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Sliding mode control for a class of linear infinite-dimensional systems

This paper deals with the stabilization of a class of linear infinite-dimensional systems with unbounded control operators and subject to a boundary disturbance. We assume that there exists a linear feedback law that makes the origin of the closed-loop system globally asymptotically stable in the absence of disturbance. To achieve our objective, we follow a sliding mode strategy and we add another term to this controller in order to reject the disturbance. We prove the existence of solutions to the closed-loop system and its global asymptotic stability, while making sure the disturbance is rejected.

I. INTRODUCTION

 for the stabilization of boundary or pointwise control for linear partial differential equations (PDEs). We further propose a super-twisting control (STC), where, in contrast with SMC, the control is continuous.

The boundary control of systems described by partial differential equations has received a lot of much since decades. It continues to be an important research focus today because its application in many important engineering systems is natural (see e.g., [3]). Such a problem has been studied in [9], [15], [35], [36] in the controllability context, in [7], [8], [18], [39], [43], [48] in terms of stabilization.

, which consists, roughly speaking, in adding the dynamics of the disturbance in the loop of the controller. This method needs therefore the knowledge of the dynamics of the controller. Our strategy, based on SMC controllers, is in contrast with the latter one, since only the bound of the disturbance is needed, at the price of assuming that the disturbance matches

with the control (i.e., the control and the disturbance are located at the same place).

SMC strategy has been proved to be efficient for robust control of nonlinear systems of ordinary differential equations (ODEs) [START_REF] Edwards | Sliding mode control: theory and applications[END_REF], [START_REF] Shtessel | Sliding mode control and observation[END_REF], [START_REF] Utkin | Sliding modes in control and optimization[END_REF], [START_REF] Young | A control engineer's guide to sliding mode control[END_REF]. Such controllers allow to force, thanks to discontinuous terms, the trajectories of the system to reach in a finite time a manifold, called the sliding surface, and to evolve on it, this manifold being defined from control objectives. Basically, the design of the control is split into two steps: firstly, a sliding variable is selected such that, once this variable equals zero, global asymptotic stability is ensured; secondly, a discontinuous feedback-law is designed such that the trajectory reaches the sliding surface, that is defined thanks to the sliding variable. On this sliding surface, the disturbance is rejected. The generalization of the SMC procedure to the PDEs case is not new. In [START_REF] Orlov | Discontinuous unit feedback control of uncertain infinite-dimensional systems[END_REF], [START_REF] Orlov | Sliding mode control in indefinitedimensional systems[END_REF], a definition of equivalent control (which is the control applied to the system after reaching the sliding surface, to ensure that the trajectories stays on the surface thereafter) for systems governed by semilinear differential equations in Banach spaces has been proposed. One can refer also to [START_REF] Levaggi | Infinite dimensional systems' sliding motions[END_REF], [START_REF] Levaggi | Sliding modes in banach spaces[END_REF] where differential inclusions and viability theory are combined to design sliding mode controllers for semilinear differential equations in Banach spaces. We also mention the use of spectral reduction methods in [START_REF] Orlov | Robust stabilization of infinitedimensional systems using sliding-mode output feedback control[END_REF]. In the last decade, a backstepping strategy has been used to select a sliding variable [START_REF] Guo | Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input[END_REF], [START_REF] Liu | Active disturbance rejection control and sliding mode control of one-dimensional unstable heat equation with boundary uncertainties[END_REF], [START_REF] Pisano | Combined backstepping/second-order sliding-mode boundary stabilization of an unstable reaction-diffusion process[END_REF], [START_REF] Tang | Sliding mode control to the stabilization of a linear 2× 2 hyperbolic system with boundary input disturbance[END_REF], [START_REF] Wang | Sliding mode control to stabilization of cascaded heat PDE-ODE systems subject to boundary control matched disturbance[END_REF]. We also refer to these recent papers [2], [START_REF] Liard | Boundary sliding mode control of a system of linear hyperbolic equations: a lyapunov approach[END_REF], in which the sliding variable is derived from the gradient of some wellknown Lyapunov functional in the hyperbolic context [3, Section 2.1.2]. Note also that the SMC feedback-law is discontinuous, which creates chattering phenomena when implementing the control numerically. Therefore, in practical control cases, it is important to reduce this phenomena by providing continuous or smooth controller.

Based on second-order sliding mode techniques (see e.g, [START_REF] Shtessel | Sliding mode control and observation[END_REF]Chapter 4]), the super twisting algorithm has been developed for systems whose the sliding variable admits a relative degree (see [START_REF] Shtessel | Sliding mode control and observation[END_REF]Definition 1.6]) equal to 1. The essential feature of the super twisting control is to require only the measurement of the sliding variable to guarantee the convergence in finite time to zero of the sliding variable and its derivative. Moreover, the super twisting feedback-law is continuous with respect to the state, and this drastically attenuates the chattering phenomenon.

In this paper, a strategy different from the ones that have been mentioned earlier is proposed in order to design "classical" sliding mode controls and super-twisting sliding mode controls for general linear infinite-dimensional systems. The sliding variable is defined as the scalar product of the state and an eigenfunction of the adjoint operator of the closedloop system without disturbance. This requires measurement of the scalar product of the state with some function. Such a sliding variable allows to directly use well-known results on the stabilization of abstract infinite-dimensional systems with unbounded control operators in the absence of disturbance [START_REF] Fattorini | Boundary control systems[END_REF], [START_REF] Slemrod | Stabilization of boundary control systems[END_REF], [START_REF] Urquiza | Rapid exponential feedback stabilization with unbounded control operators[END_REF] together with well-known results about the finite-time convergence of the sliding variable in the context of the finite dimension [START_REF] Moreno | Strict lyapunov functions for the super-twisting algorithm[END_REF], [START_REF] Polyakov | Lyapunov function design for finitetime convergence analysis of "twisting" and "super-twisting" second order sliding mode controllers[END_REF], [START_REF] Utkin | Sliding modes in control and optimization[END_REF]. In comparison with [START_REF] Levaggi | Infinite dimensional systems' sliding motions[END_REF], [START_REF] Levaggi | Sliding modes in banach spaces[END_REF], [START_REF] Orlov | Discontinuous unit feedback control of uncertain infinite-dimensional systems[END_REF], [START_REF] Orlov | Sliding mode control in indefinitedimensional systems[END_REF], the approach proposed in this document allows to define explicitly and systematically the sliding variable for a large class of linear infinite-dimensional systems.

This paper is organized as follows. Section II presents a class of linear infinite-dimensional system with an unbounded control operator, the sliding mode based control law, the super-twisting based control law and the main results of the paper. Section III contains the proofs of the main results. Section IV introduces an illustrative example. Finally, Section V collects some remarks and introduces some future research lines to be followed.

Notation: Let c ∈ C, Re(c) (resp. Im(c)) denotes the real part (resp. the imaginary part) of c. The set of nonnegative real numbers is denoted in this paper by R + . When a function f only depends on the time variable t (resp. on the space variable x), its derivative is denoted by ḟ (resp. f ′ ). Given any subset of R denoted by Ω (R + or an interval, for instance), L p (Ω) denotes the set of (Lebesgue) measurable functions f such that, 

W 1,p (Ω) is defined by the set {f ∈ L p (Ω) | f ′ ∈ L p (Ω)}. For m ≥ 2, the Sobolev space W m,p (Ω) is defined by the set {f ∈ W m-1,p (Ω) | f ′ ∈ W m-1,p (Ω)}. We also set H p (Ω) = W m,2 (Ω). We say that the function f ∈ L p loc (Ω) (resp. f ∈ W m,p loc (Ω)) if the restriction of f χ K ∈ L p (Ω) (resp. f χ K ∈ W m,p (Ω))
for every compact set K contained in Ω, where χ K is the characteristic function. Given two vector spaces E and F , L(E, F ) denotes the space of linear continuous applications from E into F . If E is a normed vector space, we denote by ∥ • ∥ E the norm on E. We denote by E ′ the dual space of E, that is, the space of all continuous linear functionals on E and we denote by ⟨•, •⟩ E,E ′ the dual product on E ×E ′ . We denote by C(E; F ) the space of continuous functions from the space E to the space F . Throughout the paper, the field K is either R or C.

II. MAIN RESULTS

A. Problem Statement

Let (H, ⟨•, •⟩ H ) denotes a Hilbert space over the field K and the corresponding norm is denoted by ∥ • ∥ H . In this paper we are interested in the stabilization (at the origin) problem for the system

   d dt z = Az + B(u + d), z(0) = z 0 , (1) 
where z(t) ∈ H is the state, u(t) ∈ K is the control input and d(t) ∈ K is an unknown disturbance. In system (1), A : D(A) ⊆ H → H is a linear operator with D(A) densely defined in H and B ∈ L(K, D(A * ) ′ ), with A * the adjoint operator of A. Our objective is to provide a design method so that system (1) is globally stabilized despite the disturbance d. To do so, we will follow the sliding mode strategy. This strategy can be applied thanks to the following set of assumptions.

Assumption 

B * T * (T -t)φ = 0 =⇒ φ = 0, (2) 
where B * ∈ L(D(A * ), K) is the adjoint operator of B. (iv) There exists an operator L : D(L) → K such that the operator

A L = A + BL, D(A L ) = {z ∈ D(L); (A + BL)z ∈ H}, (3) 
is the infinitesimal generator of a strongly continuous semigroup (S(t)) t≥0 on H and the origin of the follow-

ing system    d dt z = (A + BL)z, z(0) = z 0 , (4) 
is globally asymptotically stable. Items (i) and (ii) allow to state the well-posedness of system (1) in H and Item (iii) refers to a controllability property of the system (1). This property is used in order to ensure finite-time stability of the sliding variable. Finally, Item (iv) of Assumption 1 refers to a stabilizability property of system (1), needed to ensure that, without disturbance, the system can be stabilized.

The disturbance d is not supposed to be known entirely, but we assume the knowledge of its bound.

Assumption 2: The unknown disturbance d is supposed to be uniformly bounded measurable, i.e |d(t)| ≤ K d for some K d > 0 and for all t ≥ 0.

Remark 1: Note that Item (iv) of Assumption 1 has been proven in [START_REF] Urquiza | Rapid exponential feedback stabilization with unbounded control operators[END_REF]Theorem 2.1] in the case where the pair (A, B) is exactly controllable in time T . Our goal is to find a state feedback control u which allows to reject the disturbance and to globally asymptotically stabilize the system (1) around 0. Precisely, we are looking for a sliding surface on which the system (1) becomes the system (4) in a finite time. According to the item (iv) of Assumption 1, we know that 0 is globally asymptotically stable for the system (4). The next section will provide a definition of this sliding surface (and its related sliding variable), the associated sliding mode controllers and the associated supertwisting controllers.

B. Sliding surface

Let φ ∈ D(A * L ) := {φ ∈ H | ∃c > 0, ∀ϕ ∈ D(A L ), |⟨φ, A L (ϕ)⟩ H | ≤ c∥ϕ∥ H } ⊂ D(A *
) is an eigenfunction of the adjoint operator of A L and λ the eigenvalue associated with φ. We introduce the following sliding surface

Σ Σ := {z ∈ H | ⟨φ, z⟩ H = 0} .
Its related sliding variable σ : R + → K is defined by

σ(t) := ⟨φ, z(t)⟩ H (5)
for any solution z of (1). This sliding variable represents the scalar product between the state and an eigenfunction of A * L . In this paper, we are interested in the design of a sliding mode controller and a super twisting controller. In the following section, we begin with the design of the sliding mode control.

1) Sliding mode Control: Since φ is an eigenfunction which is different from 0, then according to Item (iii) of Assumption 1, setting t = T , we obtain B * φ ̸ = 0. Therefore, we can consider the sliding mode controller u defined by, for a.e t ≥ 0,

u(t) = Lz(t) - 1 B * φ λσ(t) + Ksign(σ(t)) , (6) 
where σ is given in (5), K is a positive constant that will be chosen later. Moreover, the set-valued function sign is defined by

sign(s) = s |s| if s ̸ = 0, [-1, 1] if s = 0.
Note that, since B * ∈ L(D(A * ), K), then B * φ is a scalar. Thus, we make the following assumption about the constant K.

Assumption 3: The constant K is chosen such that

K |B * φ| > K d .
Then, the closed-loop system (1)-( 6) can be written as

     d dt z ∈ A L z + B d - 1 B * φ λσ(t) + Ksign(σ(t)) , z(0) = z 0 . (7) 
Formally, the derivative of σ along the trajectory of (7) yields, for all t ≥ 0

σ(t) = ⟨φ, d dt z(t)⟩ H ∈ ⟨φ, A L z(t)⟩ H + B * φ d(t) - 1 B * φ λσ(t) + Ksign(σ(t)) ∈ ⟨A * L φ, z(t)⟩ H (8) 
+ B * φ d(t) - 1 B * φ λσ(t) + Ksign(σ(t)) ∈ λ⟨φ, z(t)⟩ H + B * φ d(t) - 1 B * φ λσ(t) + Ksign(σ(t)) σ(t) ∈ B * φ d(t) - K B * φ sign(σ(t))
where, before the last equation, we used A * L φ = λφ. Then, the following holds, for all t ≥ 0 1 2

d dt |σ(t)| 2 = Re σ(t) σ(t) = Re σ(t)B * φ d(t) -K B * φ sign(σ(t)) ≤ -(K -|B * φ|K d )|σ(t)|. (9) 
Therefore, separating variables and integrating inequality (9) over the time interval 0 ≤ s ≤ t, we obtain

|σ(t)| ≤ |σ(0)| -(K -|B * φ|K d )t. (10) 
Thus, there exists a finite time t r > 0, for which we know a bound that will be given later on, such that σ(t) = 0 for any t > t r . This means that the system (7) reaches the sliding surface Σ in finite time t r and remains on it. Since σ(t) = 0 for any t > t r , then σ(t) = 0 for any t > t r . Thus, from (8), we have d(t) -K B * φ sign(σ(t)) = 0 for any t > t r . As a consequence, the system (7) can be rewritten as (4) on the sliding surface, which is globally asymptotically stable around (0, 0) from the item (iv) of Assumption 1.

The next section focuses on the design of the super twisting control.

2) Super twisting control: In this section, we make the following assumption about the disturbance.

Assumption 4: The disturbance d(•) is globally Lipschitz over R + and there exists a known positive constant C such that, for a.e t ∈ R + ,

| ḋ(t)| ≤ C.
(11) We assume that K = R. We do not treat the complex case, since we are not aware whether there exist super-twisting controllers for system whose state is in C. We consider the super twisting controller u defined by, for all t ≥ 0,

         u(t) = Lz(t) + 1 B * φ -λσ(t) -α|σ(t)| 1 2 sign(σ(t)) + v(t) , v(t) ∈ -βsign(σ(t)), (12) 
where σ is given in (5), α and β are positive constants which will be chosen later. Formally, the derivative of σ along the trajectory of (1)-( 12) yields, for all t ≥ 0

σ(t) = ⟨φ, d dt z(t)⟩ H = ⟨φ, A L z(t)⟩ H + B * φd(t) -λσ(t) + v(t) -α|σ(t)| 1 2 sign(σ(t)) = λσ(t) -λσ(t) + B * φd(t) + v(t) (13) 
-

α|σ(t)| 1 2 sign(σ(t)) = -α|σ(t)| 1 2 sign(σ(t)) + v(t) + B * φd(t).
Then, according to the following transformation

w(t) = B * φd(t) + v(t), (14) 
we obtain

σ(t) = -α|σ(t)| 1 2 sign(σ(t)) + w(t), ẇ(t) ∈ B * φ ḋ(t) -βsign(σ(t)). (15) 
From [37, Theorem 1], all trajectories of (15) converge to zero in finite time.

Proposition 1: ( [37, Theorem 1]) Assuming that

β > |B * φ|C and α > β + |B * φ|C, (16) 
there exists a finite time t r > 0 such that σ(t) = 0 and w(t) = 0 for any t > t r . Then, the closed-loop system (1)-( 12) can be written as

                     d dt z = A L z + B 1 B * φ -λσ(t) -α|σ(t)| 1 2 sign(σ(t)) + w(t) , ẇ(t) ∈ B * φ ḋ(t) -βsign(σ(t)), z(0) = z 0 ∈ H, w(0) = w 0 ∈ R. (17) 
3) Main results: The equations ( 8) and ( 15) are understood in the sense of Filippov [14, Chapter 2], we recall the definition.

Definition 1: A Filippov solution of (8) (resp. of ( 15)) is an absolutely continuous map that satisfies (8) (resp. ( 15)) for almost all t ≥ 0. The solutions of (7) are understood in the sense of the following definition.

Definition 2: Let z 0 ∈ H. We say that the map z :

[0, ∞) → H is a mild solution of (7), if z ∈ C([0, ∞); H) ∩ H 1 loc ([0, ∞); D(A * ) ′ ) such that, for all t ∈ [0, ∞), z(t) = S(t)z 0 + t 0 S(t -s)Bh(s)ds, (18) 
where (S(t)) t≥0 is the strongly continuous semigroup generated by the operator A L and h : [0, ∞) → K is in L2 loc ([0, ∞); K) and satisfies, for a.e t ≥ 0,

h(t) ∈ - 1 B * φ λσ(t) + Ksign(σ(t)) + d(t) (19) 
with σ given in (5).

The following definition indicates how the solutions of ( 17) are understood. Definition 3: Let z 0 ∈ H and w 0 ∈ R. We say that the map [START_REF] Levaggi | Infinite dimensional systems' sliding motions[END_REF] where (S(t)) t≥0 is the strongly continuous semigroup generated by the operator A L and

z : [0, ∞) → H and w : [0, ∞) → R is a mild solution of (17), if z ∈ C([0, ∞); H) ∩ H 1 loc ([0, ∞); D(A * ) ′ ) and w is absolutely continuous such that, for all t ∈ [0, ∞), z(t) = S(t)z 0 + t 0 S(t -s)Bω(s)ds (20) and for a.e t ∈ [0, ∞), ẇ(t) ∈ B * φ ḋ(t) -βsign(σ(t)),
ω(t) = 1 B * φ -λσ(t) -α|σ(t)| 1 2 sign(σ(t)) + w(t) (22) 
with σ given in (5). Note that, Definition 2 and Definition 3 are based on the concept of mild solution 2 . Before presenting the results of this paper, we present the following definition of the equilibrium point of systems ( 7) and [START_REF] Hansen | New results on the operator carleson measure criterion[END_REF].

Definition 4: 1) We say that z ∈ H is an equilibrium point of system (7) , if z ∈ D(A L ) and there exists

z * ∈ [-K d , K d ] -K B * φ sign(⟨φ, z⟩ H ) such that A L z + B z * = 0. (23) 
2) We say that (z, w) ∈ H × R is an equilibrium point of system [START_REF] Hansen | New results on the operator carleson measure criterion[END_REF], if (z, w) ∈ D(A L ) × R and there exists z * ∈ B * φ[-C, C] -βsign ⟨φ, z⟩ H such that

A L z + B 1 B * φ -λ⟨φ, z⟩ H + w -α|⟨φ, z⟩ H | 1 2 sign ⟨φ, z⟩ H = 0 (24) 
and z * = 0. (25) Remark 2: One can check that 0 ∈ H (resp. (0, 0) ∈ H × R) is the unique equilibrium point of (7) (resp. ( 17)).

The main results of this paper can be formulated as follows:

Theorem 1 (Existence of solutions): 1) Assume that Assumption 1, Assumption 2 and Assumption 3 are satisfied. For any initial condition z 0 ∈ H, the system (7) admits a mild solution. 2) Assume that Assumption 1, Assumption 4 and Equation ( 16) are satisfied. For any initial condition z 0 ∈ H and w 0 ∈ R, the system (17) admits a mild solution. The next result of this paper is stated as follows:

Theorem 2 (Global asymptotic stability): 1) Assume that Assumption 1, Assumption 2 and Assumption 3 are satisfied. For any initial condition z 0 ∈ H, 0 ∈ H is globally asymptotically stable for (7). 2) Assume that Assumption 1, Assumption 4 and Equation ( 16) are satisfied. For any initial condition

(z 0 , w 0 ) ∈ H × R, 0 0 ∈ H × R is globally
asymptotically stable for [START_REF] Hansen | New results on the operator carleson measure criterion[END_REF].

III. PROOF OF THEOREM 1 AND THEOREM 2

A. Proof of Theorem 1

The proof of Theorem 1 is divided into two parts. In the first part, the proof of the Theorem 1 is presented in the case of system (7). The second part deals with the proof of Theorem 1 in the case of system [START_REF] Hansen | New results on the operator carleson measure criterion[END_REF].

Let us start the proof of the first part. 1) Sliding mode control: We consider the following ODE

   γ(t) ∈ B * φ d - K B * φ sign(γ(t)) , t ∈ R + , γ(0) = γ 0 ∈ R, (26) 
The system ( 26) is understood in the sense of Filippov [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF].

In the next lemma, we state that there exists a unique solution to [START_REF] Liu | Active disturbance rejection control and sliding mode control of one-dimensional unstable heat equation with boundary uncertainties[END_REF] and that ( 26) is stabilized in finite-time.

Lemma 1: Assume that Assumption 2 hold. Then, the ODE (26) admits a unique Filippov solution. Moreover, there exists t r > 0 such that, for any Filippov solution γ of (26),

γ(t) = 0, ∀ t ≥ t r , with t r ≤ |γ(0)| K -K d |B * φ| .
Lemma 1 is an immediate consequence of the general Filippov theory [14, Chapter 2] (for the real case), [46, Theorem 2.8] (for the complex case), when applied to the particular case of [START_REF] Liu | Active disturbance rejection control and sliding mode control of one-dimensional unstable heat equation with boundary uncertainties[END_REF]. Finite-time stability can be deduced easily by Lyapunov arguments (given in Section II).

Let γ be the Filippov solution of (26) with initial condition γ(0) = ⟨φ, z 0 ⟩ H . We consider the following system

   d dt ϕ = A L ϕ + 1 B * φ B( γ -λγ), ϕ(0) = ϕ 0 ∈ H. ( 27 
)
If B is an admissible operator for S and γ -λγ ∈ L 2 loc ([0, ∞); K), then system (27) admits a unique mild solution, where (S(t)) t≥0 is the strongly continuous semigroup associated with the operator A L . This is what we will prove in the next Lemma, which says that there exists a unique solution in the sense of [42, Definition 4.1.5].

Lemma 2: For all ϕ 0 ∈ H, the system (27) admits a unique mild solution ϕ

∈ C([0, ∞); H) ∩ H 1 loc ([0, ∞); D(A * ) ′ ).
Proof: Let γ be a Filippov solution of [START_REF] Liu | Active disturbance rejection control and sliding mode control of one-dimensional unstable heat equation with boundary uncertainties[END_REF]. Then, according to Lemma 1, γ is absolutely continuous. Moreover, γ is bounded and measurable according to Assumption 2. Thus, we have γ -λγ ∈ L 2 loc ([0, ∞); K). On the other hand, according to the item (ii) of Assumption 1, B is admissible for (T(t)) t≥0 , then according to [START_REF] Hansen | New results on the operator carleson measure criterion[END_REF]Proposition 4.2], B is an admissible control operator for (S(t)) t≥0 . Then, according to [42, Proposition 4.2.5], the statement of Lemma 2 holds, achieving the proof. Now, the aim is to prove that the mild solution ϕ to [START_REF] Mironchenko | Input-to-state stability of infinitedimensional systems: recent results and open questions[END_REF] with initial condition z 0 is a mild solution to (7). To that end, we will show that the following function

y(t) = ⟨φ, ϕ(t)⟩ H , (28) 
with ϕ the solution of [START_REF] Mironchenko | Input-to-state stability of infinitedimensional systems: recent results and open questions[END_REF], is equal to γ, for any t > 0.

Lemma 3: For all z 0 ∈ H, y is a Carathéodory solution to ẏ(t) = λy + γ(t) -λγ(t), for a.e t ≥ 0,

y(0) = ⟨φ, z 0 ⟩ H (29) 
i.e y is an absolutely continuous map such that, for all t ≥ 0

y(t) -y(0) = t 0 λy(s) + γ(s) -λγ(s) ds. (30) 
Proof: Let ϕ be the mild solution of [START_REF] Mironchenko | Input-to-state stability of infinitedimensional systems: recent results and open questions[END_REF]. Since φ ∈ D(A * L ), and using Item (ii) of Assumption 1, then according to [42, Remark 4.2.6], we obtain for that, every t ≥ 0,

⟨φ, ϕ(t) -z 0 ⟩ H = t 0 ⟨A * L φ, ϕ(s)⟩ H + 1 B * φ B * φ( γ(s) -λγ(s)) ds = t 0 λ⟨φ, ϕ(s)⟩ H + γ(s) -λγ(s) ds, (31) 
because A * L φ = λφ. Then, using [START_REF] Moreno | Strict lyapunov functions for the super-twisting algorithm[END_REF], one has, for all t ≥ 0,

y(t) -y(0) = t 0 λy(s) + γ(s) -λγ(s) ds. (32) 
This concludes the proof. We introduce the function g defined by g(t) = y(t) -γ(t). From ( 26) and ( 29) with γ(0) = ⟨φ, z 0 ⟩ H , g is solution of

ġ(t) = λg(t) g(0) = 0 (33) 
Thus, for any t ∈ R, g(t) = 0. By definition of g, we deduce that, for any t ∈ R, y(t) = γ(t). Therefore, according to [START_REF] Liu | Active disturbance rejection control and sliding mode control of one-dimensional unstable heat equation with boundary uncertainties[END_REF] we have, for a.e t ≥ 0,

1 B * φ γ(t) ∈ - K B * φ sign(y(t)) + d(t). (34) 
Thus, according to Lemma 2 and (34), ϕ satisfies Definition 2. Then, we conclude that, for any Filippov solution γ of ( 26) with initial condition γ(0) = ⟨φ, z 0 ⟩ H , the associated mild solution ϕ of ( 27) is a mild solution of (7). This concludes the proof of Theorem 1 in the case of system (7). □

2) Super twisting control:

Let z 0 ∈ H, w 0 ∈ R. Consider the following ODE      ρ(t) = -α|ρ(t)| 1 2 sign(ρ(t)) + η(t), t ∈ R + , η(t) ∈ B * φ ḋ(t) -βsign(ρ(t)), t ∈ R + ρ(0) = ρ 0 , η(0) = w 0 . (35) 
The system [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] is understood in the sense of Filippov [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF]. In the next lemma, we state that there exists a solution to [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF].

Lemma 4: Assume that ( 16) holds. Then, there exists an absolutely continuous map (ρ, η) that satisfies [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] for almost every t ≥ 0.

Proof: We consider the function f : R 2 → R 2 defined by

f (ρ, η) = f + (ρ, η) = (-α √ ρ + η, -β) if ρ > 0, f -(ρ, η) = (α √ -ρ + η, β) if ρ < 0 (36) and let F d : (ρ, η) ∈ R 2 → F d (ρ, η) be the set-valued map defined by F d (ρ, η) = B(0, |B * φ|C) + {f (ρ, η)} if ρ ̸ = 0, conv{f + (ρ, η), f -(ρ, η)} if ρ = 0 (37) 
where B(0, |B * φ|C) is a closed ball of R 2 centered at 0 and of radius |B * φ|C. Since f is continuous on R\{0}×R, then the function F d is non-empty, compact, convex and upper semi-continuous. Then according to [5, Theorem 3.6], there exists at least one solution of the differential inclusion

ζ ∈ F d (ζ) (38) 
where ζ = (ρ, η). Since F d is the Filippov's construction (as in [14, Chapter 2]) associated with [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF], then, there exists an absolutely continuous map that satisfies [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] for almost every t ≥ 0, concluding therefore the proof. Let (ρ, η) be a solution of [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] with initial condition ρ(0) = ⟨φ, z 0 ⟩ H . We consider the following system

   d dt ψ = A L ψ + 1 B * φ B( ρ -λρ), ψ(0) = z 0 ∈ H. ( 39 
)
Since ρ and η are continuous then, according to the first line of ( 35), we deduce that ρ is also continuous. Moreover, since ρ and ρ are continuous, then ρ-λρ ∈ L 2 loc ([0, ∞); R). Thus, according to Lemma 2, the system (39) admits a unique mild solution

ψ ∈ C([0, ∞); H) ∩ H 1 loc ([0, ∞); D(A * ) ′ ) .
As in the previous case, the aim is now to prove that the solution (ψ, η) is a mild solution to [START_REF] Hansen | New results on the operator carleson measure criterion[END_REF]. For this purpose, we are going to show that the following function

θ(t) = ⟨φ, ψ(t)⟩ H , (40) 
with ψ the solution of [START_REF] Slemrod | Stabilization of boundary control systems[END_REF], is equal to ρ for any t > 0.

Lemma 5: For all z 0 ∈ H, θ is a Carathéodory solution of

θ(t) = λθ + ρ(t) -λρ(t), t ≥ 0, θ(0) = ⟨φ, z 0 ⟩ H . ( 41 
)
The proof of Lemma 5 is similar to the proof of Lemma 3. We therefore omit the proof of Lemma 5. Now, according to Lemma 4 θ is absolutely continuous map. Moreover, if we set κ = θ -ρ, then κ satisfies [START_REF] Pisano | Combined backstepping/second-order sliding-mode boundary stabilization of an unstable reaction-diffusion process[END_REF]. Thus, κ(t) = 0 for all t ∈ R. This mean that, θ(t) = ρ(t) for any t ∈ R. As a consequence, according to [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF], we have, for a.e t ≥ 0,

η(t) ∈ B * φ ḋ(t) -βsign(θ(t)). (42) 
Thus, according to Lemma 4 and ( 42), η is absolutely continuous map and satisfies [START_REF] Levaggi | Infinite dimensional systems' sliding motions[END_REF]. Therefore, (ψ, η) satisfies the Definition 3. This, mean that (ψ, η) is a mild solution of [START_REF] Hansen | New results on the operator carleson measure criterion[END_REF]. This concludes the proof of Theorem 1 in the case of system [START_REF] Hansen | New results on the operator carleson measure criterion[END_REF]. □

B. Proof of Theorem 2

Like the proof of Theorem 1, the proof of Theorem 2 is divided into two parts. In the first part, the proof of the Theorem 2 is presented in the case of the system (7). The second part deals with the proof of Theorem 2 in the case of system [START_REF] Hansen | New results on the operator carleson measure criterion[END_REF].

Let us start the proof of the first part. 1) Sliding-mode control: Let us consider z a mild solution of (7) with initial condition z 0 ∈ H. Then, according Definition 2, there exists h ∈ L 2 loc ([0, ∞); K) such that h satisfies [START_REF] Prieur | PI regulation of a reaction-diffusion equation with delayed boundary control[END_REF] and z satisfies [START_REF] Komornik | Rapid boundary stabilization of linear distributed systems[END_REF]. Therefore, since φ ∈ D(A * L ), and using Item (ii) of Assumption 1, then according to [42, Remark 4.2.6], z satisfies, for every t ≥ 0,

⟨φ, z(t) -z 0 ⟩ H = t 0 ⟨A * L φ, z(s)⟩ H + B * φh(s) ds = t 0 λ⟨φ, z(s)⟩ H + B * φh(s) ds, (43) 
because A * L φ = λφ. Using (5), one has, for every t ≥ 0,

σ(t) -σ(0) = t 0 λσ(s) + B * φh(s) ds. (44) 
As a consequence, σ defined in (5) is a Carathéodory solution to

σ(t) = λσ(t) + B * φh(t), σ(0) = ⟨φ, z 0 ⟩ H . (45) 
Since h ∈ -1 B * φ λσ + Ksign(σ) + d, then σ is a Filippov solution of (26) with initial condition ⟨φ, z 0 ⟩ H . From Lemma 1, there exists a finite time t r such that σ(t) = 0 for any t > t r .

Therefore, σ(t) = 0 for any t > t r . As a consequence, from [START_REF] Wang | Sliding mode control to stabilization of cascaded heat PDE-ODE systems subject to boundary control matched disturbance[END_REF], for any t > t r , h(t) = 0. Thus, for any t > t r , the system (7) is equivalent to the system (4) and hence is asymptotically stable in H from the item (iv) of Assumption 1. Therefore, to conclude the proof of Theorem 2 in the case of system (7), it is just necessary to prove the Lyapunov stability of the system (7) over the time interval [0, t r ]. For this purpose, we consider z a mild solution of (7) with initial condition z 0 ∈ H on the interval [0, t r ]. Then, using the Definition 2, there exists C 0 > 0 such that, for all t ∈ [0, t r ], we have

∥z(t)∥ H ≤ C 0 ∥z 0 ∥ H + t 0 S(t -s)Bh(s)ds H . (46) 
Since (S(t)) t≥0 is exponentially stable and B is an admissible operator for (S(t)) t≥0 , then according to [42, Proposition 4.3.3], there exists C 1 > 0 independent of t r such that, for all t ∈ [0, t r ]

∥z(t)∥ H ≤ C 1 ∥z 0 ∥ H + ∥h∥ L 2 (0,tr) . (47) 
Moreover, since h ∈ -1 B * φ λσ + Ksign(σ) + d, then according to Assumption 2, h is bounded. Therefore, there exists C 2 > 0 such that

∥h∥ L 2 (0,tr) ≤ C 2 t 1 2 r . (48) 
Moreover, according to Lemma1,

t r ≤ |⟨φ,z0⟩ H | K-|B * φ|∥d∥ L ∞ (R + )
. Thus, using Cauchy-Schwarz's inequality, we have

t r ≤ ∥φ∥ H K -|B * φ|∥d∥ L ∞ (R+) ∥z 0 ∥ H . (49) 
As a consequence, according to ( 47), ( 48) and ( 54), there exists C 3 > 0 (independent of t r ) such that for all t ∈ [0, t r ],

∥z(t)∥ H ≤ C 3 ∥z 0 ∥ H + ∥z 0 ∥ H . (50) 
According to [27, Definition 2.3], this concludes the proof of Lyapunov stability of the system (7) over the time interval [0, t r ]. □ Remark 3: In contrast with many stabilization techniques, we do not need here to compute time-derivative of Lyapunov functionals for the infinite-dimensional system. More precisely, classical techniques rely on the existence of strong solutions for which on computes time derivative of a suitable Lyapunov functional, and one concludes then on the stability for weak solution by a density argument.

2) Super-twisting control: Let us consider (z, w) a mild solution of ( 17) with initial condition (z 0 , w 0 ) ∈ H × R. Then, according Definition 3, there exists w ∈ L 1 loc ([0, ∞); R) with w(t) ∈ sign(σ(t)) such that, for a.e t ≥ 0, ẇ(t) = B * φd(t) -β w and z satisfies [START_REF] Lasiecka | Differential and algebraic Riccati equations with application to boundary/point control problems: continuous theory and approximation theory[END_REF]. Replacing h by ω in [START_REF] Utkin | Sliding modes in control and optimization[END_REF], then σ satisties [START_REF] Utkin | Sliding modes in control and optimization[END_REF]. Then, according to [START_REF] Levaggi | Sliding modes in banach spaces[END_REF], [START_REF] Utkin | Sliding modes in control and optimization[END_REF] we obtain, for a.e t ∈ [0, T ]

σ(t) = -α|σ(t)| 1 2 sign(σ(t)) + w(t), ẇ(t) = B * φ ḋ(t) -β w(t). (51) 
Since w ∈ sign(σ(t), then (σ, w) is a Filippov solution of [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] with initial condition (⟨φ, z 0 ⟩ H , w 0 ). According to Proposition 1, there exists a finite time such that σ(t) = 0 and w(t) = 0 for any t > t r . Then, for any t > t r , the solution z to system (17) is solution to system (4) and hence is asymptotically stable in H from Item (iv) of Assumption 1. Therefore, as in the previous part, we just need to prove the Lyapunov stability of the system (17) over the time interval [0, t r ] to conclude the proof of Theorem 2. For this purpose, we consider (z, w) a mild solution of [START_REF] Hansen | New results on the operator carleson measure criterion[END_REF] with initial condition (z 0 , w 0 ) ∈ H × R on the interval [0, t r ]. Then, like in the previous part, using Definition 3, there exists C 0 > 0 such that, for all t ∈ [0, t r ], we have

∥z(t)∥ H ≤ C 0 ∥z 0 ∥ H + ∥ω∥ L 2 (0,tr) . ( 52 
)
Since z is continuous on [0, t r ] , then, according to (5), σ is also continuous. Therefore, σ is bounded on [0, t r ]. Moreover, w is an absolutely continuous map. Thus, w is bounded on [0, t r ]. Then, the function

ω(•) := 1 B * φ -λσ(•) -α|σ(•)| 1 2 sign(σ(•)) + w(•)
is also bounded on [0, t r ]. Therefore, there exists

C 1 > 0 such that ∥ω∥ L 2 (0,tr) ≤ C 1 t 1 2 r . (53) 
Now, according to [28, Theorem 2], there exist positive constants C 2 , C 3 such that

t r < C 2 (|σ(0)| + |w 0 |) , |w(t)| ≤ C 3 |w 0 |. (54) 
Using Cauchy-Schwarz's inequality, we obtain

|σ(0)| = |⟨φ, z 0 ⟩ H | ≤ ∥φ∥ H ∥z 0 ∥ H . (55) 
As a consequence, according to (52), ( 53 

         z t (t, x) = z xx (t, x), (t, x) ∈ R ≥0 × [0, 1], z x (t, 0) = c 0 z(t, 0), t ∈ R + , z x (t, 1) = u(t) + d(t), t ∈ R + , z(0, x) = z 0 (x), (57) 
where c 0 is a positive constant, u(t) ∈ R is the control input and d(t) ∈ R is an unknown disturbance. This equation can be written in an abstract way as in (1) if one sets H = L 2 (0, L), 

A : D(A) ⊂ L 2 (0, L) → L 2 (0, L), z → z ′′ , (58) 
A * : D(A * ) ⊂ H → H, z → z ′′ , (61) 
with D(A * ) := {z ∈ H 2 (0, 1) | z ′ (0) = c 0 z(0); z ′ (1) = 0}.

It can be checked that the operator A is self-adjoint in H.

The adjoint of operator of B is

B * : D(A * ) → R φ → φ(1). (62) 
According to [ 

         z t (t, x) = z xx (t, x), (t, x) ∈ R ≥0 × [0, 1], z x (t, 0) = c 0 z(t, 0), t ∈ R + , z x (t, 1) = 0, t ∈ R + , z(0, x) = z 0 (x), (63) 
is globally exponentially stable in H. As a consequence, Item (iv) of Assumption 1 holds for the operator L equal to the zero operator. Since A is self-adjoint, then its spectrum is real. Therefore, a direct computation gives that the eigenpairs (λ, φ

λ ) of A satisfies    φ λ (x) = cos( √ -λx) + c 0 √ -λ sin( √ -λx), √ -λ tan( √ -λ) = c 0 . (64) 
The function x ∈ R\{ π 2 +kπ; k ∈ Z} → tan(x) is surjective. Thus, the equation √ -λ tan( √ -λ) = c 0 admits a solution. Note that λ is negative, since the origin of (63) is globally exponentially stable in H.

Let φ λ ∈ D(A) the eigenfunction of the operator A associated to λ. The sliding variable and the feedback law under consideration are as follows

σ(t) = L 0 z(t, x)φ λ (x)dx and u(t) = - 1 φ λ (1) λσ(t) + Ksign(σ(t)) . (65) 
Thus, if we choose d and K as in Assumption 2 and 3, we can conclude that the origin of

                 z t (t, x) = z xx (t, x), (t, x) ∈ R ≥0 × [0, 1], z x (t, 0) = c 0 z(t, 0), t ∈ R + , z x (t, 1) ∈ - 1 φ λ (1) λσ(t) + Ksign(σ(t)) + d(t), t ∈ R + , z(0, x) = z 0 (x), (66) 
is globally asymptotically stable in H. On the other hand the super-twisting control under consideration is as follows

   u(t) = 1 φ λ (1) -λσ(t) -α|σ(t)| 1 2 sign(σ(t)) + v(t) , v(t) ∈ -βsign(σ(t)).
(67) Therefore, if we choose d as in Assumption 4, β and α as in [START_REF] Guo | Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input[END_REF] we can conclude that the origin of

                   z t (t, x) = z xx (t, x), (t, x) ∈ R ≥0 × [0, 1], z x (t, 0) = c 0 z(t, 0), t ∈ R + , z x (t, 1) = 1 φ λ (1) -λσ(t) -α|σ(t)| 1 2 sign(σ(t)) + v(t) + d(t), t ∈ R + , z(0, x) = z 0 (x), (68) 
is globally asymptotically stable in H.

Using the finite difference method [START_REF] Li | Numerical solution of differential equations: introduction to finite difference and finite element methods[END_REF], we performed some numerical simulations. We choose λ = -2c 0 -π 2 which is an approximated solution of √ -λ tan( √ -λ) = c 0 , c 0 = 0.5, K = 2.5, z 0 (x) = 10x 3 and d(t) = 2 sin (t). The space and time steps are taken as 0.1 and 0.0001, respectively.

In Figure 1-Top. the control input u defined in (65) makes chattering phenomenon appearing once the sliding variable has converged (see Figure 1-Middle.). In Figure 1-Bottom., the stabilization of z of (66) is illustrated.

Figures 2 is obtained with the same settings as the Figures 1 with β = 2.5 and α = 2.2. It must be noted that, thanks to the use of super twisting algorithm, the chattering on u has been removed (super twisting is continuous) whereas the stabilization is kept.

V. CONCLUSION

In this paper, we have proposed a design method based on sliding mode control for the stabilization of class of linear infinite-dimensional systems with unbounded control operators and subject to a boundary disturbance. The existence of solutions of the closed-loop system has been proved as well as the disturbance rejection and the asymptotic stability of the closed-loop control system. We further have extended the super-twisting method for the same class of linear infinitedimensional systems.

Future works will consider the case where the operator A in (1) is nonlinear, for which many notions will need to be adapted such as the controllability or the admissibility. It might also be interesting to investigate the case where the disturbance does not match with the control as it has been done for ODEs in [6].
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  ), (54) and (55), there exists C 4 > 0 such that, for all t ∈ [0, t r ],∥z(t)∥ H + |w(t)| ≤ C 4 ∥z 0 ∥ H + |w 0 | + ∥z 0 ∥ H + |w 0 | .
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	This concludes the proof of Lyapunov stability, in the
	sense given in [27, Definition 2.3], of system (17) over the
	time interval [0, t r ].
	□
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