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Abstract: This article details a new threat to NN formal verification that is well known in
the formal verification of classical systems: errors in the learned model of a NN could cause
the NN to pass formal verification on a property while violating the same property in real life.
The solution to this threat for classical systems (which is expert reviews) is inadequate for NN
due to their lack of explainability. Here, we propose a detection and recovery mechanism to
tolerate it. This mechanism is based on a mathematical diversification of the system’s model
and the online verification of the formal safety properties. It was successfully implemented and
validated on an application example, which, to our knowledge, is one of the most concrete NN
formal verification in the literature: the Adaptive Cruise Control function of an autonomous

car.

Keywords: Formal verification, Neural network, Fault tolerance.

1. INTRODUCTION

With the explosion of big data to learn from and their
ability to generalize and offer robust solutions to problems
with a huge operating domain, neural networks (NN)
offer more and more applications of interest, particularly
for automated agents. The use of NN in safety critical
application is however not recommended currently because
of their lack of dependability, mainly due to their lack of
explainability and the tremendous effort required to test
their whole operating domain.

Formal verification (FV) offers answers to most of these
problems by guaranteeing properties on entire domain of
the NN. However, several locks keep this technique from
increasing sufficiently the safety of NN. In particular,
this article focuses on a problem that is well known for
formal verification of classical systems but has never been
studied for formal verification of NN: the fact that an
erroneous model can lead to validating a property which
will be violated in real life. This is a severe threat for
formal verification of NN, as the solution used for classical
systems (expert validation) is not usable due to their lack
of explainability. The major contributions of this article
are threefold. First, it presents an application example of
formal verification for NN very close to industrialization:
an ACC function used in real autonomous cars. Second, it
details on this example how an erroneous network could
pass formal verification and still cause failures in real
life, using an erroneous network created through fault
injection. Third, it proposes and validates a detection and
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recovery mechanism to tolerate this new threat to NN
formal verification.

In the second section, we provide a quick overview on
formal verification approaches for NN. In the third section,
we detail the limits that appear when applying FV to
an erroneous NN. In the fourth section we introduce our
application case, the modelling of an ACC (Adaptive
Cruise Control) by a NN, and the verification of the
NN to validate its behavior. The validation of the NN is
done by testing several scenarios in a simulator. The fifth
section presents the FV we did on the nominal NN. The
sixth section presents the erroneous NN that we developed
for our experiment. We detail the fault we injected, the
evaluation of the NN, and the how we made it pass
the formal verification. In section seven, we introduce a
detection mechanism, and a recovery mechanism based on
diversification. In section eight, we present the application
of these two mechanisms to our ACC example.

2. CONCEPTS AND RELATED WORK

In this section we present some references regarding the
use of neural networks for critical applications, and then
classifications of methods and tools for formal verification
of NN.

Neural networks showed great capabilities for applications
in profiling, image recognition, sound recognition, logic
games, etc. Their ability to generalize well is particularly
adequate for robust applications like autonomous vehicles
Huang and Chen (2020). However, they still can not be
used for safety critical applications because of their lack
of dependability: their use is not recommended in railways



application ! and in general in safety critical applications.
Note that several standards are being developed to clarify
their use in automotive applications?-3: 4.

Formal verification aims to guarantee that a component
verifies a property on entire input domains. It appears to
us as an interesting candidate to improve NN depend-
ability because it answers several issues regarding the
dependability of NN:

e guarantees over entire ranges of the domain: when
verified, a property is valid on the entire domain
specified in the conditions of the property. This an-
swers the lock regarding open environments where it
is impossible to describe all situations that may occur
or use test coverage as a dependability tool.

e absence of oracle : because formal verification does
not check the correctness of the output, it does not
suffer from the oracle problem. Indeed, it focuses
on guaranteeing safety properties designed by safety
experts.

Several classifications exist to classify the numerous FV
methods (Urban and Miné (2021), Liu et al. (2019), Huang
et al. (2020), Leofante et al. (2018)):

e Leofante et al. (2018) classifies the methods based on
which architectures are supported by the tools and
methods, and the type of property that the methods
can prove (invariance, invertibility, equivalence).

e Huang et al. (2020) classifies the methods based on
the kind of proving methods used, the associated
precision (exact deterministic, approximated, con-
verging, statistical) and the type of property that
can be proven (robustness, reachability, interval, lip-
schitzian).

e Liu et al. (2019) classifies the methods based on the
kinds of proving methods (reachability, optimization,
search for counterexample).

e Urban and Miné (2021) classifies the methods based
on the complete and incomplete aspects of the
method.

Among these several methods, we identified several tools
that combine an available mature software and a precise
documentation: Marabou Katz et al. (2019), MIPVerify
Tjeng et al. (2019) and ERAN Gehr et al. (2018). As
explained in section 5.3, we will use Marabou® in this
article.

3. ERRONEOUS MODELING AND FORMAL
VERIFICATION OF NN

In this section, we will study what could happen when
a NN has incorrectly learned external relations between
its inputs and outputs (due to dynamic properties or
environmental evolution).

1 EN 50128, Railway applications - communication, signalling and
processing systems - software for railway control and protection
systems.

2 1SO/CD TR 4804, Road vehicles safety and security for automated
driving systems design, verification and validation methods.

3 ISO/CD 21448, Road vehicles safety of the intended functionality.
4 ISO 26262, Road vehicles functional safety

5 commit number: b0e29fb43b6722dfe9b5a90cc1353990aa732327

8.1 Modeling relations for F'V in classical systems

In classical systems, the formal properties usually describe
constraints on some of the system’s state variables under
specific conditions. The formal verification is then done
through some mathematical proof on a model of the
system. This model is developed by the system’s engineers
and is supposed to describe the system’s behavior in a
scheme suitable for the chosen formal verification tool.
Obviously, if the model does not correctly describe the
system’s behavior, the formal verification will have been
done on a description of the system differing from the
real one and thus would guarantee nothing on the real
system. Correctness of the model is then fundamental
for the formal verification process. To our experience
in the industry’s practices, and particularly in railway
applications, trust in this model is achieved through code
reviews and functional tests.

8.2 Modeling relations for FV in NN

The model of a NN is intrinsically part of the weight and
bias of the neurons of the NN, and usually impossible to
understand by humans. In the same way as in classical
systems, errors in the model of the NN can result a
satisfied formal verification that might not hold in the real
world. But whereas the model in a classical system can be
reviewed by experts, the model in the NN is as stated
extremely hard or even impossible to verify by experts,
and testing is often limited due to the open environment
that required Al techniques. To sum up our argument,
formal verification for NN can not give much trust in a
NN because it is partly based on a model learned by the
NN, which is very hard to validate.

Verifying properties on a NN that models incorrectly the
relations between its inputs, outputs, and /or other implicit
state’s variables may lead to verify properties that do not
hold in real life. We present in the following section a more
concrete example of this problem.

4. APPLICATION EXAMPLE: AN ACC FUNCTION

In this section, we will present the modelling of the au-
tonomous driving Adaptive Cruise Control (ACC) func-
tion that is used as an experimental validation for our
work.

4.1 Description of the ACC function

We chose an ACC function as an example of autonomous
driving as it is still a relatively simple mathematical func-
tion, while demonstrating a lot of the locks of critical au-
tonomous systems (such as an open environment, possible
catastrophic consequences of failures, etc.). Note that an
ACC function would not be implemented by a NN as it
is simple enough to be written with classical control laws.
We use it as an application example and the same process
would apply similarly to other NN.

The ACC is an autonomous driving function of level 1: it
implements a longitudinal control of the vehicle, which we
will call ego car. It has two main functionalities: adapt the
speed either to a speed limit entered by the user (speed



following mode), or to keep a safe distance from a car in
front, which we call exo car (distance following mode, also
called car following mode). The ACC function that we will
consider in this article has 6 inputs:

® S0t the speed of the ego car, expressed in m.s™!

e S,.: the relative speed of the exo car, in comparison
to our car, expressed in m.s~!. When there is no exo
car, this input has the value 0.

e D: the distance between the ego car and the exo car,
expressed in m. When there is no exo car or when the
exo car is further than 150 m this input has the value
150.

e T'H,.4: the minimal time headway expressed in s. It
is the minimal time gap between the exo car and the
ego car, set by the user but usually dependent on road
rules. For our experiment, this input will always have
the value 1.5.

e Dy: a safety margin to add to the minimal safety
distance between the ego and exo cars, expressed in
m. For our experiment, this input will always have
the value 5.

® Spcy: the speed limit set by the user, expressed in
m.s

It has one output, the acceleration command, expressed
in m.s~2. In real vehicles this command is calculated by a
function (whose algorithm is in appendix) using classical
control laws. We will call this function ACC,,4, which is
the function our NN will aim to model. In section 5.4, we
will introduce ACC),,04, & more conservative version, that
will be used for generating the training sets for all the NN
of our experiment. Note that the function uses a variable
called Dy that represents the safety distance the ego car
must always keep with an exo car in front and is derived
from the T'H,eq.

4.2 Nominal neural network

In this section, we will detail the NN that we used in our
experiment to approximate the ACC function.

Architecture  We use a feedforward NN architecture with
ReLu activation functions. This choice was motivated by
he requirements of our formal verification tool. The final
architecture of our NN is composed of:

e 1 input layer with the same 6 inputs as the function
ACOorig: Sego: Sr, D, TH;eq, Do, Sref

e 4 hidden layers of size 64, 64, 32, 32

e 1 output layer with 3 outputs: acceleration the ac-
celeration command, and the two outputs needed
for formal verification (see section 5.1 for details)
futureSpeed and futureT H.

Training data  To train our NN, we created a training
set of 1 million elements from the function ACC,,,q. Each
element contains the 6 inputs and the corresponding 3
outputs. To improve the accuracy of the NN sufficiently to
pass formal verification, we divided the training set into 8
datasets, with the data distribution described in table the
appendix.

Training  For the training, we shuffled then divided the
training dataset into 100 batches on 1000 epochs. This

process was done with the framework pytorch (version 1.15
for GPU). The optimizer used was the Adam algorithm
Kingma and Ba (2015) available in pytorch, and the MSE
loss function also in pytorch. We kept the default weight
and biases initialization method offered in pytorch an uni-

form law U(—Vk, Vk), with k =
1
5)-

4.8 Validation framework

number of znput features =

To validate our experiments, we used a driving simulator.
The objective was to model enough situations that could
be representative of the ACC functionalities. In this sec-
tion, we will describe the methodology and tools we used
for this validation.

Sitmulator ~ We used an adapted version of the airsim
simulator developed by Microsoft Shah et al. (2018). The
simulator can integrate one ego car (that can be controlled
by an API), and several exo cars (set on a predefined
behavior). In our experiments, we used only one exo car
at a time. For the track, we used a 1290m straight line,
with cars staying on the left lane.

The initial condition of a scenario is defined by several
state variables. For the ego car the state variables are:
initial position this is where we start every experiments,
initial speed, Syey. For the exo car (when present in the
scenario) the state variables are: initial position relative
to the position of the ego car (set as 0), and noted D¢,
initial speed, and Sycf—Ezo the speed that the exo car will
reach and follow automatically.

The simulator uses a 33 ms cycle, which means that every
33 ms it updates the values of the state variables, and
computes the new ego car behavior based on the ACC
command sent and the new exo car state from its variables
and its set behavior. The lateral control of the ego car
is commanded automatically by the simulator and the
lateral and longitudinal controls of the exo car are also
commanded automatically by the simulator.

Scenarios for evaluation — As previously stated, validating
an autonomous vehicle is a tremendous task considering
the quasi-infinite possible situations due to its open en-
vironment, particularly considering constrained time and
resources. Thus we first decided to limit ourselves to
scenarios on a straight road with one or no exo car as
we focus on a longitudinal control function. We proposed
15 scenarios for this configuration, which we will partly
present in this section. Obviously we do not consider them
sufficient to exhaustively test the ACC function but we
tried to use a systematic method to generate them. Our
creation process follows the steps defined in Menzel et al.
(2018). We begin by defining the scenario attributes and
then refine the considered scenarios under three levels
of abstraction: functional scenarios, logical scenarios and
finally concrete scenarios.

The functional scenarios we used are separated in two
kinds: scenarios A that have no exo car, scenarios B that
have an exo car:

e Scenario A: no exo car detected is in front. The ego
car is thus in speed following mode.



Table 1. Definition of the concrete scenarios
Al1.1,A22 B.1.2, B.2.1,B.3.3

Al A2 B.1 B.2 B.3
Al.1l A2.2 B.1.2 B.2.1 B.3.3
Sego (km/h) 27 90 130 7 50
S,es (km/h) 7 120 130 70 110
initial exo
speed (km/h) X X 7 7 50
Sres—wo (km/h) X X 7 50 130
D (m) X X 150 13 32

- Scenario A.1: the ego car drives at a higher speed
than Sy.f, and thus must lower its speed before
maintaining it below Sy.f.

- Scenario A.2: the ego car drives at a lower speed
than Sy.f, and thus must accelerate before main-
taining its speed at Syef.

e Scenario B: an exo car is detected in front of the ego
car.

- Scenario B.1: the ego car detects at maximal
range (150m) a slower exo car and thus must
decelerate and keep following it at a safe distance.

- Scenario B.2: the ego car is following an exo car
that accelerates no higher than S,.y and must
thus follow this acceleration while staying at a
safe distance.

- Scenario B.3: the ego car is following an exo car
that will accelerate higher than S,.r and must
thus follow it until its speed reaches Sy.s. Then,
the ego car will stay at this speed while the ego
car drives away from the ego car.

From these functionnal scenarios, we created 15 concrete
ones. In this article, due to the lack of place, we will only
present the 5 concrete scenarios described in table 1.

Results and measures  For each simulator cycle of each
run, we collect all the state variables of the simulator. For
each scenario, we make 10 runs to aggregate their results
and obtain representative measures as the simulator is not
deterministic, and the same scenario could lead to slightly
difference runs.

We present a summary of our experiments in table 2 at
the end of the article. The measures presented in the table
are:

e Mrp: average time (in s) for all experiments with

TH <TH;eq

e Mp: average time (in s) for all experiments with
D < Ds

e Mg, ,: average time (in s) for all experiments with

Sego > S’ref

Observing the nominal NN measures presented in table
2 we can draw two conclusions: the nominal NN has a
mostly similar behavior to the ACC,,;4 function, and it
maintains a safe behavior. We consider that the NN,
learned correctly the ACC function because most measures
on the NN runs have a very similar value to the ones with
the ACC function.

We can also say that the NN behavior is safe because in all
our scenarios, the measure Mpy (time with TH < TH,¢q)
and the measure Mp (time with D < D) have a 0 value.
This shows that we spend no time in unsafe situation.
There are however some specific situations where the

measures shows singular values. As in scenarios A.1.1, the
values of measures Mr g and Mp are also slight above 0 for
both the ACC and the nominal NN (all with values around
0.33 s). This is explained because these scenarios actually
start with an ego speed S¢q, higher than the speed limit
Sres as the goal of the scenario is to evaluate the function’s
capacity to decrease its ego speed S.4, until it reaches the
speed limit Sy.y.

We show below graphs describing part of the behavior of
the system for the scenario B.1.2 (figure 1 and 2).

150

« D(m)

125 « Ds(m)
100
E s

[a]

50
25
0

0 10 20 30 40

Time (s)

Fig. 1. Distance between the ego car and the exo car
(D) compared to the safety distance (Dg) with the
nominal NN for scenario B.1.2

5. FV OF OUR NN

In this section, we will detail the methods and tools we
used to perform the formal verification on our NN.

5.1 Verification properties

In this subsection, we describe the property that we want
to verify on the NN. We formally verified two types
of properties: one safety property and four functional
properties, but we only present results regarding the safety
property in this article. Note that the functional properties
required the addition of the futureSpeed output that is
present in our NN.

Restrictions on the operational domain  Restraining the
input space for the formal verification is necessary to be
able to validate the properties as they may not hold for
some inputs that are not part of the operational domain.
Moreover it will allow to limit the search during the
formal verification and finish it faster as it is a long and
computationally intense process.

8 * curentTH (s)
THreq (s)

0 10 20 30 40
Time (s)

Fig. 2. Current time headway (currentTH) and required
time headway (T'Hy,.,) with the nominal NN for
scenario B.1.2



First, we implement the limitation on Seg0, Sy, D, Srey,
that correspond to the ACC ODD (Operational Design
Domain): Sego € [1.94;41.67], S, € [-41.67;41.67], D €
[0; 150]. For the same reason, we set the following constant
values TH = 1.5 and Dy = 5. Finally, we add to these
ODD limitations, restrictions on Seg, and S, to limit
the search state by excluding situations that we consider
outside of the nominal situations. These constraints are
Sexo = Sego + Sr > 0, to exclude situations where the
exo car goes backward and Sezo = Sego + ST < 41.67, to
exclude situations with an exo car speed superior to 150
km/h.

Safety property ~ We focused on one safety requirement
that the ACC function should respect in operation: The
ego car should not crash into the car in front. We re-
formulate this requirement as the following property: if
the TH between the ego car and the exo car is above
TH,.q (1.5s), then it should stay above TH,., in the
future. This can be expressed formally as: IF TH > TH,..q
THEN futurelTH > TH,., with futurelH being the
TH betwwen the ego car and the exo car in delta; = 0.5
seconds. This delta; duration was chosen arbitrarily as a
time long enough for the ego car’s behavior to be impacted
by the new command, but small enough for the behavior of
the exo car to not change much. We also include a second
precondition that excludes situations outside of the physi-
cal capabilities of the function: we only consider situations
where the distance will stay safe when the car brakes at
the maximal deceleration allowed by the ACC function, (or
formally D > T H,eq % Sego +minFutureAcc— S, *deltay).
Indeed, we can not ask our system to do something that is
physically impossible. The final formal safety property is
then the following: IF (common preconditions) AND (TH
> THyeq) AND (D > THyeq#*Sego+minFutureAcc— Sy *
delta;) THEN futureTH > TH,e,. By using the value
THyeq = 1.5, delta; = 0.5, and minAcc = —3 we finally
obtain the safety property to be validated.

Because our verification of properties uses state variables
that are not in the initial ACC inputs and outputs, we
need to add these missing state variables as extra inputs
or outputs of the NN in order to perform the formal
verification. In our case, we add two outputs in addition to
the acceleration command: futureT H and futureSpeed.

5.2 Marabou tool limitations

Among the several FV for NN tools available, we chose
to use Marabou, because this tool works on NNs that
perform regression tasks and appeared to us as the most
mature and documented alternative. It limits however
the possible structure of the NN, as only with connected
feed-forward and convolutional architectures with ReLu
activation functions are currently permitted. In our case,
a recurrent neural network architecture would have been
more adequate since our system model includes a time
dimension (we have to anticipate the behavior of the car
and its environment in the future). Also, other activa-
tion functions than ReLu could be more relevant in our
problem. In addition, Marabou works by the searching
for counter examples of the properties to be validated in
the whole given input domain. A property must thus be
designed in a way where the absence of counter examples

guarantees the property. Finally, Marabou does not allow
multiplication or division between inputs in the properties,
which can restrict the formulation of some properties and
thus require additional inputs or outputs in the NN.

5.8 Safety property formulation for Marabou

As explained previously, formal verification with Marabou
is based on the research of a counter example. We designed
our properties to match the format if (common precon-
ditions) AND ( preconditions) then (postcondition). The
Marabou post condition of the safety property is formally
described in equation 1.

EI(Sego; Sra D, THreqv DO» Srefv
acceleration, futureT H, futureSpeed)
such as, (TH fyture > THreq) (1)

5.4 Need for precision

During the preparation of the experiment, we quickly
obtained NNs that gave satisfying functional results in
our simulator but the NNs were often not precise enough
to provide the formal verification of the safety property.
Indeed, in some cases at the limit of the ODD, for
example when currentT’H (the value of TH computed
at the cuurent time) is very close to TH,.q, a very
small error in the NN could cause futureT H to be lower
than T'H,.4. To pass formal verification, we proposed and
implemented two complementary design methods: first to
learn a more conservative behavior for small errors to stay
in the conservative margin (we call this more conservative
function ACCy,04), second to analyze the part of the
ODD that gives the most counter examples and adapt the
training set distribution to better fit the formal properties.
After a few iterations, we obtained in average one of of ten
nominal NN that pass the formal verification. This rate is
still due to the randomness and non reproducibility of the
NN training as well as the presence of local minima.

6. ERRONEOUS NN FOR ACC

In this section, we will present the erroneous NN that we
developed for our experiment, and how it performed with
the FV and in the simulator.

6.1 Fault injection

In this section, we present the fault we injected in the
nominal NN to obtain an erroneous NN.

Requirements ~ We defined several requirements for the
fault that we want to inject:

e The fault needs to alter the NN in a way that allows
it to pass the formal verification but causes a failure
in the system.

e The fault need to be somewhat representative of
possible development faults that may occur in the
development of a NN.



Fault  The injected fault that we propose in this article
consist in multiplying all negative accelerations from the
ACC),0q function by 0.5. This means that the NN will
send deceleration commands twice as weak as the intended
ones. We consider that this fault would be representative
of training the NN with data from a car that required
less decelerating commands than the car that the NN
will be controlling during operation. Such a fault could
be caused by a multitude of causes, such as a different
size or adherence of wheels, stronger brakes, or some
software faults in the braking system commanding the
brakes for the training data. Note that these causes would
not usually generate such an important modification on
the acceleration command, but we consider it satisfying
because:

e measures show that the system still behaves correctly
in almost all scenarios,

e this fault is proof enough that other possible faults
could lead to similar consequences (causing system’s
failures).

Training the erroneous NN  Because the erroneous train-
ing data is different from the nominal training data, we
have to design a new data distribution to be precise
enough to pass the formal verification. Similarly to the
nominal neural network, we determined the distribution
and subsets after several iterations. The final distribution
is available in the appendix. The other settings of the NN
training are kept the same as for the nominal NN described
in 4.2.2.

6.2 FV of erroneous NN

Around one out of thirty erroneous networks passed the
formal verification of the safety property. To achieve this,
we used the Marabou tool in the same way than for the
nominal NN described in 5.3. Note that this proportion
could be increased with more iterations on the definition
of the training set, and that the erroneous NN should
theoretically be as easy to validate as the nominal NN,
as the outputs regarding the safety property (futureT H
and futureSpeed) nor the ODD have not been modified.

6.3 Behavior of erroneous NN

In this section, we analyze the behavior of the erroneous
NN (NN.), particularly compared to the nominal NN
(NN,,) using the same scenarios than in section 4.3.3.
The behavior of the ego car controlled by the erroneous
NN stays safe in every scenario except the scenario B.1.2.
In this scenario, the erroneous NN leads to a crash with
the exocar in front. We display in figure 3 the detailed
distance D, in comparison with D, and Dy over the entire
scenario. For this scenario, we also display on graph 4
the evolution of —min(0,TH — TH,.,), which helps us
to track if and when the safety property (corresponding
to measure Mry) is violated. Note that we display only
one of the ten executions realized for this scenario, but the
other executions were very similar. We clearly see that the
property is violated around 2 seconds after the beginning
of the scenario.
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Fig. 3. Distance between the ego car and the exo car
(D) compared to the safety distance (D) with the
erroneous NN in scenario B.1.2
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Fig. 4. System failure on the safety property with the
erroneous NN in scenario B.1.2

7. DIVERSIFIED ERROR DETECTION AND
RECOVERY

As proved in the previous section, formally validating a
safety property on a NN does not guarantee the safety
property in real life as long as the NN’s model can be
faulty. To solve this issue, we propose in this section a
method using a mathematical model to detect inconsis-
tencies in the NN’s model online. In this way, we improve
the trust in the validity of the formal validation as long
as the NN’s model stay consistent with the diversified
mathematical model. After an error detection, we propose
to recover the system by switching to a diversified NN or
another control mechanism as the NN can no longer be
trusted. First, we present our detection mechanism based
on a diversified mathematical model (DMM). Then we
discuss possible recovery techniques.

7.1 Diversified Mathematical Model

In this section, we present the theoretical explanation
of our diversified mathematical model (DMM), and its
limitations.

Proposed architecture  Our architecture aims to ensure
online (while in operation) that the NN’s model on which
formal verification was based on (or at least part of it) is
correct. As previously discussed, formal verification will
use some of the NN’s inputs and outputs to verify a
property, but the property could be verified while the
relationships between the inputs and outputs might have
been wrongly learned by the NN. In this case, the formal
validation would not guarantee that the property holds in
real life, as the learned model is incorrect and thus not
representative of real life situations.



As explained in section 3, contrary to classical system,
NN’s models can not be easily verified by experts as
they lack explainability and they are deeply buried in the
weights and biases of every neurons.

In order to improve the trust in the formal validation, we
propose to use the same knowledge of the system (which
would be used to verify the model in classical systems) to
check the consistency of the NN’s outputs which were used
during the formal verification online. This way, we can
detect when we are confronted to situations where the NN
has wrongly learned its model, and thus where the formal
verification will not hold. Typically, this knowledge takes
the form of mathematical equations of physical phenomena
that link states variables of the system, some of which will
be inputs and outputs of the NN.

Our detection mechanism will thus be integrated as in
in the system as follows: at each cycle, the diversified
mathematical model mechanism will use the NN’s inputs
and its decision outputs to calculate through diversified
mathematical equations some state variables which are
parts of the outputs of the NN. Then, the outputs of the
NN and the corresponding outputs of the DMM will be
compared. If the NN outputs have deviations from the
DMM ones above a certain threshold, we can conclude
that the NN model has been learned wrongly and thus
that the formal verification can not be trusted in the
current situation. We can then recover the system in a way
proposed in section 7.2. Note that the properties validated
during the formal verification are also good candidates
as mathematical equations to be verified by our DMM
detection mechanism.

Limits of the DMM  The system requires the use of a
system knowledge to express through mathematical ex-
pressions the relationships between the inputs and the
outputs of the NN. In some cases, part of the relationships,
or even all of them, might not be known. Also note that
when we are unable to express mathematical equations
for all the non-decisional NN outputs, the DMM detection
mechanism will not be able to detect every possible NN
model errors, and we could thus still have undetected
inconsistencies that lead to violating verified formal prop-
erties. Thus, what we propose will improve the confidence
in the formal validation, but not guarantee it completely.
Other complementary mechanisms might then be needed
to improve sufficiently the trust in the NN. Another limit
is that the mathematical expressions might not cover the
entire ODD of the NN. Another issue might be that the
detection detects the error too late for the system to
recover.

7.2 Recovery mechanism

A possible recovery mechanism is the use of a diversified
NN trained to approximate the same function, possibly
with different architecture, processes and/or data. This
diversified NN would also need to have passed formal
verification, and would have been checked online by the
DMM detection mechanism during operation (even if its
outputs would not have been used) to check whether or
not errors in its model are detected. When a model error
has been detected in the original NN, and if no errors
were detected until now on the diversified NN, we can then
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Fig. 5. futureSpeed detection indicator and system’s failure

recover by switching to this diversified NN. Note that when
the first error detection is made, be it on the original NN
or the diversified one, an alarm must be raised to inform
the operator that the controlling mechanism has no more
redundancies.

8. APPLICATION EXAMPLE OF ERROR
DETECTION AND SYSTEM RECOVERY

In this section, we present an application of the error
detection and recovery system presented in section 7 on
the erroneous NN introduced in section 6.

8.1 Error detection in our experiment

As explained in section 7 we assume that the developer of
the system has some knowledge of the model that the NN
is supposed to learn. In our case, this knowledge consists
of two equations that represent the physical dynamic of
the vehicle. These equations link the three outputs of the
NN, determining the outputs used in the formal verifica-
tion from the decision taken by the NN and its inputs:
equation 2 determines the diversified future speed while
equation 3 computes the diversified future time head-
way. Finally, we also check online the property formally
validated on the neural network using the diversification
futureTl Hgiyersifiea and comparing it to THycq = 1.5.

futureSpeedgiversified = Sego + acceleration  delta, — S,
(2)

fUtureTHdiversified =
(D + S, x delta;)/(Seqo + acceleration * delta;) (3)

As explained in section 7, to detect an erroneous NN’s
model, we check if the difference between the NN out-
put and the diversified variables is over a certain thresh-
old. This threshold is determined empirically by ob-
serving the maximum difference on the nominal NN
to avoid false detection: threshold FutureSpeed Div=0.73
and thresholdFutureT H Div = 0.5.

On scenario B.1.2, for the nominal NN no indicator exceed
its threshold and the property stays validated during the
experiment. On the same scenario with the erroneous NN,
we can see on figure 5 that the diversified speed indicator
detects the error one second before the failure.

8.2 Recovery in our experiment

In this section, we present a recovery mechanism using a
diversified neural network following the first proposal of
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Fig. 6. future speed error indicator and system’s failure
indicator on fault tolerant NN in scenario B.1.2

section 7.2. When an error is detected by any of the three
detectors described in 8.1, we switch from the erroneous
NN to the diversified NN. We present in table 2 the results
of this recovery.

We can first see that the redundancy permits to get all
scenarios to respect the safety property since all measures
Mg are equal to 0. Thus, the error detection mechanism
and the redundancy permit to avoid the failure in scenario
B.1.2 that we observed in section 6.3.

This recovery can been seen in graph 6 where the future
speed indicator reaches its threshold, and triggers the
change of NN in control of the car. This recovery is
successful in keeping the system in a safe state and
avoiding the failure.

With a further analysis on the erroneous NN’s behavior
in table 2 we can also note that the Mg, , measure signif-
icantly improved with the recovery mechanism compared
to the erroneous NN.

Table 2. Measures on five concrete scenarios for
the ACC function ACCl,;4 (section 4.3.3), the
nominal NN N N,, (section4.3.3), the erroneous
NN NN, (section 6.3) and the fault tolerant
mechanism NN, _. (section 8).

scenarios
A1l A.2.2 B.1.2 B.2.2 B.3.3

ACCorig 0.0 0.0 0.0 0.0 0.0

Mry NN, 0.0 0.0 0.0 0.0 0.0
NN, 0.0 0.0 2.003 0.0 0.0

NNe_r 0.0 0.0 0.0 0.0 0.0

ACCorig 0.0 0.0 0.0 0.0 0.0

Mp NN, 0.0 0.0 0.0 0.0 0.0
NN, 0.0 0.0 2.89 0.0 0.0

NNe_r 0.0 0.0 0.0 0.0 0.0

Ms ACCorig 0.332 0.0 0.0 0.0 0.0
€go NN, 0.327 0.0 0.0 0.0 0.0
NN, 39.94 0.0 0.0 0.0 0.0

NNe_, 5.27 0.0 0.0 0.0 0.0

9. CONCLUSION AND PERSPECTIVES

In this article we developed a concrete example of a new
threat to NN formal verification. The presented applica-
tion is also currently to our knowledge the closest NN
formal verification to an industrialized application in the
literature: it focuses on an ACC function for autonomous
vehicles on which we formally validate a safety property.
We then presented an erroneous NN designed through
fault injection that passes formal verification while causing
a severe failure. Finally we proposed fault tolerance mech-
anisms that are able to detect and recover from this error.
These mechanisms can be applied to most NN applications

to give more trust in their formal verification. In future
works, we intend to generate more erroneous networks
passing formal verification and causing failures (on this
example and others) in order to better study the gener-
alized application of the proposed mechanisms. We also
intend to implement other possible methods for recovery
that we proposed but did not implement in this article.
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