
of three networks applying bit flips in the weights. In the
Ares framework [19], faults are injected in the weights and
activations of the abstract model. In [18], the authors study
GPU-based DNNs and conclude that small, integer numeric
formats result in increased robustness compared to floating
point. An in-depth study of fault injections on the RTL model
of an accelerator mapped to a FPGA is presented in [28]. It is
shown that SA0 faults have minimal impact on accuracy but
their study is limited to a small data-set.

In [29], the authors propose an opportunistic approach for
on-line testing of DNN accelerators, exploiting the fact that,
due to folding, some PEs are temporarily idle. Since not all
PEs are tested, they can can not guarantee coverage, which is
a requirement for safety standards.

In [10], the authors propose a fault tolerant DNN accelerator
using Razor techniques to detect timing faults. The main focus
is low voltage operation, not safety applications.

The work of Zhang [9] is the closest to that presented in
this paper. They propose fault mitigation for a WS accelerator,
using a multiplexer to mask the output of the erroneous mul-
tiplier of a PE. They also propose Fault-Aware Pruning(FAP).
Their results are interesting, but have certain limitations. First,
they have chosen a WS Architecture, which does not limit fault
propagation. Also, the FAP techniques requires knowledge of
the hardware faults prior to training. Finally, they propose no
test technique to detect faults and only study LeNet-5, which
is not representative of modern DNNs.

VII. CONCLUSIONS

Autonomous systems that rely on DNNs must meet safety
requirements. To address this need, we have presented the
MOZART approach for a fault tolerant DNN accelerator. We
analyzed the robustness of the three most common systolic
architectures used in DNN accelerators (OS,WS and RS), a
study which has not been performed previously and show that
the OS architecture inherently limits the propagation of faults.

The second aspect of MOZART, is an on-line fault detection
scheme, based on temporarily taking PEs out of service
to compare their results with their neighbours. Using this
technique, within the time required to process a single image,
all the SA1 faults can be detected for the two large networks.
Fast fault detection is a requirement for safety and we achieve
this with low hardware overhead.

Third, we have shown that connecting the output of a PE to
zero to mask known faults is particularly effective with the OS
architecture. We not only analyzed the average classification
accuracy for a large number of faults, as is common in other
studies, we also measured a worst case accuracy when groups
of images are analyzed. A key take away, is that there exist
pathological faults which can cause the worst case accuracy to
drop close to zero. This is an important message, and future
studies of fault tolerance in DNNs should consider this metric.

Other authors have shown that DNNs can be trained to
perform well when a set of known faults are present but this is
of little practical value, as it would require massive compute
resources to perform a customized training for each device. We
have shown that dropout applied to all layers during training,
increases fault tolerance, regardless of which PE is faulty.

A full safety analysis of an integrated circuit is beyond
the scope of a scientific paper. It would require considering
technology specific faults and analyzing the full design in-
cluding control logic. Nonetheless, the concepts we presented
constitute innovative safety mechanisms, applicable to the
architecture and design of the data-path of systolic DNN
accelerators.
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