Dog behaviours in veterinary consultations: Part II. The relationship between the behaviours of dogs and their owners

M. Helsly, N. Priymenko, C. Girault, C. Duranton, F. Gaunet

- To cite this version:

M. Helsly, N. Priymenko, C. Girault, C. Duranton, F. Gaunet. Dog behaviours in veterinary con- sultations: Part II. The relationship between the behaviours of dogs and their owners. Veterinary Journal, 2022, 281, pp.105789. 10.1016/j.tvjl.2022.105789 . hal-03823551

HAL Id: hal-03823551

https://hal.science/hal-03823551

Submitted on 21 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Original Article

Dog behaviours in veterinary consultations: Part II. The relationship between the behaviours of dogs and their owners

M. Helsly ${ }^{\text {a, }}$, N. Priymenko ${ }^{\text {b }}$, C. Girault ${ }^{\text {a }}$, C. Duranton ${ }^{\text {c, d }}$, F. Gaunet ${ }^{\text {d }}$
${ }^{\text {a }}$ Ecole Nationale Vétérinaire de Toulouse, ENVT, 23 chemin des Capelles, BP 87614, 31076 Toulouse Cedex, France
${ }^{\mathrm{b}}$ TOXALIM, Université de Toulouse, Institut National de la Recherche Agronomique, ENVT, 23 chemin des Capelles, BP 87614, 31076 Toulouse cedex, France
${ }^{\text {c }}$ AVA Association, Cuy-Saint-Fiacre, France
${ }^{\mathrm{d}}$ Laboratoire de Psychologie Cognitive, AMU, Centre National de la Recherche Scientifique, Fédération 3C Aix-Marseille Université, UMR 7290, Marseille, France

* Corresponding author. Tel.: +33 629592541

Email address: marylou.helsly@gmail.com (M.Helsly)

Abstract

Dogs synchronise their behaviour with those of their owners when confronted with an unfamiliar situation and interactions with their owners have been shown to decrease the dogs' stress levels in some instances. However, whether owners may help manage dogs' anxiety during veterinary consultations remains unclear. In Part I, we compared the behaviour of dogs in the presence or absence of their owners during consultations, which consisted in three phases: exploration, examination, and greeting. Our findings suggest that allowing owners to attend consultations may be beneficial for dogs. In Part II, we investigated the direct relationship between owners' actions and their dog's behaviour. Using the videos from Part I, we examined whether 1) dogs interact more when their owner is more interactive; 2) owners' stress scores are related to dogs' stress-related behaviour and emotional state; 3) owners' actions influence dogs' stress-related behaviours, emotional state and tolerance to manipulations; 4) dogs' stress-related behaviours and emotional state are associated with increased eye contact with their owners. We analysed the recordings of twenty-nine dogowner dyads submitted to a veterinary consultation in Part I. The behaviours of the dogs and their owners were analysed, and their emotional states were scored. The ease of manipulations was also scored.

Despite limitations (e.g. no physical contact during examinations, no invasive procedures, aggressive dogs excluded, no male owners, limited sample size), our study showed a link between dog and owner behaviours: when owners attended an examination, their negative behaviours intensified the signs of anxiety in their dogs. Additionally, visual and verbal attempts to comfort their dog had no significant effect. However, we observed that the more dogs displayed stress-related behaviours, the more they established eye contact with their owners, suggesting that dogs seek information (through social referencing) or reassurance from their owners.

49 Keywords: Behaviour; Dog; Owner-dog interaction; Stress; Veterinary examination

Introduction

Recent studies have shown that the behaviour of owners can directly influence the actions of their dog through synchronisation and social referencing (Merola et al., 2012a; Duranton and Gaunet, 2015; Duranton et al., 2017; Duranton et al., 2018). Two individuals are said to be synchronised when they change their actions at the same time (temporal synchrony), when they perform the same action within a short lapse of time (activity synchrony), or when they act at the same time in the same location (local synchrony) (Duranton and Gaunet, 2015). In various studies, dogs have shown synchronised behaviour by staying still and then moving when their owners were still and then moved, mostly while the dogs were near their owner (Duranton et al., 2017; Duranton et al., 2018). Dogs have also been found to gaze in the same direction as their owners (Duranton et al., 2017).

Dogs also synchronise their actions with their owners when facing a stressor. This behaviour relies on social referencing: when confronted with an unfamiliar or stressful situation, individuals seek information from others to form their own judgement and base their actions (Merola et al., 2012a). This process has two components: alternating gazes between the stimulus and the informing individual, and behavioural synchronisation. Dogs gaze alternately between an unfamiliar object or person and their owner (Merola et al. 2012a, b; Duranton et al. 2016). Moreover, dogs move closer to an object or person when their owner display a positive emotional message and approaches it themselves rather than when they display a negative emotional message and move away from it (Merola et al. 2012a, b; Duranton et al. 2016). Thus, when dogs face a stressor, their owners can play a key role in determining their reactions.

In veterinary practice, the vast majority of dogs show a behavioural stress response (Stanford, 1981; Beaver, 1999; Döring et al., 2009, Mariti et al., 2017) during examination,
which we believe is important to alleviate. When dogs are stressed, they cannot be easily handled or examined properly. Veterinarians and owners may also be injured. In two previous studies, it was shown that almost one in four dogs only underwent a partial examination due to their behaviour, while 16 to 18% of dogs demonstrated aggressive behaviour during examination (Stanford, 1981; Glardon et al., 2010). In Australia, 48\% of veterinarians declared that they had been bitten by a dog at work between one and five times in the previous 12 months (Fritschi et al., 2006).

It is unclear whether owner's actions can facilitate the work of veterinarians; little research has been conducted on this subject. Scolding, punishing and physical reprimand are known to increase anxiety, fear and aggression in dogs (Hsu and Sun, 2010; Ziv, 2017) and a stressed owner, or punishment may increase the dog's stress levels and aggression (Herron and Shreyer, 2014; Yong and Ruffman, 2014; Huber et al., 2017; Sundman et al., 2019). However, the owner can also provide security and reassurance to their pet (Rehn et al., 2014b; Kerepesi et al., 2015). Therefore, punishment should not be used in the veterinary context and the owner should be present during examinations to positively interact with the dog (Moffat, 2008; Edwards et al. 2019).

To our knowledge, only two previous studies (Csoltova et al., 2017; Stellato et al., 2020) have focused on the relationship between the behaviours of dogs and their owner in the veterinary context. These studies showed that the dogs' heart rates and maximal ocular surface temperatures increased less if their owner was allowed to talk to and pet their dog than when the owner sat silently away from the examination table; dogs also tried to jump off the table less often when interacting with their owners (Csoltova et al., 2017). Dogs vocalised less and had decreased heart rates and lower axillary temperatures when owners attended the
examination, but they were not affected by verbal and physical interactions with the owner (Stellato et al., 2020). In spite of their methodological differences, these two studies support the idea that the owner's presence and/or actions may calm the dog during veterinary consultations.

In Part I (see Girault et al., under review), we examined the effect of the owner's presence or absence on the dogs' behaviours during veterinary consultations, regardless of the owners' actions. Although the dogs' stress-related behaviours during examination were not affected by the presence or absence of owners, our results showed that dogs looked for their owner when they were absent during the examination, and the dogs displayed fewer stressrelated behaviours before the examination in the presence of their owner. Dogs also displayed more greeting behaviours after the examination when the owner was absent, suggesting that dogs endured more stress.

In this study, by extracting new data gathered during the examination and greeting phases from the consultations performed in Part I, we explored whether owners' actions affected their dog's behaviour in the same context. We hypothesised that 1) dogs with more interactive owners would interact more with their owners; 2) owners' and dogs' stress levels would be related; 3) owners' positive actions would be associated with both decreased stress and increased tolerance of veterinary manipulations in dogs, and vice versa; and 4) dogs displaying more stress behaviours would establish more eye contact with their owners.

Materials and methods

This study analysed raw data collected in Part I (see Girault et al., under review). The same experimental procedure was used and is described below.

Participants

A total of 29 owner-dog dyads participated in the study. All voluntary owners were women. Four of the dyads only took part in the consultation with the owner present and have been included in this study but not in Part I. Participant demographics are shown in Table 1.

Experimental procedure

The study protocol was approved by the ethical committee SSA (Science et Santé Animale) $n^{\circ} 115$ (SSA_2018_008) on 18 July 2018. The experiment took place in an examination room at the National Veterinary School of Toulouse (ENVT), France (see Appendix A: Supplementary material). All dogs underwent a recorded veterinary consultation in the presence of the owner. The veterinary consultations were all carried out by the same two researchers: two female veterinary students, one in the role of the veterinarian (C.G) and the other in the role of the assistant (M.H). The consultations were divided into three main phases: exploration, examination, and greeting (see Girault et al. for the detailed procedure).

Exploration phase

The dog was allowed to explore the room freely, while the owner and the researchers sat on chairs and talked. Neither the owner nor the researchers interacted spontaneously with the dog; the owner could nevertheless respond to the dog's requests (physical, verbal and visual interactions were allowed).

Examination phase

The researchers performed a standardised examination with the owner standing one metre from the table. Owners were limited to verbal and visual interactions with their dog.

Greeting phase
The dog and the owner were free to interact (physical, verbal and visual interactions were allowed).

During the three phases, the researchers remained as neutral as possible: they stayed still, did not talk to the dogs, pet them, make eye contact with them, or punish them.

Behavioural analysis

Dog Behaviours
A behavioural repertoire was adapted from the literature to record the stress-related behaviours of dogs (Beerda et al., 1998; Mills et al. 2006; Mariti et al., 2013; Deldalle and Gaunet, 2014; Savalli et al., 2016; Csoltova et al., 2017; see Table 2). However, individuals express their emotional states in different ways (Koolhaas et al., 1999), sometimes by an association of subtle signs which cannot be assessed by the behavioural repertoire. Observer ratings are a means to take a global approach towards animal behaviours to ensure that subtle signs of response to stress are taken into account (Mills et al., 2006; Meagher, 2009). We thus used both behavioural analyses and ratings. We recorded scratching, sniffing, shivering, shaking, low postures, yawning, panting, licking and whining as stress-related behaviours. Percentages of time spent exhibiting each of these behaviours were combined to give a single index called Total Stress (Table 3). The emotional state of the dog was rated using a threepoint scale defined as follows: relaxed, aroused, anxious (Table 4). All definitions are given in Tables 2, 3 and 4.

We assessed dogs' behaviours towards their owner by observing gazes at the owner, proximity with the owner, and contact with the owner (see Table 2), as dogs display these behaviours to communicate with humans (Miklósi et al., 2000; Miklósi et al., 2003; Gaunet and Deputte, 2011; Gaunet and El Massioui, 2014; Savalli et al., 2014; Savalli et al., 2016) or when stressed (Mariti et al., 2013; Prato-Previde et al., 2003; Palmer and Cunstance, 2008). The percentages of time spent on each of these behaviours were combined into a single index called Behaviours towards owner (Table 3). When reunited with their owners, pets express a large variety of behaviours (Rehn et al., 2014a) which are currently not all under investigation or well understood. Reunions were evaluated in a more global manner by adding a score using a five-point scale as defined in Table 5.

The dogs' tolerance to veterinary manipulations was assessed with three scores: the level of physical restraint, the success and the difficulty of the manipulations (Tables 6 and 7).

Owner behaviours

Owners spontaneously interact with their dogs by petting them, talking to them, giving them commands and looking at them (Dreschel and Granger, 2005; Cimarelli et al., 2016). The percentages of time that owners spent gazing at their dog, having contact with their dog, and talking positively to their dog (see Table 8 for descriptions of each) were combined into a single index called Positive owner behaviours (Table 3). We also recorded the time spent by the owners talking to their dog in a neutral or negative manner (Table 8). Additionally, since subjective observer ratings may provide a holistic evaluation of a human's emotional state (Elfenbein et al., 2015; Kaurin et al., 2018), we used a five-point scale to evaluate the owner's social support, the owner's stress levels and the intensity of the reunion as defined in Table 5.

Two other indices were created: Physical contact and Eye contact (Table 3). Physical contact is the total time when the dog and owner were in contact: contact initiated by the owner and/or contact initiated by the dog. Eye contact is the time when the dog and the owner made eye contact: the gaze of the owner met their dog's.

Data collection and analysis

Consultations were recorded from the moment when the owner-dog dyad entered the consultation room until the end of the greeting phase (see Girault et al). Owner and dog behaviours were analysed during the examination and greeting phases using the Solomon Coder beta 17.03 .22 program 1 (see Appendix A: Supplementary material). The time spent (in seconds) displaying each behaviour was recorded. As phase durations were variable, the durations of behaviours were converted into a time percentage (behaviour duration/phase duration) for all behaviours.

Interobserver agreement

Three assessors participated in the video analysis. The two researchers coded all the behaviours in all the videos: half of the behaviours were coded by one researcher, and the other half by the second researcher. To assess the reproducibility of the behavioural analysis, a third assessor who was unaware of the study hypotheses and aims coded 30% of the behaviours of a random subset of 30% of the videos. Considering that a concordance, and not only a correlation, was needed to assess the interobserver reproducibility, Lin's concordance correlation test was used (Barnhart et al., 2002; Barnhart et al., 2007; Lawrence et al., 1989). Interobserver agreement between the two assessors was determined by calculating ρC values and rated according to Landis and Koch (1977) ($\rho C=0-0.2$: slight agreement, $\rho C=0.21$ -

[^0]0.4: fair agreement, $\rho C=0.41-0.60$: moderate agreement, $\rho C=0.61-0.8$: substantial agreement, $\rho C>0.81$: excellent agreement). Lin's concordance correlation coefficients were excellent ($\rho C>0.98$) for whining, tail between the legs, moving, gazing at the owner, gazing at the dog, contact with the dog and positive talk, and substantial for sniffing ($\rho C=0.69$).

Physical restraint was subjectively scored by the assistant; the success and difficulty of the manipulations were subjectively assessed by the veterinarian; and the other scores (emotional states of the dogs and their owners, intensity of the reunion for both the dogs and their owners, owner stress and owner support) were rated by the three assessors.

Statistical analysis

The examination and greeting phases were analysed separately. Pearson's correlation tests were used to test for correlations between the behaviours of the owner and the dog using R software ${ }^{2}$.

Results

On average, the exploration phase lasted 156.24 ± 11.01 seconds and the examination phase 139.37 ± 16.01 seconds. The greeting phase, standardised in the study, lasted 20 seconds. Time spent by the dyad displaying each behaviour as well as the scores are provided in Table 9. Results of the correlations are shown in Table 10.

Relationship between the behaviours of dogs and owners towards each other

 Examination phase[^1]No correlations were found between the owners' positive behaviours towards their dogs and the dogs' behaviour towards their owners (Table 10).

Greeting phase
The owners' positive actions towards their dogs were moderately correlated with the dogs' behaviour towards their owners ($r=0.52, P<0.05$; Table 10, Fig. 1, and Video 1). The reunion scores of both owners and dogs were also moderately correlated $(r=0.58, P<0.05$; Table 10).

Relationship between owners'and dogs'stress levels

We found no evidence of a correlation between the stress levels of the owners and the stress-related behaviours or emotional states of their dogs in either the examination or the greeting phases (Table 10).

Relationship between the owner's positive actions and the dog's stress and tolerance to manipulations

Examination phase
Neither the duration of the owners' positive behaviours nor the score of the owners' support were significantly linked to their dogs' stress-related behaviours or emotional states (Table 10 and Video 2). Similarly, they were not correlated with easier manipulations (success and difficulty) (Table 10).

Greeting phase
Our data provided no evidence of a correlation between the owners' positive behaviours and their dogs' stress or emotional states. Analysis showed no correlation between physical
contact with their owners and the dogs' stress-related behaviours or emotional states (Table 10).

Relationship between the owners'neutral or negative actions and their dog's stress and tolerance to manipulations

Examination phase
The owners' neutral or negative verbal interactions had a moderately positive link to the dogs' stress-related behaviours and emotional states $(r=0.37, P<0.05$ and $r=0.38, P<0.05$, respectively; Table 10, Fig.2, and Video 3). Neutral or negative verbal interactions had no influence on the dogs' tolerance to the manipulations (success and difficulty) and was not related to the degree of avoidance the dogs displayed, nor the level of physical restraint required (Table 10).

Greeting phase
Neutral or negative verbal interactions were not correlated to the dogs' stress-related behaviours or emotional states during this phase (Table 10).

Relationship between eye contact and the dogs'stress
Examination phase
The dogs' stress-related behaviours and emotional states had a moderately positive relationship to eye contact with the owner (eye contact / total stress: $r=0.40, P<0.05$ and eye contact / emotional state: $r=0.47, P<0.05$, respectively; Table 10, Fig. 3, and Video 4).

Greeting phase

We found no evidence of correlations between the dogs' stress-related behaviours or emotional states and eye contact during this phase (Table 10).

Discussion

The aim of this study was to explore the effect of dog-owner interactions on the behaviour of dogs during a veterinary consultation. We investigated whether pets with interactive owners would interact more with their owners; the relationships between an owner's actions and their dog's stress behaviours and tolerance to manipulations; and the associations between the dogs' stress levels and their eye contact with their owners.

In our study, positive actions by the owners were not associated with decreased stressrelated behaviours and increased acceptance of veterinary manipulations in their dogs, as has been previously described (Dreschel and Granger, 2005; Csoltova et al., 2017; Stellato et al., 2020, Girault et al.). This suggests that reassuring owners do not lessen the anxiety of their dogs. However, the concurrent analysis of physiological parameters (Csoltova et al., 2017) or indirect behaviours (Girault et al.) suggest that interactions with the owner are appeasing. In our study, we instructed the owners to avoid any physical contact with their dogs, which may explain the absence of a noticeable calming effect. Dogs prefer physical contact to vocal praise (Feuerbacher and Wynne, 2015), and petting has been shown to decrease dogs' stress levels (McGreevy et al., 2005) and blood cortisol levels more than verbal interactions alone (Rehn et al., 2014a), including during medical procedures (Hennessy et al., 1998). Our results revealed that visual and verbal interactions are not sufficient to noticeably relax dogs during clinical examinations.

Neutral and negative verbal interactions with their owners were correlated with increased stress levels in the dogs, but only during the veterinary examination. This finding is consistent with other studies which show that scolding leads to anxiety and stress-related behaviours in dogs (Horowitz, 2009; Mariti et al. 2017; Ziv, 2017). During veterinary examinations, dogs are already placed in an anxiety-provoking situation, and the owner can potentially add to their stress. Our results support the recommendations made by Moffat (2008) and Edwards (2019) that owners should avoid negative interactions with their dog during veterinary visits.

Another aim of the study was to investigate a possible association between dogs' stress levels and eye contact with their owners. As we predicted, the more dogs were stressed, the more eye contact was established with their owners; both owners and dogs looked at each other during the examination phase. Gazing is widely used by dogs to communicate with humans (Miklósi et al., 2000; Miklósi et al., 2003; Gaunet and Deputte, 2011; Gaunet and El Massioui, 2014; Savalli et al., 2014); and dogs increase their signals when eye contact is established (Gácsi et al., 2004; Savalli et al. 2016). Here, we suggest that pets were attempting to communicate with their owners: dogs seek information from their owners when confronted with an unexpected situation by means of referential gazing (Merola et al. 2012a, b; Duranton et al. 2016). It has also been shown that animals who are less confident gaze more frequently at their social referent (Merola et al., 2012a) and look at this person for a longer time when they fail to understand the cue, searching for more information (Yong and Ruffman, 2015). In this study, dogs were put into the unfamiliar situation of a clinical examination, so it is likely that they looked at their owners to determine how to deal with this situation. Another interpretation of this behaviour is that owners provide reassurance to their pet in threatening situations, for example when dogs are approached by an unknown stranger (Gácsi et al., 2013;

Kerepesi et al., 2015). Additionally, recent studies suggest that gazing plays a role in the attachment behaviour between owners and their dogs and induces a mutual release of oxytocin , which has a stress-buffering effect (Nagasawa et al., 2009, 2017). Increased eye contact in our study may therefore reflect a pet's attempt to seek comfort from its owner. On the human side, owners recognize when their dogs are stressed (Tami and Gallagher, 2009; Mariti et al., 2012) and try to comfort them in stressful situations (Dreschel and Granger, 2005). Here, we suggest that owners looked at their dogs frequently in order to check on their emotional state and reassure them.

The behaviours that the owners and dogs displayed towards each other were related during the greeting phase. A number of studies have revealed that dogs greet their owners after a period of separation (Topál et al., 1998; Konok et al., 2011; Rehn et al., 2014a), and the more the owners interact with their dog, the more the dogs exhibit proximity-seeking behaviours and initiate contact when they are reunited (Rehn et al., 2014b). In this study, dogs were physically distanced from their owners, and they experienced additional stress when they underwent veterinary manipulations. After the examination, dogs and owners greeted each other by approaching one another, initiating physical contact, vocalising and verbal interactions. Our results provide evidence that owners and dogs synchronised their behaviours. Such findings, observed during the greeting phase, were not observed during the veterinary examination however, possibly due to the choice to not authorise physical contact, thus restraining the dyads' behaviours.

Finally, we anticipated that the stress levels of the owners and their dogs would be correlated. In one study, 26% of owners declared that thinking about bringing their dog to the vet was stressful (Volk et al., 2011), and owners have been shown to transmit their stress to
their pet via emotional contagion (Yong, 2014; Cunningham, 2017; Huber, 2017; Katayama 2019; Sundman, 2019). Our findings do not reveal such an association during either the examination or the greeting phase. One possible reason for this is the low stress level of the owners in the context of this study. We performed simple clinical examinations on healthy dogs, and owners were told prior to the consultation that the manipulations would be short and painless. Owners were not given specific instructions on how to behave with their dogs, except to avoid physical contact during the examination phase. As a consequence, the vast majority of owners showed a low level of stress. Whether the same observation would be made during real veterinary consultations on sick animals is not known. As invasive medical procedures on unhealthy dogs may constitute a greater stressor for the owner, further research in this context is necessary.

Conclusions

The aim of this study was to observe owner-dog dyads in veterinary consultations and identify correlations between dog and owner behaviours. Although no relationship was found between the stress levels of the owners and their dogs during the consultations, their behaviours towards each other were linked during the greeting phase. Our findings indicate that scolding by the owner during the clinical examination should be avoided as it heightens the animal's anxiety. Visual and verbal positive interactions alone do not induce noticeable relaxation in dogs during this phase. However, increased eye contact within the dyad suggests that while they are being examined, anxious dogs look for social information or reassurance from their owners. Our results therefore support the hypothesis that it is beneficial to dogs' welfare when owners interact positively with their pets during veterinary consultations.

Conflict of interest statement

None of the authors has any financial or personal relationships that could inappropriately influence or bias the content of this paper.

Acknowledgment

We are grateful to Elodie Losserand who helped during this study. We thank all the dog owners who voluntarily participated. We are also grateful to Caniplex, Bagat-en-Quercy, France, for providing thank-you gifts for all volunteers. Preliminary results were presented during a confidential veterinary thesis defence at the Ecole Nationale Vétérinaire de Toulouse on 13 December 2017.

Supplementary material

Supplementary data associated with this article can be found in the online version at doi: ...

References

Barnhart, H.X., Haber, M., Song, J., 2002. Overall concordance correlation coefficient for evaluating agreement among multiple observers. Biometrics 58, 1020-7.

Barnhart, H.X., Haber, M.J., Lin, L.I., 2007. An overview on assessing agreement with continuous measurements. Journal of Biopharmaceutical Statistics 17, 529-69.

Beaver, B.V., 1999. In: Canine behavior: a guide for veterinarians. Philadelphia: W.D. Saunders Company.

Beerda, B., Schilder, M.B.H., Van Hooff, J.A., De Vries, H.W., Mol, J.A., 1998. Behavioural, saliva cortisol and heart rate responses to different types of stimuli in dogs. Applied Animal Behaviour Science 58, 365-381.

Cimarelli, G., Turcsán, B., Bánlaki, Z., Range, F. and Virányi, Z., 2016. Dog Owners' Interaction Styles: Their Components and Associations with Reactions of Pet Dogs to a Social Threat. Frontiers in Psychology [online], 7.

Cunningham, K., 2017. Hormonal Synchronization of Cortisol Levels and Emotional Contagion Between Human Owners and Agility Dogs. PhD Thesis. University of Nebraska at Omaha.

Csoltova, E., Martineau, M., Boissy, A., Gilbert, C., 2017. Behavioral and physiological reactions in dogs to a veterinary examination: Owner-dog interactions improve canine well-being. Physiology \& Behavior 177, 270-281.

Deldalle, S., Gaunet, F., 2014. Effects of 2 training methods on stress-related behaviors of the dog (Canis familiaris) and on the dog-owner relationship. Journal of Veterinary Behavior: Clinical Applications and Research 9, 58-65.

Döring, D., Roscher, A., Scheipl, F., Küchenhoff, H., Erhard, M.H., 2009. Fear-related behaviour of dogs in veterinary practice. The Veterinary Journal 182, 38-43.

Dreschel, N.A., Granger, D.A., 2005. Physiological and behavioral reactivity to stress in thunderstorm-phobic dogs and their caregivers. Applied Animal Behaviour Science 95, 153-168.

Drobatz, J.K. and Smith, G., 2003. Evaluation of risk factors for bite wounds inflicted on caregivers by dogs and cats in a veterinary teaching hospital. Journal of the American Veterinary Medical Association 223, 312-316.

Duranton, C., Bedossa, T., Gaunet, F., 2016. When facing an unfamiliar person, pet dogs present social referencing based on their owners' direction of movement alone. Animal Behaviour 113, 147-156.

Duranton, C., Bedossa, T., Gaunet, F., 2017. Interspecific behavioural synchronization: dogs exhibit locomotor synchrony with humans. Scientific Reports 7.

Duranton, C., Bedossa, T., Gaunet, F., 2018. Pet dogs synchronize their walking pace with that of their owners in open outdoor areas. Animal cognition 21, 219-226.

Duranton, C., Gaunet, F., 2015. Canis sensitivus: Affiliation and dogs' sensitivity to others' behavior as the basis for synchronization with humans? Journal of Veterinary Behavior: Clinical Applications and Research 10, 513-524.

Edwards, P. T., Smith, B. P., McArthur, M. L., Hazel, S. J., 2019. Fearful Fido: Investigating dog experience in the veterinary context in an effort to reduce distress. Applied Animal Behaviour Science 213, 14-25.

Elfenbein, H. A., Barsade, S. G. and Eisenkraft, N., 2015. The social perception of emotional abilities: Expanding what we know about observer ratings of emotional intelligence. Emotion, 15, 17-34.

Feuerbacher, E.N., Wynne, C.D.L., 2015. Shut up and pet me! Domestic dogs (Canis lupus familiaris) prefer petting to vocal praise in concurrent and single-alternative choice procedures. Behavioural Processes 110, 47-59.

Firnkes, A., Bartels, A., Bidoli, E., Erhard, M., 2017. Appeasement signals used by dogs during dog-human communication. Journal of Veterinary Behavior: Clinical Applications and Research 19, 35-44.

Fritschi, L., Day, L., Shirangi, A., Robertson, I., Lucas, M., Vizard, A., 2006. Injury in Australian veterinarians. Occupational Medicine 56, 199-203.

Gácsi, M., Miklósi, Á., Varga, O., Topál, J., Csányi, V., 2004. Are readers of our face readers of our minds? Dogs (Canis familiaris) show situation-dependent recognition of human's attention. Animal Cognition 7, 144-153.

Gácsi, M., Maros, K., Sernkvist, S., Faragó, T., Miklósi, Á., 2013. Human Analogue Safe Haven Effect of the Owner: Behavioural and Heart Rate Response to Stressful Social Stimuli in Dogs. PLoS ONE 8, p. e58475.

Gaunet, F., Deputte, B.L., 2011. Functionally referential and intentional communication in the domestic dog: effects of spatial and social contexts. Animal Cognition 14, 849-860.

Gaunet, F., El Massioui, F., 2014. Marked referential communicative behaviours, but no differentiation of the "knowledge state" of humans in untrained pet dogs versus 1-year-old infants. Animal cognition 17, 1137-1147.

Girault, C., Duranton, C., Helsly, M., Priymenko, N., Gaunet, F. Dog behaviours in veterinary consultations: Part I. Effect of owner presence or absence. Under review.

Glardon, O.J., Hartnack, S., Horisberger, L., 2010. Analyse du comportement des chiens et des chats pendant l'examen physique en cabinet vétérinaire. Schweizer Archiv für Tierheilkunde 152, 69-75.

Hennessy, M.B., Williams, M.T., Miller, D.D., Douglas, C.W.,Voith, V.L., 1998. Influence of male and female petters on plasma cortisol and behaviour: can human interaction reduce the stress of dogs in a public animal shelter? Applied Animal Behaviour Science 61, 63-77.

Herron, M. E. and Shreyer, T., 2014. The Pet-friendly Veterinary Practice. Veterinary Clinics of North America: Small Animal Practice 44, 451-481.

Hibel, L. C. and Mercado, E., 2019. Marital Conflict Predicts Mother-to-Infant Adrenocortical Transmission. Child Development 90, e80-e95.

Horowitz, A., 2009. Disambiguating the "guilty look": Salient prompts to a familiar dog behaviour. Behavioural Processes 81, 447-452.

Hsu, Y., Sun, L., 2010. Factors associated with aggressive responses in pet dogs. Applied Animal Behaviour Science 123, 108-123.

Huber, A., Barber, A. L. A., Faragó, T., Müller, C. A. and Huber, L., 2017. Investigating emotional contagion in dogs (Canis familiaris) to emotional sounds of humans and conspecifics. Animal Cognition 20, 703-715.

Katayama, M., Kubo, T., Yamakawa, T., Fujiwara, K., Nomoto, K., Ikeda, K., Mogi, K., Nagasawa, M. and Kikusui, T., 2019. Emotional Contagion From Humans to Dogs Is Facilitated by Duration of Ownership. Frontiers in Psychology [online], 10.

Kaurin, A., Sauerberger, K. S. and Funder, D. C., 2018. Associations between informant ratings of personality disorder traits, self-reports of personality, and directly observed behavior. Journal of Personality, 86, 1078-1101.

Kerepesi, A., Dóka, A., Miklósi, Á., 2015. Dogs and their human companions: The effect of familiarity on dog-human interactions. Behavioural Processes 110, 27-36.

Konok, V., Dóka, A.,Miklósi, Á., 2011. The behavior of the domestic dog (Canis familiaris) during separation from and reunion with the owner: A questionnaire and an experimental study. Applied Animal Behaviour Science 135, 300-308.

Koolhaas, J. M., Korte, S. M., De Boer, S. F., Van Der Vegt, B. J., Van Reenen, C. G., Hopster, H., De Jong, I. C., Ruis, M. A. W. and Blokhuis, H. J., 1999. Coping styles in animals: current status in behavior and stress-physiology. Neuroscience \& Biobehavioral Reviews 23, 925-935.

Landis, J.R., Koch, G.G., 1977. The measurement of observer agreement for categorical data. Biometrics, 159-174.

Lawrence, I., Lin, L.I., 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 255-268.

Mariti, C., Gazzano, A., Moore, J.L., Baragli, P., Chelli, L., Sighieri, C., 2012. Perception of dogs' stress by their owners. Journal of Veterinary Behavior: Clinical Applications and Research 7, 213-219.

Mariti, C., Ricci, E., Zilocchi, M., Gazzano, A., 2013. Owners as a secure base for their dogs. Behaviour 150, 1275-1294.

Mariti, C., Pierantoni, L., Sighieri, C., Gazzano, A., 2017. Guardians' perceptions of dogs' welfare and behaviors related to visiting the veterinary clinic. Journal of Applied Animal Welfare Science 20, 24-33.

McGreevy, P.D., Righetti, J., Thomson, P.C., 2005. The reinforcing value of physical contact and the effect on canine heart rate of grooming in different anatomical areas. Anthrozoös 18, 236-244.

Meagher, R. K., 2009. Observer ratings: Validity and value as a tool for animal welfare research. Applied Animal Behaviour Science, 119, 1-14.

Merola, I., Prato-Previde, E., Marshall-Pescini, S., 2012a. Social referencing in dog-owner dyads? Animal Cognition 15, 175-185.

Merola, I., Prato-Previde, E., Marshall-Pescini, S., 2012b. Dogs' social referencing towards owners and strangers. PloS one 7, e47653.

Miklósi, Á., Kubinyi, E., Topál, J., Gácsi, M., Virányi, Z., Csányi, V., 2003. A simple reason for a big difference: wolves do not look back at humans, but dogs do. Current biology 13, 763-766.

Miklósi, A., Polgárdi, R., Topál, J., Csányi, V., 2000. Intentional behaviour in dog-human communication: an experimental analysis of "showing" behaviour in the dog. Animal cognition 3, 159-166.

Mills, D.S., Ramos, D., Estelles, M.G., Hargrave, C., 2006. A triple blind placebo-controlled investigation into the assessment of the effect of Dog Appeasing Pheromone (DAP) on anxiety related behaviour of problem dogs in the veterinary clinic. Applied Animal Behaviour Science 98, 114-126.

Moffat, K., 2008. Addressing Canine and Feline Aggression in the Veterinary Clinic. Veterinary Clinics of North America: Small Animal Practice 38, 983-1003.

Nagasawa, M., Mogi, K., Kikusui, T., 2009. Attachment between humans and dogs: Attachment between humans and dogs. Japanese Psychological Research. September 2009. Vol. 51, no. 3, p. 209-221.

Nagasawa, M., Ogawa, M., Mogi, K., Kikusui, T., 2017. Intranasal Oxytocin Treatment Increases Eye-Gaze Behavior toward the Owner in Ancient Japanese Dog Breeds. Frontiers in Psychology [online], 8.

Palmer, R. and Custance, D., 2008. A counterbalanced version of Ainsworth's Strange Situation Procedure reveals secure-base effects in dog-human relationships. Applied Animal Behaviour Science 109, 306-319.

Prato-Previde, E., Custance, D. M., Spiezo, C. and Sabatini, F., 2003. Is the dog-human relationship an attachment bond? An observational study using Ainsworth's strange situation. Behaviour 140, 225-254.

Rehn, T., Handlin, L., Uvnäs-Moberg, K., Keeling, L. J., 2014a. Dogs' endocrine and behavioural responses at reunion are affected by how the human initiates contact. Physiology \& Behavior 124, 45-53.

Rehn, T., Lindholm, U., Keeling, L., Forkman, B., 2014b. I like my dog, does my dog like me? Applied Animal Behaviour Science 150, 65-73.

Savalli, C., Ades, C., Gaunet, F., 2014. Are Dogs Able to Communicate with Their Owners about a Desirable Food in a Referential and Intentional Way? PLoS ONE 9, e108003.

Savalli, C., Resende, B., Gaunet, F., 2016. Eye Contact Is Crucial for Referential Communication in Pet Dogs. PLOS ONE 11, e0162161.

Standford, T.L., 1981. Behavior of dogs entering a veterinary clinic. Applied Animal Ethology 7, 271-279.

Stellato, A. C., Dewey, C. E., Widowski, T. M., Niel, L., 2020. Evaluation of associations between owner presence and indicators of fear in dogs during routine veterinary examinations. Journal of the American Veterinary Medical Association 257, 10311040.

Sundman, A-S., Van Poucke, E., Svensson Holm, A-C., Faresjö, Å., Theodorsson, E., Jensen, P. and Roth, L. S. V., 2019. Long-term stress levels are synchronized in dogs and their owners. Scientific Reports [online], 9.

Tami, G., Gallagher, A., 2009. Description of the behaviour of domestic dog (Canis familiaris) by experienced and inexperienced people. Applied Animal Behaviour Science 120, 159-169.

Topál, J., Miklósi, Á., Csányi, V., Dóka, A., 1998. Attachment behavior in dogs (Canis familiaris): a new application of Ainsworth's (1969) Strange Situation Test. Journal of comparative psychology 112, 219.

Volk, J. O., Felsted, K. E., Thomas, J. G. and Siren, C. W., 2011. Executive summary of the Bayer veterinary care usage study. Journal of the American Veterinary Medical Association 238, 1275-1282.

Walker, R., Fisher, J., Neville, P., 1997. The treatment of phobias in the dog. Applied Animal Behaviour Science 52, 275-289.

Waters, S. F., West, T. V., \& Mendes, W. B., 2014. Stress contagion: Physiological covariation between mothers and infants. Psychological Science 25, 934-942.

Yong, M. H. and Ruffman, T., 2014. Emotional contagion: Dogs and humans show a similar physiological response to human infant crying. Behavioural Processes 108, 155-165.

Yong, M. H. and Ruffman, T., 2015. Is that fear? Domestic dogs' use of social referencing signals from an unfamiliar person. Behavioural Processes 110, 74-81.

Ziv, G., 2017. The effects of using aversive training methods in dogs-A review. Journal of Veterinary Behavior: Clinical Applications and Research 19, 50-60.

	Characteristics of dogs			Characteristics of owners
Dog	Age (years)	Sex	Breed	Age (years)
1	3	FN	Mixed shepherd	$25-40$
2	1	MN	Mixed retriever	$25-40$
3	4	FN	Cavalier King Charles	$41-60$
4	2.5	FN	Beauceron	$25-40$
5	3	FN	Schapendoes	<25
6	5	FE	Mixed terrier	$25-40$
7	5	FN	Mixed terrier	$>60^{\text {a }}$
8	5	ME	Mixed terrier	$>60^{\text {a }}$
9	7.5	MN	Labrador	$41-60$
10	2.5	ME	Boxer	$25-40$
11	7	FN	Boxer	$41-60$
12	5	MN	Mixed terrier	$25-40^{\text {a }}$
13	6	MN	Mini Australian shepherd	$25-40^{\text {a }}$
14	2.5	MN	Whippet	$25-40$
15	2	ME	Boxer	$41-60$
16	2	MN	French Bulldog	$41-60$
17	1.5	ME	German shepherd	$41-60$
18	7	FN	Spitz	$25-40$
19	2	FE	Boxer	$41-60$
20	10	FN	Papillon	$>60^{\text {a }}$
21	4	MN	Whippet	$>60^{\text {a }}$
22	5	FN	Mixed terrier	$41-60$
23	3.5	FN	Cotton Tulear	$25-40$
24	3.5	MN	White Swiss shepherd	$25-40$
25	9	FN	Australian shepherd	$41-60^{\text {a }}$
26	5	FN	Australian shepherd	$41-60^{\text {a }}$
27	3	FN	Australian shepherd	$41-60^{\text {a }}$
28	4	FE	Groenendael	$25-40$
29	5	ME	Malinois	$41-60$
F				

F, Female; M, Male, N, Neutered; E, Entire.
${ }^{\text {a }}$ Owners participating with more than one dog.

Observed behaviour	Description
Non-exclusive stress-related behaviours	
Scratching ${ }^{\text {a }}$ / Sniffing ${ }^{\text {a }}$ / Shivering ${ }^{\text {a }}$ Shaking ${ }^{\text {a }}$ Low postures ${ }^{\text {a }}$	The dog scratched itself / The dog sniffed the ground or straight ahead / The dog trembled / The dog shook The dog's tail was lowered, its ears faced backwards, or its legs were bent; at least two of these postures were exhibited
Mouth (exclusive behaviours) Yawning ${ }^{\text {a }}$ / Panting ${ }^{\text {a }}$ Licking ${ }^{\text {a }}$	The dog yawned / The dog panted / The dog licked its mouth
Vocalisations (exclusive behaviours) Whining ${ }^{\mathrm{a}}$ / Barking ${ }^{\mathrm{a}}$	The dog whined / The dog barked
Gaze (exclusive behaviours) Gaze at owner	The dog gazed with its head oriented towards its owner
Avoidance (exclusive behaviours) Avoidance	The dog stepped backwards away from the veterinarian or the assistant following one of their actions
Situation (exclusive behaviours) Situation / owner	Half of the dog's body (head and chest) was situated less than 50 cm from its owner
Movement (exclusive behaviours) Move	The dog moved its four limbs with less than 1 second between the movement of each limb
Contact (exclusive behaviours) Contact with owner	The dog intentionally touched its owner

${ }^{\text {a }}$ Stress-related behaviour

Behavioural indices calculated using several behaviours from Tables 2 and 8.

Index (Unit)	Definition	Formula
Total Stress (\%)	Sum of percentages of time spent yawning, panting, scratching, adopting low posture, shaking, sniffing, whining, barking and licking	Total Stress (\%) = Yawning (\%) + Panting (\%) + Scratching (\%) + Low postures (\%) + Shaking (\%) + Sniffing (\%) + Whining (\%) + Barking (\%) + Licking (\%)
Positive owner behaviours (\%)	Sum of percentages of time spent gazing at dog, having contact with dog, and talking positively	Positive owner behaviours (\%) = Gaze at Dog (\%) + Contact with Dog (\%) + Positive verbal interactions (\%)
Physical contact (\%)	Time dog and owner spent in contact: contact with owner and/or contact with dog	Physical contact (\%) = Contact with Owner (\%) + Contact with Dog (\%)
Eye contact (\%)	Time dog and owner spent in eye contact: gaze at owner and gaze at dog	Eyecontact (\%) $=[$ Gaze at Owner \cap Gaze at Dog] (seconds) / Phase duration (seconds)
Behaviours towards owner (\%)	Sum of percentages of time spent gazing at, having contact with, and seeking proximity to the owner	Behaviours Towards Owner (\%) = Gaze at Owner (\%) + Contact with Owner (\%) + Situation / Owner (\%)

$672 \quad \%$, percentage of time (behaviour duration/phase duration); Yawning = the dog yawned;
673 Panting = the dog panted; Scratching= the dog scratched itself; Low posture $=$ the dog's tail
674 was lowered, its ears faced backwards, or its legs were bent, at least two of these postures
675 were exhibited; Shaking = the dog shook; Sniffing $=$ the dog sniffed the ground or straight
676 ahead; Whining $=$ the dog whined; Barking $=$ the dog barked; Licking $=$ the dog licked its
677 mouth; Gaze at dog = the owner gazed with their head oriented towards their dog; Contact 678 with dog = the owner intentionally touched their dog; Positive verbal interaction $=$ The owner talked to their dog with an even or happy voice, encouraged their dog or made a soft sound; Contact with owner = the dog intentionally touched its owner; Gaze at owner $=$ the dog gazed with its head oriented towards its owner; Situation / owner = half of the dog's body (head and chest) was situated less than 50 cm from its owner.

Table 4

Rated emotional states of dogs during examination and greeting phases, their definitions and scores.

Emotional state	Definition	Score
Relaxed	No or low frequency of movement, with no visual evidence of tension in the body	1
Aroused	Tense, with high frequency of movement, but no visual evidence of anxious behaviours	2
Anxious	Tense, with licking, yawning, crying, agitation or observable fearful posture	3

Behaviour	Definition and Score
Owner stress	1 = Calm and relaxed 5 = Agitated or anxious
Owner support	1 = Indifferent 5 = Many attempts to comfort the dog
Reunion / Dog	Greeting intensity by dog towards owner 1 = Indifferent 5 = Very happy, jumps on the owner, requests contacts
Reunion / Owner	Greeting intensity by owner towards dog $1=$ Indifferent 5 = Talks to the dog, pets the dog a lot

Restraint	Definition	Score
Low	The assistant did not need to use force to keep the dog in the right position. The dog was voluntarily almost immobile.	1
Medium	The assistant needed to increase her restraint to keep the dog in the same position. The dog was agitated/moved frequently.	2
	The assistant had to hold the dog firmly to keep it on the examination table or help the veterinarian perform the clinical examination. The dog tried to escape.	3

Manipulation	Definition	Score and Value	
Table	Dog was picked up and lifted onto the examination table	Failure: $0^{\text {a }}$ Success: 1	Difficulty (from 1 to 5) 1 : easy / 5: hard
Eye	Eye and mucosa observation	Failure: 0 Success: 1	Difficulty (from 1 to 5) 1 : easy / 5: hard
Ear	Ear manipulation and observation	Failure: 0 Success: 1	Difficulty (from 1 to 5) 1 : easy / 5: hard
Mouth	Examination of teeth and mouth mucosa	Failure: 0 Success: 1	Difficulty (from 1 to 5) 1 : easy / 5: hard
Palpation	Abdominal and lymph nodes palpation	Failure: 0 Success: 1	Difficulty (from 1 to 5) 1 : easy / 5: hard
Skin fold	Examination of scapular skin fold	Failure: 0 Success: 1	Difficulty (from 1 to 5) 1 : easy / 5: hard
Auscultation	Cardiac and pulmonary auscultation	Failure: 0 Success: 1	Difficulty (from 1 to 5) 1 : easy / 5: hard
Thermometer	Measuring rectal temperature	Failure: 0 Success: 1	Difficulty (from 1 to 5) 1 : easy / 5: hard
Paws	Manipulating paws	Failure: 0 Success: 1	Difficulty (from 1 to 5) 1 : easy / 5: hard

Table 7
Rated manipulations performed by the veterinarian during the examination and the meaning of their success and difficulty score.

[^2]
Table 8

Recorded behaviours of owners during the examination and greeting phases and their definitions.

Observed behaviour
Description
Gaze (exclusive behaviours)
Gaze at dog
The owner gazed with their head oriented towards their dog

Contact (exclusive behaviours)
Contact with dog
The owner intentionally touched their dog
Verbal interaction (exclusive behaviours)
Positive verbal interaction The owner talked to their dog with an even or happy voice, encouraged their dog or made a soft sound
Neutral or negative verbal The owner spoke harshly to their dog, scolded it, gave it interaction commands, or made a neutral sound

Table 9
Behaviours (\% of total time) and Scores (units) of dogs and owners during the veterinary consultation. Results are expressed as mean \pm standard error.

Behaviours/Scores	Examination phase	Greeting phase
Dog behaviours (units)		
Gaze at owner (\%)	35.91 ± 3.49	36.0 ± 3.18
Contact with owner (\%)	-	18.0 ± 4.62
Situation / owner (\%)	-	68.10 ± 4.51
Dog scores		
Emotional state $^{\mathrm{c}}$	2.62 ± 0.08	1.57 ± 0.07
Reunion / dog $^{\text {Restraint level }} \mathrm{c}$	-	2.98 ± 0.23
Success $^{\mathrm{b}}$	1.79 ± 0.10	-
Difficulty $^{\mathrm{b}}$	0.987 ± 0.01	-
	1.43 ± 0.07	-
Owner behaviours (units) $_{\text {Gaze at dog (\%) }}^{\text {Contact with dog (\%) }}$		
Positive talk (\%)	90.27 ± 1.62	73.93 ± 4.13
Neutral or negative talk (\%)	-	30.0 ± 4.57
Owner scores	4.54 ± 1.11	17.76 ± 3.29
Owner stress	1.24 ± 0.34	2.90 ± 1.07
Owner support		
Reunion / owner	1.36 ± 0.06	1.36 ± 0.06

$\%$, percentage of time (behaviour duration/phase duration).
${ }^{a} \mathrm{~A}$ single score was attributed to owner stress for the entire consultation.
${ }^{b}$ Manipulation success and difficulty correspond to mean scores for the all the medical acts.
${ }^{\text {c }}$ Scores ranging from 1 to 3 . The other scores ranged from 1 to 5 .
Gaze at owner = the dog gazed with its head oriented towards its owner; Contact with owner
= the dog intentionally touched its owner; Situation / owner = half of the dog's body (head and chest) was situated less than 50 cm from its owner; Emotional State, Rated emotional states of dogs ($1=$ Relaxed: No or low frequency of movement, with no visual evidence of tension in the body, 2 = Aroused: Tense, with high frequency of movement, but no visual evidence of anxious behaviours, $3=$ Tense, with licking, yawning, crying, agitation or observable fearful posture; also see Table 4); Reunion / Dog, Rated greeting intensity by dog towards owner ($1=$ indifferent, $5=$ very happy, jumps on the owner, requests contact; also see Table 5); Restraint, Rated levels of dog restraint ($1=$ low: the assistant did not need to use force to keep the dog in the right position, the dog was voluntarily almost immobile, $2=$ medium: the assistant needed to increase her restraint to keep the dog in the same position, the dog was agitated/moved frequently, $3=$ high: the assistant had to hold the dog firmly to keep it on the examination table or help the veterinarian perform the clinical examination, the dog tried to escape; also see Table 6); Success, $(0=$ failure, $1=$ success $)$; Difficulty, Rated difficulty of the manipulation ($1=$ easy, $5=$ hard $)$; Gaze at dog = the owner gazed with their head oriented towards their dog; Contact with dog $=$ the owner intentionally touched their dog; Positive verbal interaction $=$ The owner talked to their dog with an even or happy voice,
encouraged their dog, or made a soft sound; Neutral or negative verbal interaction $=$ The owner spoke harshly to their dog, scolded it, gave it commands, or made a neutral sound; Owner stress, rated stress of the owner ($1=$ calm and relaxed, $5=$ agitated or anxious; also see Table 5); Owner support, rated support of the owner towards $\operatorname{dog}(1=$ indifferent, $5=$ many attempts to comfort the dog; also see Table 5); Reunion / owner, Rated greeting intensity by owner towards $\operatorname{dog}(1=$ indifferent, $5=$ talks to or pets the dog a lot; also see Table 5$)$.

Table 10
Pearson's correlations between owner and dog behaviours observed during the veterinary examination and greeting phases.

Correlations		Examination phase			Greeting phase		
		P	r	$1-\beta$	P	r	1- β
Positive owner behaviours /	Behaviours towards owner	0.909			0.004	0.52	0.84
	Total stress	0.834			0.388		
	Emotional state	0.404			0.775		
	Avoidance	0.336					
	Success	0.500					
	Difficulty	0.592					
	Restraint	0.596					
Neutral or negative verbal interaction /	Total stress	0.049	0.37	0.51	0.136		
	Emotional state	0.044	0.38	0.53	0.545		
	Avoidance	0.140					
	Success	0.080					
	Difficulty	0.060					
	Restraint	0.324					
Owner support /	Total stress	0.767					
	Emotional state	0.466					
Owner Stress /	Total stress	0.808			0.976		
	Emotional state	0.387			0.938		
Eye contact /	Total stress	0.031	0.40	0.58	0.394		
	Emotional state	0.011	0.47	0.74	0.652		
Physical contact /	Total stress				0.238		
	Emotional state				0.706		
Reunion / Owner /	Reunion / Dog				0.001	0.58	0.92

742 Positive owner behaviours = Sum of percentages of time spent gazing at dog, having contact with dog, and talking positively; Behaviours towards owner = Sum of percentages of time spent gazing at, having contact with, and seeking proximity to the owner; Total Stress = Sum of percentages of time spent yawning, panting, scratching, adopting low posture, shaking, sniffing, licking, and whining; Emotional State, Rated emotional states of dogs ($1=$ Relaxed: No or low frequency of movement, with no visual evidence of tension in the body, $2=$ Aroused: Tense, with high frequency of movement, but no visual evidence of anxious behaviours, 3 = Tense, with licking, yawning, crying, agitation or observable fearful posture; also see Table 4); Avoidance $=$ The dog stepped backwards away from the veterinarian or the assistant following one of their actions; Success, $(0=$ failure, $1=$ success $)$; Difficulty, Rated difficulty of the manipulation ($1=$ easy, $5=$ hard); Restraint, Rated levels of dog restraint ($1=$
low: the assistant did not need to use force to keep the dog in the right position, the dog was voluntarily almost immobile, $2=$ medium: the assistant needed to increase her restraint to keep the dog in the same position, the dog was agitated/moved frequently, $3=$ high: the assistant had to hold the dog firmly to keep it on the examination table or help the veterinarian perform the clinical examination, the dog tried to escape; also see Table 6); Neutral or negative verbal interaction = the owner spoke harshly to their dog, scolded it, gave it commands, or made a neutral sound; Owner support, rated support of the owner towards dog ($1=$ indifferent, 5 = many attempts to comfort the dog; also see Table 5); Owner stress, rated stress of the owner ($1=$ calm and relaxed, $5=$ agitated or anxious; also see Table 5); Eye contact, time dog and owner spent in eye contact, gaze at owner and gaze at dog; Physical contact, time dog and owner spent in contact, contact with owner and/or contact with dog; Reunion / owner, Rated greeting intensity by owner towards $\operatorname{dog}(1=$ indifferent, $5=$ talks to or pets the dog a lot; also see Table 5)); Reunion / Dog, Rated greeting intensity by dog towards owner ($1=$ indifferent, $5=$ very happy, jumps on the owner, requests contact; also see Table 5).

Figure legends

Fig.1. Correlation between the duration of the owners' positive behaviours (\%) and the duration of the dog behaviours towards their owners (\%) during the greeting phase.

Fig.2. Correlation between the duration (\%) of the owners' neutral or negative verbal interactions and the emotional state of their dogs during the examination phase.

Fig.3. Correlation between the duration (\%) of eye contact and the duration (\%) of the dogs' total stress during the examination phase.

[^0]: ${ }^{1}$ See : Solomon Coder, András Péter, https://solomon.andraspeter.com/ (Accessed 13 december 2021).

[^1]: ${ }^{2}$ See: The R Project for Statistical Computing. http://www.r-project.org. (Accessed 13 december 2021)

[^2]: ${ }^{\text {a }}$ Each dog received a score of 0 or 1 and these scores were used to calculate the percentage of success of all 29 dogs.

