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Abstract. In a recent work, full convexity has been proposed as an al-
ternative definition of digital convexity. It solves many problems related
to its usual definitions, for instance: fully convex sets are digitally con-
vex in the usual sense, but are also connected and simply connected.
However, full convexity is not a monotone property hence intersections
of fully convex sets may be neither fully convex nor connected. This de-
fect might forbid digital polyhedral models with fully convex faces and
edges. This can be detrimental since classical standard and naive planes
are fully convex. We propose in this paper an envelope operator which
solves in arbitrary dimension the problem of extending a digital set into
a fully convex set. This extension naturally leads to digital polyhedra
whose cells are fully convex. We present first a generic envelope opera-
tor which add points in required directions in parallel and prove that it
builds a fully convex set. Then a relative envelope operator is proposed,
which can be used to force digital planarity of fully convex sets. We pro-
vide experiments showing that our method produces coherent polyhedral
models for any polyhedron in arbitrary dimension.
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1 Introduction

Convexity is a classical property in various domains of mathematics and com-
puter science. It allows for instance guarantees for optimization, containment
property via its separability with hyperplanes, and many convergence results in
real or discrete analysis need convexity assumptions. While it has been primarily
developed in Rd, several extensions have been proposed in the past. Two main
paths are possible for extending convexity: either going more abstract to adapt
convexity to generic spaces or building more specialized versions for dedicated
spaces like the digital space Zd for instance. Most general extensions of convexity
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rely on hull systems [Lau06], K-convexity and simplicial convexity [Lli02] or clo-
sure (hull) operators [And06]. Those general extensions do not necessarily embed
a geometric vision of convexity, so convex sets do not have a geometric structure
in the same veins as in Rd. More resembling extensions rely on anti-matroids
notably with the anti-exchange property [RS03] or cellular extensions based on
discrete hyperplanes [Web01,RS03]. They induce spaces of convex sets with more
geometric interpretations, but also fail to be connected in some situations. Sev-
eral extensions have also been proposed in the optimization community using
convexity and digital convexity as certificates of optimality [MS01]. For digital
spaces Zd, digital convexity was first defined as the intersection of real convex
sets of Rd with Zd (e.g. see survey [Ron89]). Many works have then tried to
enforce the connectedness of such sets, for instance by relying on digital lines
[KR82b,Eck01] or extensions of digital functions [Kis04]. Most works are limited
to 2D, and 3D extensions do not solve all geometric issues [KR82a].

This paper considers the recently introduced notion of full convexity
[Lac21,Lac22]. It extends digital convex sets while enforcing connectedness of
fully convex sets. This notion is also computational in the sense that verifying
full convexity is an easy task. Furthermore classical standard and naive planes
are fully convex, so this convexity is appealing for building polyhedral models
in any dimensions. However, since intersections of fully convex sets are not al-
ways fully convex, full convexity cannot be used directly for building faces and
edges of polyhedra. Indeed the full convexity does not verify the monotonicity
property of classical hull operators and thus fully convex hull is not a properly
defined hull operator. This is a problem if we wish to build digital polyhedra
in arbitrary dimension. In 3D, graceful lines and planes have been proposed in
[BB02] to define edges consistent with triangular faces. It permits to fix vary-
ing arithmetical thickness between interior and boundary of digital triangles by
construction but it is limited to 3D.

Our objective is to define polyhedral models in digital space Zd which are
based on full convexity. Our proposal lets us freely choose the thickness of digital
faces, is canonic in arbitrary dimension, and benefits from the nice properties of
fully convex sets. Indeed, naive, standard or even thicker pieces of arithmetical
planes can be reconstructed in the proposed unified framework.

We start by defining the fully convex envelope, that is a pre-hull operator
without the monotonicity property, which builds a fully convex set containing the
input digital set. Our process is iterative, fully parallel at each iteration and ends
after a finite number of iterations. It uses solely classical operators in the cubical
complex C d associated to Zd. We then adapt it to define a fully convex enveloppe
relative to another fully convex set. Since thick enough digital planes are known
to be fully convex, we can define fully convex subsets of digital planes in arbitrary
dimension. The simultaneous use of those two operators builds edges and faces
for meshes with planar faces or meshes with non planar faces. Experiments
show that the induced polyhedral models are visually appealing and preserve the
connectivity graphs between faces and edges of original models.
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2 Full convexity and fully convex envelope

2.1 Definitions

Cubical cell complex. We consider the (cubical) cell complex C d induced by the
lattice Zd, such that its 0-cells are the points of Zd, its 1-cells are the open
unit segments joining two 0-cells at distance 1, its 2-cells are the open unit
squares formed by these segments, . . . , and its d-cells are the d-dimensional
unit hypercubes with vertices in Zd. We denote C d

k the set of its k-cells. We call
complex/subcomplex any subset of cells of C d, e.g. any single cell is a subcomplex.
A digital set is a subset of Zd.

The (topological) boundary ∂Y of a subset Y of Rd is the set of points in its
closure but not in its interior. The star of a cell σ in C d, denoted by Star (σ), is
the set of cells of C d whose boundary contains σ and it contains the cell σ itself.
The closure Cl (σ) of σ contains σ and all the cells in its boundary. We extend
these definitions to any subcomplex K of C d by taking unions:

Star (K) :=
⋃
σ∈K
{Star (σ)},

Cl (K) :=
⋃
σ∈K
{Cl (σ)}.

In combinatorial topology, a subcomplex K with Star (K) = K is open, while
being closed when Cl (K) = K. The body of a subcomplex K, i.e. the union of
its cells in Rd, is written ‖K‖. We denote by Extr (K) = Cl (K) ∩ Zd.

Intersection complex. If Y is any subset of the Euclidean space Rd, we denote
by C d

k [Y ] the set of k-cells whose topological closure intersects Y , i.e.

C d
k [Y ] := {c ∈ C d

k , c ∩ Y 6= ∅}. (1)

The complex that is the union of all, C d
k [Y ],0 6 k 6 d, is called the intersection

(cubical) complex of Y and is denoted by C d[Y ].
It is worth to note that, for any complex K, Star (K) = C d[‖K‖]. Hence, for

any subset Y ⊂ Rd, it is natural to define Star (Y ) := C d[Y ], which coincides
with the standard definition of star on subsets of C d or Zd.

Skeleton. We define a kind of converse operation to the star. For any complex
K ⊂ C d, the skeleton of K is (with K ′ any subset of K)

Skel (K) :=
⋂

K′⊂K⊂Star(K′)

K ′. (2)

Lemma 1 For any complex K, K ⊂ Star (Skel (K)).

Lemma 2 For any digital set X we have Skel (Star (X)) = X using lemma (1).

Lemma 3 For any open complex K, Star (Skel (K)) = K.

Proof. (⊃) K ⊂ Star (Skel (K)) by lemma (1).
(⊂) Skel (K) ⊂ K because Skel (K) is the intersection of subsets of K. Star ()
being increasing, Star (Skel (K)) ⊂ Star (K) = K since K is open.
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2.2 Full convexity

For a set A ⊂ Rd, its convex hull CvxH (A) is the intersection of all convex sets
that contains A.

Definition 1 (Full convexity) A digital set X ⊂ Zd is digitally k-convex for
0 6 k 6 d whenever

C d
k [X] = C d

k [CvxH (X)]. (3)

Subset X is fully (digitally) convex if it is digitally k-convex for all k, 0 6 k 6 d.

The following characterization will be useful:

Lemma 4 A digital set X is fully convex iff Star (X) = Star (CvxH (X)).

2.3 Fully convex envelope

Convex hull is one of the most fundamental tool in continuous geometry. We
wish to design a digital analogue to convex hull. The question is then how to
build a fully convex set from an arbitrary digital subset of Zd. For instance can
we build this fully convex envelope with intersections of fully convex set ? We
do have this rather straightforward property:

Lemma 5 If A and B are digitally 0-convex, then A ∩B is digitally 0-convex.

Proof.

CvxH (A ∩B) ∩ Zd ⊂ CvxH (A) ∩ CvxH (B) ∩ Zd (CvxH (·) is increasing)

= A ∩B (A and B are digitally 0-convex)

ut

A B A ∩B

However, intersections of fully convex sets are gener-
ally not fully convex. As a very simple example, just pick
A = {(0, 0), (1, 1), (2, 1)} and B = {(0, 0), (1, 0), (2, 1)},
which are both fully convex. Then the set A ∩ B =
{(0, 0), (2, 1)} is not fully convex, not even connected.

Therefore, we propose another way to build a fully
convex set from an arbitrary digital set, which uses the
cells intersected by the convex hull of this set, and which is defined through an
iterative process.

Each iteration composes these operations, for X ⊂ Rd:

FC(X) := Extr (Skel (Star (CvxH (X))))

First the Euclidean convex hull of the set is computed, letting Y = CvxH (X),
then its covering Star (Y ) by cells of the cellular grid is determined. The skeleton
of these cells is their smallest subset such that Star (Skel (Star (Y ))) = Y . Finally
FC(X) is composed of the grid vertices of the skeleton cells. The last operation
implies that FC(X) ⊂ Zd. Refer to Figure 1 for an illustration of FC operation
and fully convex envelope computation.
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input X, Y := CvxH (X) Star (Y ), Skel (Star (Y )) X ′ = FC(X)

input X ′, Y ′ := CvxH (X ′) Star (Y ′), Skel (Star (Y ′)) X ′′ = FC(X ′) = FC2(X)

Fig. 1. Illustration of FC operation and fully convex envelope construction. Left: input
digital set X and its convex hull, middle: Star (CvxH (X)) (gray and thick black) and
its skeleton (thick black), right: extremal points of the skeleton, i.e. FC(X). Here X
is digitally 0-convex but not fully convex. FC(X) is not even digitally 0-convex, while
FC(FC(X)) is fully convex and is therefore the fully convex envelope to X.

Definition 2 (Fully convex envelope) For any integer n > 0, the n-th con-
vex envelope of X ⊂ Rd is the n times composition of operation FC.

FCn(X) := FC ◦ · · · ◦ FC︸ ︷︷ ︸
n times

(X).

The fully convex envelope of X is the limit of FCn(X) when n→∞:

FC∗(X) := lim
n→∞

FCn(X).

We have to show that this process has a limit for every subset X.

Theorem 1 For any finite digital set X ⊂ Zd, there exists a finite n such that
FCn(X) = FCn+1(X), which implies that FC∗(X) exists and is equal to FCn(X).

It is the immediate consequence of Lemma 6 and Lemma 7 below: the first
one tells that FC is increasing, the second that X and FC(X) have the same
bounding box.

Lemma 6 For any X ⊂ Zd, X ⊂ FC(X).

Proof. Let x ∈ X ⊂ Zd = C d
0 . Obviously x ∈ CvxH (X). It follows that x ∈

Star (CvxH (X)) and, since Star (·) is idempotent, Star (x) ⊂ Star (CvxH (X)).
The whole star of x belonging to the subcomplex K := Star (CvxH (X)), the 0-
cell x belongs to the skeleton of K. Since all 0-cells of a subcomplex are extremal
points, it is an extremal point of Skel (K), which concludes. ut
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Lemma 7 For any finite X ⊂ Zd, X and FC(X) have the same bounding box.

Proof. Let p ⊂ Zd be the lowest point of the axis-aligned bounding box of X, i.e.
∀i, 1 6 i 6 d, pi = minz∈X z

i. Obviously, it is also the lowest point of the bound-
ing box of CvxH (X). Let K := Star (CvxH (X)). Since ∀x ∈ CvxH (X) , pi 6 xi,
any cell c of K that lie below point q along some coordinate axis j has a twin
cell e ∈ K in its boundary, such that e is closed along coordinate j and ej = pj .
Continuing the argument along every coordinate axis k where e is below point p,
we know that there is a digital point z ∈ K in the boundary of c, such that z is
not below p. Point z being a 0-cell it follows that z ∈ Skel (K) while all m-cells
incident to z, m > 0, are not in Skel (K). We have just shown that no cells
of Skel (K) can be lower than p. The reasoning is the same for the uppermost
point. ut

A first observation is that operation FC does not modify fully convex sets,
so the fully convex envelope of a fully convex set X is X itself.

Lemma 8 If X ⊂ Zd is fully convex, then FC(X) = X. So FC∗(X) = X.

Proof. Indeed we have

FC(X) = Extr (Skel (Star (CvxH (X))))

= Extr (Skel (Star (X))) (Lemma 4)

= Extr (X) (Lemma 2)

= X (X ⊂ Zd)

ut

Reciprocally, non fully convex sets are modified through operation FC.

Lemma 9 If X ⊂ Zd is not fully convex, then X ( FC(X)

Proof. By Lemma 6 we already know that X ⊂ FC(X). Let us show that there
is a digital point z ∈ FC(X) that is not in X. Since X is not fully convex, there
exists some cell c ∈ Star (CvxH (X)) such that c 6∈ Star (X). It is possible that
there are other cells c′ in c such that c′ ∈ Star (CvxH (X)) and c′ 6∈ Star (X). In
this case we pick one, say b, with lowest dimension.

Let z ∈ b ∩ Zd be a grid vertex of this cell (which may be b itself). Then
z 6∈ X. Otherwise, Star (z) ⊂ Star (X), hence the cell b, which belongs to Star (z)
(through the equivalence z ⊂ b ⇔ b ∈ Star (z)), would thus belong to Star (X),
a contradiction with the hypothesis.

Let us show now that z ∈ FC(X). Recall that

FC(X) = Extr (Skel (Star (CvxH (X)))) .

We have b ∈ Star (CvxH (X)). Furthermore b belongs to the skeleton of
Star (CvxH (X)), since it is a cell of Star (CvxH (X)) with lowest dimension
in the closure of c. Finally grid vertex z is an extremal point of b, so belongs to
FC(X). We conclude since z 6∈ X holds. ut
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Note that the Lemma also indicates where operation FC add digital points.Indeed,
they are the vertices of the cells touched by the convex hull but not by the digital
set itself. Lemmas 8 and 9 lead immediately to a characterization of fully convex
sets:

Theorem 2 X ⊂ Zd is fully convex iff X = FC(X).

It also induces the most important property of the fully convex envelope
operation: it always outputs fully convex sets.

Theorem 3 For any finite X ⊂ Zd, FC∗(X) is fully convex.

Proof. By Theorem 1, FC∗(X) exists and there exists some n such that FC∗(X) =
FCn(X). Hence, FC(FCn(X)) = FCn(X). By Theorem 2, FCn(X) is fully con-
vex, and so is FC∗(X). ut

The operator FC∗(.) is thus increasing and idempotent. It however fails to be
monotone because Skel (.) is not a monotone operator with respect to inclusion.
So, it is not a hull operator [And06]. Nevertheless, it induces a preorder relation
RFC∗ on digital sets using

XRFC∗Y ⇐⇒ FC∗(X) = FC∗(Y ).

It induces equivalent classes among the set of digital sets. It has its own topology
through its associated Alexandrov topology.

2.4 Algorithmic aspects

We now look at the algorithmic aspects of computing FC∗. Since the computation
of FC∗ is done in a loop, we compute the complexity for each iteration. At the
beginning of iteration k the points set is FCk−1(X). Using Quickhull, the convex
hull can be computed in O(nfr/r) [BDH96] with n the number of input points,
r the number of processed points and fr the maximum number of facets of r
vertices (fr = O(rbd/2c/bd/2c!)). Obviously r 6 n, such that the complexity is
bounded by O(fn) with fn = O(nbd/2c/bd/2c!). Here, n is the number of points
in FCk−1(X). As described in [Lac21], Star (CvxH (.)) can be computed using 2d

Quickhull calls with the morphological characterizations of full convexity. It is
the most intensive part of the computation. Then, Skel and Extr are extracted by
simple traversal over the volume of Star (CvxH (.)). It is thus linear in the volume
of Star (CvxH (.)) which is bounded above by the volume of the bounding box
of FCk−1(X). Hence the complexity of one iteration is bounded by O(nbd/2c).
A precise bound on the number of iterations is still under study. In practice 1-4
iterations are generally observed in 3D, but we have come along examples with
depth about ten.
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Y

X

Y Y

Naive lines intersection Skel (Star (CvxH (X ∩ Y ))) FC(X) ∩ Y = FC∗|Y (X)

Fig. 2. Relative fully convex envelope for naive lines having disconnected intersection.

3 Relative fully convex envelope

We now specialize operator FC in order to stay into a given fully convex set.
This creates fully convex sets relative to a given fully convex set. Given Y ⊂ Zd
a fully convex set and X ⊂ Y , the FC operator relative to Y is defined as

FC|Y (X) := FC(X) ∩ Y.

As previously, FCn|Y (X) := FC|Y ◦ · · · ◦ FC|Y (X), composed n times. The fully
convex envelope of X relative to Y is obtained at the limit:

FC∗|Y (X) := lim
n→∞

FCn|Y (X) .

We thus have FC∗(X) = FC∗|Zd (X). In practice, for X not included in Y , we

compute FC∗|Y (X ∩ Y ) to get the fully convex envelope of X ∩ Y .
As seen on Figure (2), the relative fully convex envelope extends sets only us-

ing points of the fully convex set Y . So when considering two naive lines X and Y
having disconnected intersection, both subsets FC∗|Y (X ∩ Y ) and FC∗|X (X ∩ Y )
are fully convex, hence are connected intersections.

Theorem 4 For any finite X ⊂ Zd and any fully convex set Y ⊂ Zd, the digital
set FC∗|Y (X ∩ Y ) is fully convex and is included in Y .

Proof. Let X ′ = X∩Y . To see that FC∗|Y (X ′) is well defined, we rely on previous
properties of FC∗(). By construction, since FC() is increasing, so is FC|Y ().
Moreover lemma (7) readily extends to say that X ′ and FC|Y (X ′) have the
same bounding box. It is also true that if X ′ is fully convex then FC|Y (X ′) =
X ′ ∩ Y and so FC∗|Y (X ′) = X ′. Let us now see why lemma (9) also extends
to this situation. We hence suppose that X ′ is not fully convex. Let us then
consider any cell b such that b ∈ Star (CvxH (X ′)) but b /∈ Star (X ′). Since
CvxH (X ′) ⊂ CvxH (Y ), we deduce that b ∈ Star (CvxH (Y )) = Star (Y ) since
Y is fully convex. Moreover as in lemma (9), we have b∩Zd ∩X ′ = ∅. But since
Y ⊂ Zd and b ∈ Star (Y ), we deduce that b∩Zd∩Y 6= ∅. Hence at least one point
in Y is added by FC|Y (). This implies that X ′ ( FC|Y (X ′). We can thus mimic
Theorem 1 and Theorem 2 to get that FC∗|Y (X ′) exists and is fully convex. It
is included in Y by construction. ut
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Arithmetical planes with thickness at least as thick as naive planes are fully
convex [Lac21, Theorem 7]. Hence the set Y can be chosen to be either a naive or
a standard plane. Then the fully convex hull of X relative to Y is a fully convex
subset of Y containing X∩Y . Hence, FC∗|X∩Y (X) is a simply connected piece of
the arithmetical plane Y . To compute FC∗|Y (.), we only have to incorporate the
intersection with Y at each iteration. This is directly linked to the complexity
of deciding if a point p is in Y . If Y is a digital plane then this complexity is
constant but in general it can be up to the order of O(log(]Y )).

4 Digital polyhedron

We now present digital models for Euclidean polyhedra based on envelopes. A
polyhedron P is a collection of finite convex sets called cells, such that each
cell σ is characterized by a finite number of points V (σ) called vertices. Cell σ
is a face of cell σ′ if V (σ) ⊂ V (σ′). The vertices V of the polyhedron are the
union of the vertices of all cells. Generally an abstract dimension is attached to
cells, 0 for vertices, 1 for edges, 2 for faces, etc., and must be consistent with
the face relation. We take an interest here in polyhedra with maximal dimension
d− 1, i.e. surfaces, whose (d− 1)-cells are called facets. Figure 3, left, shows two
polyhedra in 3D space: a quadrangulated surface Q with non planar facets and
a triangulated surface T with planar facets.

Assuming each vertex of P is a point of Zd, the (generic) digital polyhedron
P∗ associated to P is the collection of digital cells that are subsets of Zd, such
that: if σ is a cell of P, then σ∗ is a cell of P∗ with σ∗ := FC∗(V (σ)). Such a
digital polyhedron is illustrated on Figure 3, top row.

When vertices of facets are coplanar, we can build a digital polyhedron whose
facets are pieces of arithmetic planes. Pure simplicial complexes of dimension
d− 1 are important examples of such polyhedron. For T ⊂ Zd made of coplanar
points, let us denote by P1(T ) the median standard plane (resp. P∞(T ) the
median naive plane) defined by T .

The standard (resp. naive) digital polyhedron P∗
1 (resp. P∗

∞) is the collection
of digital cells subsets of Zd, defined as follows. For p ∈ {1,∞}, if σ is a facet
of P, then σ∗p is a cell of P∗

p with σ∗p := FC∗|Pp(V (σ)) (V (σ)). For any cell τ that
is not a facet, then it has as many geometric realizations as incident facets σ
and each pair (τ, σ) is digitized as (τ, σ)∗p := FC∗|σ∗p (V (τ)). Cell pairs have the

same role as half-edges in winged-edge data structures and more generally darts
in combinatorial maps. Note that other thicknesses could be chosen for digital
polyhedron but naive and standard are the most common ones. A standard
(resp. naive) digital polyhedron associated to a triangulated mesh is illustrated
on Figure 3, middle row (resp. bottom row). They require less digital points than
the generic digital points, while keeping their separation properties.

To better understand the three defined polyhedra, let us consider a single
triangle and its edges and vertices: its three digital models are displayed on
Figure 4. All induced cells are fully convex, but we notice that standard cells
are thinner while naive cells are even thinner. What might be surprising is that
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Fig. 3. Discretization of Euclidean polyhedral models without or with planar facets
(left), at gridstep h = 1 (middle) and h = 0.5 (right).
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generic faces ]T ∗ = 1193 standard faces ]T ∗1 = 985 naive faces ]T ∗∞ = 567

Fig. 4. A generic digital triangle T ∗ with its darker edges and black vertices (p, q, r)
(left); corresponding standard digital triangle T ∗1 which lies in the median standard
plane P1(p, q, r) (middle); corresponding naive digital triangle T ∗∞ which lies in the
median naive plane P∞(p, q, r) (right).

relative fully convex enveloppe may create larger subset than expected, especially
for the naive triangle example. One should keep in mind that expanding a set
inside a naive plane to become fully convex is a very restrictive transform: edges
have to expand more within naive plane P∞ than within standard plane P1. Of
course, this is quite an extreme example and edges are narrower in most cases.

The following properties are quite straightforward, but show that every dig-
ital polyhedron covers well the cells of its associated Euclidean polyhedron, and
that the inclusion/face property between cells is satisfied in the digital domain.
Digitizing a polyhedron at different gridstep h is just a matter of embedding
every real vertex point q as a digital vertex q∗ = round(q/h) (see Figure 3).

Proposition 1. Let σ∗ be a digital cell of a generic, standard or naive digital
polyhedron. Then it is fully convex, hence digitally connected and simply con-
nected. We have Star (CvxH (V (σ))) ⊂ Star (σ∗). For any cell τ such that σ is
a face of τ , Star (τ∗) cover Star (CvxH (V (σ))).

5 Conclusion and perspectives

We provide in this paper an envelope operator for full convexity FC∗(.). For any
digital set X, FC∗(X) is proved to be fully convex and X ⊂ FC∗(X). Further-
more this operator leaves fully convex sets unchanged. Moreover, the operator is
well defined in arbitrary dimension as well as computable. This operator can be
restricted to stay within a fully convex set Y , leading to the relative enveloppe
operator FC∗|Y (X). It builds fully convex sets within Y . Since classical naive and
standard planes are fully convex, this leads to a straightforward computation of
digital analogues to polyhedral models of Rd. The obtained results are quite ap-
pealing: we can control the incidence relationship between cells, while their full
convexity guarantees their topological and geometrical properties. These digital
polyhedral models embrace both meshes with planar or non planar faces.



12 F. Feschet and J.-O. Lachaud

In future works, we would like to study more precisely the iterative process
of FC∗(.), in order to localize where full convexity defects reside. This could
accelerate the operator and give more practical bounds on the number of itera-
tions. Incremental quickhull should also be considered. A more general goal is to
extend the enveloppe process to a true convex hull operator. The difficulty is to
ensure the monotone property, but if we succeed, the full convexity would then
be a digital analogue to convexity for digital spaces.
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