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Introduction

The simplest example of dark energy (DE) is a cosmological constant [START_REF] Barrow | The value of the cosmological constant[END_REF][START_REF] Caldwell | A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state[END_REF][START_REF] Carroll | The Cosmological Constant[END_REF][START_REF] Rugh | The Quantum Vacuum and the Cosmological Constant Problem[END_REF][START_REF] Ryden | Introduction to Cosmology[END_REF][START_REF] Weinberg | The Cosmological Constant Problem[END_REF][START_REF] Weinberg | Dreams of a Final Theory: The Scientist's Search for the Ultimate Laws of Nature[END_REF][START_REF] Weinberg | Lectures on Quantum Mechanics[END_REF][START_REF] Peebles | Principles of Physical Cosmology[END_REF], introduced by A. Einstein in 1917 [START_REF] Einstein | Grundgedanken der allgemeinen Relativit¨atstheorie und Anwendung diese Theorie in der Astronomie[END_REF][START_REF] Einstein | Zur allgemeinen Relativit¨atstheorie[END_REF][START_REF]Einstein Zur allgemeinen Relativit¨atstheorie (Nachtrag)[END_REF][START_REF]Einstein Die Feldgleichungen der Gravitation[END_REF][START_REF] Einstein | Die Grundlage der allgemeinen Relativittstheorie[END_REF]. In the presence of the cosmological constant, the Einstein equations acquire the form: 4 18 2
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Following Varun Sahni [START_REF] Sahni | Dark Matter and Dark Energy[END_REF], in the Friedman-Robertson-Walker (FRW) Universe, considering of pressureless dust and Λ, the Rychaudhury equation which follows from equation (1) takes the form:
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The repulsive nature of the term Λ could be responsible for the accelerating expansion of the Universe, as demonstrating in Equation (2).

In the 1960s, it was realized that the zero-point vacuum fluctuations must respect Lorenz invariance, and, therefore, have the form mn mn Tg  [17]. The vacuum expectation value of the energy-momentum tensor is, therefore, divergent for bosonic and fermionic fields. This gives rise to the 'cosmological constant problem'. The effective cosmological constant generated by the vacuum fluctuations is as follows: (
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Since the integral divergence is 4 k , we get an infinite value for vacuum energy. Even if we impose an ultraviolet (UV) cutoff at the Planck scale of energy ( GeV is 123 orders of magnitude larger than the currently observed value, 47 4 10 GeV     [START_REF] Sahni | Dark Matter and Dark Energy[END_REF].

Some supersymmetric theories require a cosmological constant that is exactly zero, which further complicates things [18,19]. This 'cosmological constant problem' may be the most challenging problem of fine-tuning in physics: there is no known natural way to derive the tiny cosmological constant from particle physics.

Furthermore, no vacuum in the string-theory landscape is known to support a metastable, positive cosmological constant. In 2018, a group of four physicists advanced a controversial conjecture implying that no such Universe exists [START_REF] Wolchover | Dark Energy May Be Incompatible With String Theory[END_REF]. The very small window of Λ values that allows life to emerge led some cosmologists to propose the anthropic argument for the existence of a small cosmological constant [START_REF] Barrow | The Anthropic Cosmological Principle[END_REF][START_REF] Martel | [END_REF][23][24].

In view of the Hubble tension and the CMB dipole, however, it was recently proposed that the cosmological principle is no longer valid in the late Universe, and that the FRW metric breaks down [START_REF] Abdalla | Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies[END_REF][26] [START_REF] Heinesen | Luminosity distance and anisotropic skysampling at low redshifts: A numerical relativity study[END_REF]. It is thus possible that observations usually attributed to an accelerating universe are simply a result of the cosmological principle being non-applicable in the late Universe [START_REF] Colin | Evidence for anisotropy of cosmic acceleration[END_REF]. As recentl work by Hooft, Susskind and others has shown, a positive cosmological constant has surprising consequences, such as a finite maximum entropy of the observable Universe (the 'holographic principle') [START_REF] Dyson | Disturbing Implications of a Cosmological Constant[END_REF].

A different, but less widespread view is that there might not be anything in need of an explanation [START_REF] Bludman | Induced Cosmological Constant Expected above the Phase Transition Restoring the Broken Symmetry[END_REF]. According to this view, the 'cosmological constant problem' may be a pseudo-problem: the value of the (observed) cosmological constant is a new fundamental constant which may not be derivable from some fundamental theory. As Bludman and Ruderman note, one can get any value (including zero) for the vacuum energy in QFT by adding suitable counter terms to the Lagrangian [START_REF] Bludman | Induced Cosmological Constant Expected above the Phase Transition Restoring the Broken Symmetry[END_REF].

For quarks and leptons, Electric Charge Swap (ECS) symmetry was proposed by the author [START_REF] Koorambas | Lepton Electric Charge Swap at the 10 TeV Energy Scale[END_REF][START_REF] Koorambas | Quark-Quark of Swap Electric Charge Bound State[END_REF][START_REF] Koorambas | Weak Space-Time Curvature Effects for Lepton Electric Charge Swap at High Energy Scale[END_REF][START_REF] Koorambas | The Origin of SU(5) Symmetry by Lepton Electric Charge Swap Quaternions Algebra[END_REF]. ECS transformation between ordinary families of leptons produces heavy, neutral, non-regular leptons of an O-order mass (TeV). These particles may form cold dark matter [START_REF] Koorambas | Lepton Electric Charge Swap at the 10 TeV Energy Scale[END_REF]. Furthermore, the ECS symmetry could explain certain properties of lepton families within the framework of superstring theories [START_REF] Duff | Kaluza-Klein supergravity and the seven sphere[END_REF][START_REF] Polykov | [END_REF][37][38][39].

From the mathematical point of view, in R-Category (a category theory with invertible morphisms [START_REF] Awodey | Category Theory[END_REF]), the geometric structures under consideration are always associated with local Lie brackets [ , ] on sections of some vector bundles (Lie algebroids [START_REF] Crainic | Integrability of Lie brackets[END_REF][START_REF] Weinstein | Groupoids:Unifying Internaland External Symmetry[END_REF]). Based on [START_REF] Crainic | Integrability of Lie brackets[END_REF][START_REF] Weinstein | Groupoids:Unifying Internaland External Symmetry[END_REF][START_REF] Morton | The Categorified Heisenberg Algebra I[END_REF], in this article, we study the structure of transitive Lie algebroids as a mathematical framework for generalising the formulation of a gauge theory through an action functional:

the integral of a differential form on the algebroid [START_REF] Fournel | Gauge theories and generalized connections on transitive Lie algebroids[END_REF]. On Atiyah Lie algebroids [START_REF] Atiyah | Vector bundles over an elliptic curve[END_REF], the space of ordinary-connection 1-forms corresponds to the Ehresmann connections on a principal fiber bundle P (Lazzarini and Masson in [START_REF] Lazzarini | Connections on Lie algebroids and on derivationbased noncommutative geometry[END_REF]). Cédric Fournel (2013) [START_REF] Fournel | Gauge theories and generalized connections on transitive Lie algebroids[END_REF] proved that transitive Lie algebroids equipped with generalised connections contain scalar fields as algebraic parameters. These parameters, absent in differential geometry, have a role similar to that of the scalar field in the Higgs mechanism [START_REF] Arbuzov | Quantum Field Theory and the Electroweak Standard Model[END_REF]. In higher-dimensional spacetime, the Double Field Theory (DFT) is a gravity theory with manifest T duality (Hull-Zwiebach, 2009 [48]). The DFT has gauge symmetry (described by the C bracket ([ , ] C : see [START_REF] Hull | [END_REF])), which defines the Vaisman-algebroid (Vaisman, 2013[49]).

In a previous article [START_REF] Koorambas | Calculation of the Higgs Mass for Quark and Lepton Electric Charges Swap Lie-Groupoid[END_REF], based to the R-Category theory, we found that, at loop-level, the ECS Physics differs from the SM physics, and the ECSM mass is suppressed by the fermionic Catalan numbers, C F . For 24-fermions, the calculated one-loop radiative correction to the bare Higgs mass µ 2 is 125 GeV-a value very close to the experimental one.

Following that previous article [START_REF] Koorambas | Calculation of the Higgs Mass for Quark and Lepton Electric Charges Swap Lie-Groupoid[END_REF], in this paper, we investigate a version of the SM algebroid with the anchor map dependent on the ECS angle, θs. We find that many SM algebras depend on θs; we call these ECSM algebras. Furthermore, the SM algebroid is integrable to the SM groupoid. Our results, therefore, potentially extend well beyond this case. Then, we investigate how the breaking of the SM groupoid symmetry gives the massive ECS particle. We find that the mass of the ECS particle mass is related to that of the SM particle through the ECS angle θs. We investigate the finite subgroups of the ECS Möbius transformations. In this case, the ECS angle s could originate from the ECS dihedral group that refers to the symmetry of the Particle polygon (P-gon). The ECS angle θs can then be determined through the multitriangulation of a convex P-gon.

The global ECS symmetry for particles and fields in R-Category

Hypothetical non-regular quarks are, a) a 1/3-electric charged version of the up (α) quark types,  and, b) a -2/3-electric charged version of the down (κ) quark types, . Non-regular quarks may, therefore, be obtained by the swap of electric charges between up and down quark types. We call these proposed non-regular quarks electric charge swap (ECS) quarks [START_REF] Koorambas | Lepton Electric Charge Swap at the 10 TeV Energy Scale[END_REF]. Such automorphisms are rotations of 

ECS SO [START_REF] Koorambas | Lepton Electric Charge Swap at the 10 TeV Energy Scale[END_REF], which is the isometric group of the unit sphere in three-dimensional real space 3 . The automophism of the Riemann sphere ˆ, is given by:
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where ˆ, is the extended complex plane,
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, is the group of rotations in 3-dimensional vector space 3 . This can be consigned in the double fibration on a vector bundle of lines 2  , in the extended internal space (ad infinitum), that is to say, ˆ   .
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ECS SU [START_REF] Koorambas | Lepton Electric Charge Swap at the 10 TeV Energy Scale[END_REF]. This group is also diffeomorphic to the unit 3-sphere 3 S . Non-regular quarks obtained by the swap of electric charges between up (α) and down (κ) quark types, are given by Equation ( 4). We regard ordinary and ECS quarks as different electric charge states of the same particleanalogous, that is, to the proton-neutron isotopic pair [START_REF] Koorambas | Lepton Electric Charge Swap at the 10 TeV Energy Scale[END_REF]. Some quantum numbers of the new ECS quarks are given in Table 1. . Non-regular leptons can, therefore, be obtained from the swap of electric charge between electrons and electron neutrinos in the internal space. We call these proposed non-regular leptons, electric-charge-swap (ECS) leptons [START_REF] Koorambas | Lepton Electric Charge Swap at the 10 TeV Energy Scale[END_REF]. The quantum numbers of the new ECS leptons are given in Table 2 [START_REF] Koorambas | Lepton Electric Charge Swap at the 10 TeV Energy Scale[END_REF].

Table 2. Quantum numbers (weak ECS isospin I s , charge Q, ECS hypercharge Y s , ECS lepton number L S ) of the ECS leptons , . (ECS)-lepton I Is-z Q Y s L s ½ ½ 1 1 -1 ½ -½ 0 1 -1
The simplest way to realize the global SO(3) ECS group provided by Equation ( 11) is by adding the ECS electron and grouping it together with the ECS electron neutrino , electron antineutrino , and electron into a triplet [START_REF] Koorambas | Calculation of the Higgs Mass for Quark and Lepton Electric Charges Swap Lie-Groupoid[END_REF]. Similar for quarks ,we have to add an 1/3electrically charged version of the up (α) quark types (ECS-α quarks) and group them together with the -2/3-electrically-charged version of the down (κ) quark types (ECS-κ quarks), and the anti-up and down (κ) quark types into a triplet.

The representative matrix of a general element of the SO(3) ECS group can be written as:

, α=(1,2,3), [START_REF] Rugh | The Quantum Vacuum and the Cosmological Constant Problem[END_REF] with θ α = (θ 1 ,θ 2 ,θ 3 ) being arbitrary real group parameters independent of space-time coordinates, and O ECS being an orthogonal 3 × 3 matrix: 
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The three basic ECS rotation matrices that rotate fermions by an angle θ s α (α = 1, 2, 3) about the x-, y-, or z-axis in three internal dimensions can be explicitly written as follows: .

In this representative space, the representative matrices of the generators of the SO(3) ECS group are denoted by X α (α = 1, 2, 3):

, , . (8) 
These matrices satisfy the following condition:

, ( 9 
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where C αβγ are structure constants of the SO(3) ECS group. The generator X α is Hermitian and traceless:

, . (10) 
To calculate the trace, we use the sum of the diagonal elements of the rotation matrix given by Equation ( 7):

.

From Equation [START_REF] Einstein | Grundgedanken der allgemeinen Relativit¨atstheorie und Anwendung diese Theorie in der Astronomie[END_REF], it follows that the arbitrary absolute value of the ECS angle is:
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)
From the mathematical point of view, in R-Category-a category theory with invertible morphisms [START_REF] Awodey | Category Theory[END_REF]-the geometric structures we consider here are always associated with local Lie brackets [ , ] on sections of some vector bundles (Lie algebroids). Here, we define the ECS-Standard Model (ECSM) algebra from the SM algebroid A SM over the product 31 M S S  manifold, which satisfies the conditions:
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(with being smooth sections of A SM , and ϕ being a smooth function on 31 M S S ),

when the anchor's smooth multiplication factor of the SM-algebroid, A SM , is given by Equation ( 12), and the ECS generators are derived from the SM generators by the anchor map:
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In the above equations, 

indicates the smooth function on , and θ s are the arbitrary ECS-angles if we parametrise the unit 3-sphere by hyperspherical coordinates  
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By restricting the domain of Equation ( 12), we obtain:
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Function ( 20) is both one-one and onto; therefore, it has an inverse function:
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By Equations 20 and 21, the anchor of the SM-algebroid, A SM , is thus both an one-one and onto map between the SM and ECS generators. Equations ( 13) and ( 15) define the ECSM algebra in terms of the SM algebra as follows:
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Following Marius Crainic and Rui Loja Fernandes (2003) [START_REF] Crainic | Integrability of Lie brackets[END_REF] and previous article [START_REF] Koorambas | Calculation of the Higgs Mass for Quark and Lepton Electric Charges Swap Lie-Groupoid[END_REF], we now deduce the known inerrability. We observe that the , and gauge groupoids are the -valued U(2), SU(2), and U(1) gauge groups [START_REF] Sternberg | Lie algebras[END_REF][START_REF] Veltman | [END_REF] in θs.

The ECS-angle in the anchor map (Equations 17-18) is strictly a global parameter, and may originate from a different group: either from the global SO(3) ECS group or from the finite subgroups of the ECS Möbius transformations (see [START_REF] Koorambas | Calculation of the Higgs Mass for Quark and Lepton Electric Charges Swap Lie-Groupoid[END_REF]). Furthermore, as Weinstein illustrates [START_REF] Weinstein | Groupoids:Unifying Internaland External Symmetry[END_REF], there is no assumption that a gauge transformation actually extends to the entire object U(2): it may be that the gauge symmetry does not extend globally but affects only a part of U(2), while the ECS symmetry extends globally.

It turns out that the concept of spontaneous symmetry breaking plays an important role in the proposed theory of ECS electroweak interaction. The broken large groupoid symmetry
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gives the massive ECS particles and bosons [START_REF] Koorambas | Calculation of the Higgs Mass for Quark and Lepton Electric Charges Swap Lie-Groupoid[END_REF]. In Equations ( 24), we observe that the spontaneous breaking of the large groupoid symmetry can only occur when the symmetry of electroweak interaction breaks spontaneously [START_REF] Koorambas | Calculation of the Higgs Mass for Quark and Lepton Electric Charges Swap Lie-Groupoid[END_REF]:

SU(2) L ×U(1) Y → U(1) EM . (25) 
Equation ( 25) predicts the massive particles W and Z bosons, whose correct mass has already been known since 1983 [52][START_REF] Salam | Elementary Particle Theory: Relativistic Groups and Analyticity Nobel Symposium[END_REF][START_REF] Glashow | [END_REF]. In Equation 24, is the ECS gauge groupoid of electromagnetism, which is the -valued U(1) EM common electromagnetism in θs.

Therefore, we may view the ECS electromagnetism sectors of the gauge groupoid as the mirror sectors [START_REF] Foot | Generalized mirror matter models[END_REF][56][57] that are suppressed for small ECS angles (a proposition explored in a forthcoming work [58]). Following [START_REF] Koorambas | Calculation of the Higgs Mass for Quark and Lepton Electric Charges Swap Lie-Groupoid[END_REF], the ECSM gauge boson masses are given as follows:

,

where [START_REF] Heinesen | Luminosity distance and anisotropic skysampling at low redshifts: A numerical relativity study[END_REF] are the gauge boson masses of the SM vector [52][START_REF] Salam | Elementary Particle Theory: Relativistic Groups and Analyticity Nobel Symposium[END_REF][START_REF] Glashow | [END_REF].Here, and are the gauge bosons that mediate the ECS-exchanging electroweak interaction between the families of fermions (for details see [START_REF] Koorambas | Lepton Electric Charge Swap at the 10 TeV Energy Scale[END_REF]). The masses and mixing of the ECSM quarks and leptons have a common origin, as suggested in the SM [52][START_REF] Salam | Elementary Particle Theory: Relativistic Groups and Analyticity Nobel Symposium[END_REF][START_REF] Glashow | [END_REF]. Following [START_REF] Koorambas | Calculation of the Higgs Mass for Quark and Lepton Electric Charges Swap Lie-Groupoid[END_REF], the ECSM quark masses given as follows:

, .

where
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are the SM quark masses [52][START_REF] Salam | Elementary Particle Theory: Relativistic Groups and Analyticity Nobel Symposium[END_REF][START_REF] Glashow | [END_REF]. The masses and mixing of the ECSM quarks and leptons have a common origin, as suggested in the SM [52][START_REF] Salam | Elementary Particle Theory: Relativistic Groups and Analyticity Nobel Symposium[END_REF][START_REF] Glashow | [END_REF]. The ECSM quark masses depend on the arbitrary couplings and cannot be predicted. Furthermore, since ECSM quarks are not observed in isolation, their masses are not precisely defined.

Similarly, for the charges ECSM-leptons e   , we have: ,
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are the SM lepton masses [52][START_REF] Salam | Elementary Particle Theory: Relativistic Groups and Analyticity Nobel Symposium[END_REF][START_REF] Glashow | [END_REF]. The masses of the neutral ECSM-leptons ( 0 e ) are given by the effective interaction: 
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, () ij f  are the effective couplings for neutral ECSM-leptons 0 e and neutrinos ν respectively, and
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is the neutrinos masses [START_REF] Weinberg | The Quantum Theory of Fields[END_REF]. We expect M to be of order 15 18 (10 10 )GeV  .

The averages of the F(θs) function over the multi-triangulation of a convex-particle Pgon

We observe that the , and the ECS gauge groupoids are the -valued U(2), SU(2), and U(1) gauge groups [52][START_REF] Salam | Elementary Particle Theory: Relativistic Groups and Analyticity Nobel Symposium[END_REF][START_REF] Glashow | [END_REF] in θs. The ECS angle in Equation ( 19) is strictly an arbitrary global parameter, and may originate from a different group-either the SO(3) ECS group or the finite subgroups of the ECS Möbius transformations, as we explain in this section. Let Γ be an ECS subgroup of PSL 2 ECS , consisting of elliptic elements together with the identity. Then Γ ECS is conjugate in PSL 2 (C) ECS to a subgroup of PSU 2 (C) ECS [START_REF] Pinkall | Differential Geometry II (Analysis and geometry on manifolds) Lecture notes[END_REF][START_REF] Ralph | The Topology of Fiber Bundles[END_REF][START_REF] Churchill | James Ward Complex variables and applications[END_REF][START_REF] Conway | Functions of one complex variable Graduate Texts in Mathematics SpringerVerlag[END_REF][START_REF] Jones | David Complex functions -An algebraic and geometric viewpoint[END_REF][START_REF] Saff | Arthur David Fundamentals of complex analysis with applications to engineering[END_REF]. Now, by the group isomorphism [START_REF] Koorambas | Lepton Electric Charge Swap at the 10 TeV Energy Scale[END_REF], for every finite subgroup of ECS rotations (i.e., a subgroup of PSU 2 (C) ECS ), Γ ECS , of ECS rotations in C ∞ (Equation ( 4)), one of the following holds [START_REF] Pinkall | Differential Geometry II (Analysis and geometry on manifolds) Lecture notes[END_REF][START_REF] Ralph | The Topology of Fiber Bundles[END_REF][START_REF] Churchill | James Ward Complex variables and applications[END_REF][START_REF] Conway | Functions of one complex variable Graduate Texts in Mathematics SpringerVerlag[END_REF][START_REF] Jones | David Complex functions -An algebraic and geometric viewpoint[END_REF][START_REF] Saff | Arthur David Fundamentals of complex analysis with applications to engineering[END_REF]:

1 .Γ is ECS-cyclic; 2 .Γ is ECS-dihedral;

Γ is the ECS symmetry group of a regular ECS tetrahedron (A 4 ), ECS octahedron (S 4 ), or ECS icosahedron (A 5 ).

One can show that two finite ECS subgroups in PSL 2 (C) ECS are conjugate if and only if they are isomorphic.

Here, D F (with F being the number of fermions) refers to the symmetries of the Fermionic polygon (F-gon:having F fermionicsides)-a group of order 2F. In abstract algebra, D 2F refers to this same ECS dihedral group (for details of the Dirac equation on the polygon regions see [START_REF] Song | Quantum Cellular Automata Models for General Dirac Equation[END_REF][START_REF] Lin | [END_REF][START_REF] Meyer | From Quantum Cellular Automata to Quantum Lattice Gases[END_REF][69][START_REF] Quintela | From the 1D Schrödinger infinite well to Dirac-Weyl graphene flakes[END_REF][START_REF] Bhat | Flexural vibration of polygonal plates using characteristic orthogonal polynomials in two variables[END_REF][START_REF] Amar | Schrödinger-equation For Convex Plane Polygons .2. A Nogo Theorem For Plane-waves Representation Of Solutions[END_REF][START_REF] Koorambas | Calculation of the Higgs Mass for Quark and Lepton Electric Charges Swap Lie-Groupoid[END_REF]). D F is a subgroup of , i.e., the group of ECS rotations (about the origin) and ECS reflections (across axes through the origin) of the plane. However, the
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ECS ECS OU  notation 'D F ' is also used for a subgroup of , which is also an abstract group: the proper symmetry group of an F-gon embedded in three-dimensional internal space (if the number of fermions is F ≥ 3).

The sum of the interior ECS angles of a simple F-gon is (F -2)π radians. This is because any simple F-gon can be considered to be made up of (F-2) triangles, each of which has an angle sum of π radians:

2 ( ) 1 s F F      , (35) where . (36) 
F is the total number of fermions, given by the sum of ordinary ( ) and ECS fermions ( ). Following [START_REF] Koshy | Parity and Primality of Catalan Numbers Thomas Koshy[END_REF], we find that the number (C F ) of triangulations of a convex fermionic F-gon in the internal space satisfies the recursive formula: ,

where C 0 = 1 [START_REF] Gardner | Catalan Numbers: An Integer sequence that Materializes in Unexpected Places[END_REF][START_REF] Guy | The Second Strong Law of Small Numbers[END_REF][START_REF] Koshy | Discrete Mathematics with Applications[END_REF]. The numbers C F are now called fermionic Catalan numbers. From (37), it follows that C 1 = 1, C 2 = 2, C 3 = 5, and so on. Using generating functions and Segner's formula, an explicit formula for C F can be developed, as follows [START_REF] Koshy | Discrete Mathematics with Applications[END_REF]:

, ( 38 
)
with F being the total number of fermions.

After the triangulation of a convex fermionic F-gon in three-dimensional internal space, Equation

,

on [0, π/2] ([1]), (39) 
where

, on [0, π/2]. (40) 
This is the normalised average sin of the ECS angle θ s over the triangulation of a convex fermionic F-gon by the fermionic Catalan numbers C F . Following, J. Jonsson 2003 [START_REF] Jonsson | Generalized triangulations of the n-gon[END_REF], and Vincent Pilaud and Francisco Santos 2009 [START_REF] Pilaud | Multitriangulations as complexes of star-polygons[END_REF], the number of multi-triangulations of the convex particle-gon is equal to the determinant:

F | 00 det( ) 0 0 ( )( )( ) 00 FB p F B F B B C C C C C C C         , (41) (3) 
(2) ) denotes the p-th particle Catalan number, and C B , C F , and C F+B are the fermionic, bosonic, and combination Catalan numbers, respectively.

ECS ECS SO SU  ordinary ECS F F F  ordinary F ECS F 0 1 1 2 1 0 ... F F F F C C C C C C C        (2 )! ( 1)! ! F F C FF       () sin (F) 2 sin (F) F s averge s FF CC       2 sin (F)
Ord ECS F F F  [START_REF] Koorambas | Calculation of the Higgs Mass for Quark and Lepton Electric Charges Swap Lie-Groupoid[END_REF], and Ord ECS B B B are the total number of fermions and bosons, respectively. After the multitriangulation of a convex particle P-gon in three-dimensional internal space, Equation (19) becomes:

() sin( (P)) 2 sin( (P)) det( ) ( )( )( ) P s averge s P F B F B C C C C      , on [0, π/2], (43) 
where   2 sin ( )

s averge P    , on [0, π/2] . (44) 
This is the normalised average sin of the ECS angle θ s over the multi-triangulation of a convex P-gon by the particle Catalan numbers C P .

Calculation of the cosmological constant

Now that the averages of the F(θs) function have been determined by the particle Catalan numbers C P , we consider two possible scenarios of ECS contribution to the SM:

Loop level:

The ECS Physics at loop-level differs from the SM physics; the ECSM mass is not identical to the SM mass. Therefore, () 2 sin( (P)) 1 ( )( )( )

n P p s F B F B p SM M C C C M        , on [0, π/2] (45) implies () 2 sin( (P)) ( )( )( ) nP p SM p s p SM F B F B M MM C C C        , on [0, π/2], (46) 
where n p M  are the multitriangulation masses of the ECS particles (from Equations ( 26),( 28), [START_REF] Bludman | Induced Cosmological Constant Expected above the Phase Transition Restoring the Broken Symmetry[END_REF], [START_REF] Koorambas | Weak Space-Time Curvature Effects for Lepton Electric Charge Swap at High Energy Scale[END_REF]), are the corresponding masses of the SM particles, and C p are the particle Catalan numbers for the multitriangulations of the particle P-gon.

Tree level:

The ECS Physics at tree level is the same as the SM physics, and the ECSM masses are identical to the SM masses. Therefore, M  are the ECS particle multitriangulation masses of the fermionic 2-gon, bosonic 1-gon, and the combination between fermions and bosons in the 1-gon are the corresponding SM particles masses. C 2 = 2 is the fermionic Catalan number for the triangulation of the fermionic 2-gon, C 1 = 1 is the bosonic Catalan number for the triangulation of the bosonic 1gon, and C 2-1 = 1 is the combination between the fermion and boson Catalan numbers for the triangulation of the 2-gon.

In the proposed ECS model (( 46),( 47)), the tree-level cosmological term, Λ 0 , denotes Einstein's own 'bare' cosmological constant which in itself leads to a curvature of empty space when there is no matter or radiation present. We thus only consider the effect of the new ECS physics at loop level. It is usually assumed that the vacuum energy density (< ρ >) is equivalent to a contribution to the 'effective' cosmological constant in Einstein's Equations (1):

0 4 8 eff vac G c       . ( 49 
)
Summing over the zero-point energies of all normal modes for both ECS and ordinary fields yields the vacuum energy density: 

(L ) ( . ) ( , ) ( , ) (L, ) (L, ) ( , ) ( , ) ( , 
wz L w z w z LL L vac k dk k dk k m k m k dk k dk k m k m k dk km                                           3 3 2 22 ( , ) 3 2 2 0 0 0 41 2 (2 ) (2 ) (2 ) g k dk k dk k dk km                (50) 
For massive theories with a particle mass M p , it is easy to translate this arbitrary dimensionless scale η to an arbitrary "unit of wave number" k = ηM p . For massless theories, one can similarly identify an arbitrary unit of wave number k = ηΛ. For the proposed massive ECS theory with a multitriangulation particle mass M Δp , we obtain the multitriangulation wave number:

2 2 det( ) ( )( )( ) P P p p F B F B M k kM C C C C        , (51) 
where the "unit of wave number" is k = ηM p , and M Δp is given by the Equation [START_REF] Lazzarini | Connections on Lie algebroids and on derivationbased noncommutative geometry[END_REF]. Substituting Equation ( 51) to [START_REF] Sternberg | Lie algebras[END_REF] 

C C C                  , (52) 
where 

      2 
F B F B F B F B k dk k m k k C C C C C C                            (53)
is the ECS-vacuum energy density, 

G G G G c c c c O                     , (56) 
where 0 4
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ECS ECS eff vac G c      , (57) 
is the ECS 'effective' cosmological constant contributing in Einstein's Equations (1). Λ 0 , denotes Einstein's 'bare' cosmological constant, and < ρ> ECS is the ECS vacuum energy density. For an equal number of ordinary and ECS fermions [START_REF] Koorambas | Calculation of the Higgs Mass for Quark and Lepton Electric Charges Swap Lie-Groupoid[END_REF], and an equal number of ordinary and ECS bosons, the calculated one-loop radiative corrections to the 'bare' cosmological constant Λ 0 are given in Table 3. 41) 4.12×10 30 ECS vacuum energy density < ρ> ECS Eq.( 53) 2.4×10 -47 GeV 4 Table 3. One-loop radiative corrections to the 'bare' cosmological constant Λ 0 , as calculated from Equation ( 53), for the reciprocal 4th power of particle Catalan number 1/(detCp) 4 = O(10 -123 ).

For 24 fermions and 6 bosons, we calculate a vacuum energy density of 10 -47 GeV 4 which is very close to the experimental value [START_REF] Sahni | Dark Matter and Dark Energy[END_REF]. Our approach, therefore, may solve the fine-tuning problem, since it provides an all-orders solution which is suppressed by the particle Catalan number C p .

Conclusion

Following a previous article [START_REF] Koorambas | Calculation of the Higgs Mass for Quark and Lepton Electric Charges Swap Lie-Groupoid[END_REF], we investigate a version of the SM algebroid with its anchor map depending on the ECS angle, θs. We find that many SM algebras depend on the ECS angle, θs. We call these ECSM algebras. Furthermore, the SM algebroid is integrable to the SM groupoid; results, therefore, potentially extend well beyond the investigated case. We then investigate how the breaking of the symmetry of the SM groupoid gives the massive ECS particle. We find that the ECS particle mass is related to the SM particle mass through the ECS angle θs. We investigate the finite subgroups of the ECS Möbius transformations. In this case, the ECS-angle s could originate from the ECS dihedral group that refers to the symmetry of the particle polygon (P-gon). The ECS angle θs can then be determined through the multitriangulation of a convex particle P-gon. Finally, we find that, at loop-level, the ECS Physics is different from the SM physics, and the ECSM mass is suppressed by the particle Catalan numbers C P . For 24 fermions [START_REF] Koorambas | Calculation of the Higgs Mass for Quark and Lepton Electric Charges Swap Lie-Groupoid[END_REF], and 6-vector gauge bosons, the calculated one-loop radiative correction to the 'bare' cosmological constant Λ 0 is 47 4 10 GeV  -very close to the experimental value.

Table 1 :

 1 Quantum numbers of the proposed ECS quarks.

	(ECS)-quarks	Q: electric charge	I sz : ECS isospin component	B s : Baryonic number
	u῀,c῀,t῀	1/3	-½	-1/3
	d῀,s῀,b῀	-2/3	½	-1/3

Similar with hypothetical non-regular quarks, hypothetical non regular leptons are, a) a zerocharged version of the electron, , and, b) a positively charged version of the electron neutrino,

  and assuming a cutoff up to the Planck energy scale and a cutoff up to the QCD energy scale Λ QCD for gluons fields, we have:

									44	
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