Cinzia Di Giusto

Davide Ferré

Laetitia Laversa

Etienne A Lozes

A partial order view of message-passing communication models

Introduction

Reasoning about distributed message-passing applications is notoriously hard. One reason is that the communication architecture may vary and must be accurately specified. Indeed, an approximation of the communication model may hide deadlocks or safety errors, such as unspecified receptions. In synchronous (or rendez-vous) communication, send and receive events are viewed as a single event, i.e., a receive and the corresponding send event happen simultaneously. The idea behind asynchronous communication, instead, is to decouple send and receive events, so that a receive can happen indefinitely after the corresponding send. A prominent model of systems with asynchronous communication is the one of communicating finite state machines, where each agent is a finite state machine that can push and pop messages from FIFO queues. Despite its simplicity, most of decision problems concerning this model are undecidable [START_REF] Brand | On communicating finite-state machines[END_REF]. For this reason, several model-checking tools, such as SPIN [START_REF] Holzmann | The SPIN Model Checker -primer and reference manual[END_REF], assume that communication buffers are bounded in order to keep a finite set of configurations. To overcome this limitation, several bounded model-checking techniques for finite state machines have been proposed, including universal and existential buffer boundedness [START_REF] Genest | A Kleene theorem for a class of communicating automata with effective algorithms[END_REF], bounded context-switch [START_REF] La | Reducing context-bounded concurrent reachability to sequential reachability[END_REF], or k-synchronizability [START_REF] Bouajjani | On the completeness of verifying message passing programs under bounded asynchrony[END_REF], as well as some approaches based on over-approximation [START_REF] Heußner | Extrapolation-based path invariants for abstraction refinement of fifo systems[END_REF][START_REF] Botbol | Static analysis of communicating processes using symbolic transducers[END_REF]. One problem of interest, in the case of bounded model-checking techniques, is the completeness of the analysis, i.e., whether the system behavior is completely captured by the bounded semantics. Recently, Bollig et al. [START_REF] Bollig | A unifying framework for deciding synchronizability[END_REF] proposed a general framework that helps to develop new bounded model-checking techniques for which the completeness problem is ensured to be decidable. While this framework is parametric in the bounded model-checking techniques under consideration, it is quite rigid in the communication model that is assumed among all participants.

In this paper, we show how to further generalize this framework to handle several models of communications. To do so, we first clarify and classify some of these communication models. On the one hand, we consider communication models that were proposed in the early days of largescale distributed computing to establish the correctness of some distributed algorithms, such as causal ordering [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF], for the correctness of Lamport's distributed mutual exclusion algorithm (see also [START_REF] Van Renesse | Causal controversy at le mont st.-michel[END_REF] for more examples). On the other hand, we look at communication models that emerge naturally when considering local-scale message-passing applications, which are based on predictable message buffering supported by local FIFO queues. Such communication models have been considered in more recent works (for instance in [START_REF] Basu | On deciding synchronizability for asynchronously communicating systems[END_REF]) and have caused some confusion, specifically regarding the difference between causal ordering and mailbox [START_REF] Bouajjani | On the completeness of verifying message passing programs under bounded asynchrony[END_REF][START_REF] Di Giusto | On the k-synchronizability of systems[END_REF].

The classification and axiomatization of communication models for large-scale distributed systems received great attention in the late 90s [START_REF] Charron-Bost | Synchronous, asynchronous, and causally ordered communication[END_REF], while the local-scale communication models have only started to be investigated quite recently by Chevrou et al. [START_REF] Chevrou | On the diversity of asynchronous communication[END_REF], focusing on a sequential view of the behaviors of message-passing applications (to be detailed below). At the same time, several works [START_REF] Kragl | Synchronizing the asynchronous[END_REF][START_REF] Klaus Von Gleissenthall | Pretend synchrony: synchronous verification of asynchronous distributed programs[END_REF][START_REF] Bouajjani | On the completeness of verifying message passing programs under bounded asynchrony[END_REF][START_REF] Lange | Verifying asynchronous interactions via communicating session automata[END_REF] recently addressed the verification of asynchronous message-passing applications by reduction to their synchronous semantics (see also [START_REF] Lipton | Reduction: A method of proving properties of parallel programs[END_REF] for a seminal work on these questions). These results strongly rely on the ability to safely approximate an asynchronous communication model with a synchronous one. There is therefore a need to clarify how the synchronous-asynchronous spectrum of communication models is organized.

In this work, we start from the sequential, interleaving-based, hierarchy established by Chevrou et al. [START_REF] Chevrou | On the diversity of asynchronous communication[END_REF], where a communication model is represented by a class of sequential executions. We revisit this hierarchy taking a "non-sequential" point of view: we consider only the direct causality between messages, which leads to a partial order point of view. We define a communication model as a class of Message Sequence Charts (MSCs in the following). MSCs are a graphical representation of computations of distributed systems, and they are a simplified version of the ITU recommendation [20]. In an MSC, such as the one in Fig. 1, each vertical line is called a process line and it represents the order in which events are executed by a single process, with time running from top to bottom; black arrows are used to represent messages and they connect a send event with the corresponding matching receive. Given a message m i , we will use !i and ?i to denote the corresponding matching send and receive events, respectively. A single process line defines a total order over the events executed by that process, i.e., an event e happens before another event e ′ if e is higher in the process line; in Fig. 1, if we look at process q we see that ?1 happens before ?2. However, in general MSCs only specify a partial order over events. Consider the events !1 and !2 in Fig. 1, which are executed by two different processes; these two events are concurrent, meaning that the MSC does not tell us which one is executed first. Even though events on different processes can be concurrent, this is not always the case. For instance, a send event must always happen before its matching receive event. Graphically, this happens before relation between events on different processes is represented by a path that follows the direction of the arrows and runs from top to bottom. This will be referred to as a causal path, because it establishes a causal relation between events. Fig. 1 shows an example of causal path (the red arrows) between the events !2 and ?3.

In this work we interpret communication models as classes of MSCs. This partial order view of the communication models is arguably the "standard one", rather than the sequential point of view adopted by Chevrou et al. It is more relevant for comparing communication models, as some of them, such as causally ordered communications, intrinsically rely on the partial order view and the happens-before relation. It is also more accurate: for instance, as we show in Section 5, some inclusions between communication models are missed by the sequential hierarchy. Such inclusions are interesting to know; for instance, it can be useful to know that if a system is safe when running on mailbox communication, it will also be safe when running on causally ordered communication, but that the converse does not hold.

Our contributions are the following:

• We review peer-to-peer FIFO (p2p), causally ordered (co), mailbox (mb), FIFO 1-n (onen), FIFO n-n (nn), asynchronous (asy), and synchronous (rsc) communication models and propose definitions of these models in terms of classes of MSCs. For the communication models whose intuition stems from an operational semantics, we provide an alternative operational definition. Notice that the asy (also known as bag) model, co, p2p, and rsc are well-established standards. They have been heavily considered in theoretical aspects of distributed computing and, as already mentioned, they are required to establish the correctness of several distributed algorithms. They are also prominent in applications, because most of them are simple to implement, with the exception of causal ordering. mb is a standard choice of communication; it is native in Erlang, but more generally concurrent programs based on the "actor model" use it (e.g., it is a common design pattern used in Go programming). Moreover, it is a cheap "implementation" of causal ordering (while being more restrictive than causal ordering), so it is a natural option if some guarantees enforced by causal ordering are desired, but the full flexibility of causal ordering is not needed. FIFO 1-n captures, among others, the "job stealing" design pattern for parallelization and finally, FIFO n-n captures systems where all participants communicate among them through a "global bus".

• From these definitions, we deduce a new hierarchy of communication models (see Fig. 2a) and establish the strictness of this hierarchy by means of several examples. Surprisingly, the FIFO 1-n class, that could be thought of as the "dual" of the mailbox class, is a subclass of mailbox class. This strongly contrasts with Chevrou et al. sequential hierarchy, where FIFO 1-n and mailbox are incomparable. The comparison between the FIFO 1-n and mailbox classes is non-trivial in our partial order setting, and it motivates the introduction of several alternative characterizations of these communication models.

• We show that all the communication models can be axiomatized in monadic second order logic (MSO) over MSCs. Interestingly, communication models for large-scale distributed systems are quite easy to axiomatize while those for local-scale systems are much more involved. Indeed they are easy to define by means of an operational semantics involving FIFO queues, but the axiomatization is rather subtle for mb and FIFO 1-n, and highly non-trivial for FIFO n-n. For the latter, we develop a constructive proof based on an algorithm that computes a FIFO n-n linearization of an MSC.

• Building on the MSO characterization of these communication models, we derive several new decidability results (cfr. Fig. 2b) for bounded model-checking of systems of communicating finite state machines under various bounded assumptions (existential boundedness, weak synchronizability, etc).

Outline The paper is organized as follows. Section 2 describes the communication models we consider. We also recall the notion of MSC and introduce formal definitions for these models, seen as classes of MSCs. In Section 3, we rely on an operational semantics to provide an alternative, more classical definition for some of these communication models

asy unbounded STW ✓ ✓ ✓ p2p ✗ [1] ✓ [1] ✓ [1] ✓ [1] co ✗ ✓ ✓ ✓ mb ✓ [1] ✓ [1] ✓ [1] ✓ [1] onen ✓ ✓ ✓ ✓ nn ✓ ✓ ✓ ✓
(b) (Un)decidability results for the synchronizability problems, [START_REF] Babaoglu | Consistent global states of distributed systems: Fundamental concepts and mechanisms[END_REF] indicates that the result was shown in [START_REF] Bollig | A unifying framework for deciding synchronizability[END_REF]. shows some (un)decidability results for various bounded model-checking problems based on MSO and on the notion of special treewidth. Related works are discussed all along the paper in correspondence to specific notions. A version of this paper with some additional material and all the proofs is available at [START_REF] Di Giusto | A non-sequential hierarchy of message-passing models (extended version)[END_REF].

Asynchronous communication models as classes of MSCs

In this section, we give both informal descriptions and formal definitions of the communication models that will be considered in the paper. All of them impose different constraints on the order in which messages can be received. We will use the following customary conventions: R + denotes the transitive closure of a binary relation R, while R * denotes the transitive and reflexive closure. When R * is denoted by a symbol suggesting a partial order, like ≤, we write e.g. < for R + . The cardinality of a set A is |A|. We assume a finite set of processes P = {p, q, . . .} and a finite set of message contents (or just "message") M = {m, . . .}. Each process may either (asynchronously) send a message to another one, or wait until it receives a message. We therefore consider two kinds of actions. A send action is of the form send (p, q, m); it is executed by process p and sends message m to process q. The corresponding receive action executed by q is rec(p, q, m). We write Send(p, q,) to denote the set {send(p, q, m) | m ∈ M}, and Rec(p, q,) for the set {rec(p, q, m) | m ∈ M}. Similarly, for p ∈ P, we set Send(p, ,) = {send(p, q, m) | q ∈ P and m ∈ M}, etc. Moreover, Σ p = Send (p, ,) ∪ Rec(, p,) denotes the set of all actions that are executed by p, and Σ = p∈P Σ p is the set of all the actions. When p and q are clear from the context, we may write !i (resp. ?i) instead of send (p, q, m i) (resp. rec(p, q, m i)).

Fully asynchronous communication

In the fully asynchronous communication model (asy), messages can be received at any time once they have been sent, and send events are non-blocking. It can be modeled as a bag where all messages are stored and retrieved by processes when necessary (as described in [START_REF] Chevrou | On the diversity of asynchronous communication[END_REF] and [START_REF] Basu | On deciding synchronizability for asynchronously communicating systems[END_REF]). It is also referred to as NON-FIFO (cfr. [START_REF] Charron-Bost | Synchronous, asynchronous, and causally ordered communication[END_REF]). An MSC that shows a valid computation for the fully asynchronous communication model will be called a fully asynchronous MSC (or simply MSC). An example of such an MSC is in Fig. 3a; even if message m 1 is sent before m 2 , process q does not have to receive m 1 first. Below, we give the formal definition of MSC. Definition 2.1 (MSC). An MSC over P and M is a tuple M = (E, →, ⊳, λ), where E is a finite (possibly empty) set of events, λ : E → Σ is a labelling function that associates an action to each event, and →, ⊳ are binary relations on E that satisfy the following three conditions. For p ∈ P, let E p = {e ∈ E | λ(e) ∈ Σ p } be the set of events that are executed by p.

1. The process relation →⊆ E × E relates an event to its immediate successor on the same process: →= p∈P → p for some relations → p ⊆ E p ×E p such that → p is the direct successor relation of a total order on E p .

2. The message relation ⊳ ⊆ E × E relates pairs of matching send/receive events:

(2a) for every pair (e, f) ∈ ⊳, there are two processes p, q and a message m such that λ(e) = send(p, q, m) and λ(f) = rec(p, q, m).

(2b) for all f ∈ E, with λ(f) = rec(p, q, m), there is exactly one e ∈ E such that e ⊳ f .

(2c) for all e ∈ E such that λ(e) = send (p, q, m), there is at most one f ∈ E such that e ⊳ f .

3. The happens-before relation1 ≤ hb , defined by (→ ∪ ⊳) * , is a partial order on E.

If, for two events e and f , we have that e ≤ hb f , we say that there is a causal path between e and f . Note that the same message m may occur repeatedly on a given MSC, hence the λ labelling function. In most of our examples, we avoid repeating twice a same message, hence events and actions are univocally identified. Definition 2.1 of (fully asynchronous) MSC will serve as a basis on which the other communication models will build on, adding some additional constraints.

According to Condition (2), every receive event must have a matching send event. However, note that, there may be unmatched send events. An unmatched send event represents the scenario in which the recipient is not ready to receive a specific message. This is the case of message m 1 in Fig. 3e. We will always depict unmatched messages with dashed arrows pointing to the time line of the destination process. We let

SendEv (M) = {e ∈ E | λ(e) is a send action}, RecEv (M) = {e ∈ E | λ(e) is a receive action}, Matched (M) = {e ∈ E | there is f ∈ E such that e ⊳ f }, and Unm(M) = {e ∈ E | λ(e)
is a send action and there is no f ∈ E such that e ⊳ f }.

Example 2.1. For a set of processes P = {p, q, r} and a set of messages M = {m 1 , m 2 , m 3 }, Fig. 1 shows an MSC M = (E, →, ⊳, λ) where, for instance, we have !1 ⊳ ?1, ?1 → ?2, and !2 ≤ hb ?3. The set of actions is Σ = {send(p, q, m 1), send (r, q, m 2), send (q, p, m 3), rec(p, q, m 1), rec(r, q, m 2), rec(q, p, m 3)}, or, using the lightweight notation, Σ = {!1, !2, !3, ?1, ?2, ?3}.

Intuitively, a linearization represents a possible scheduling of the events of the distributed system. More formally, let M = (E, →, ⊳, λ) be an MSC. A linearization of M is a (reflexive) total order ⊆ E × E such that ≤ hb ⊆ . In other words, a linearization of M represents a possible way to schedule its events. For convenience, we will omit the relation when writing a linearization, e.g., !1 !3 !2 ?2 ?3 ?1 is a possible linearization of the MSC in Fig. 3c.

Let

M 1 = (E 1 , → 1 , ⊳ 1 , λ 1) and M 2 = (E 2 , → 2 , ⊳ 2 , λ 2) be two MSCs. The concatenation M 1 • M 2 is the MSC (E, →, ⊳, λ) where E is the disjoint union of E 1 and E 2 , ⊳ = ⊳ 1 ∪ ⊳ 2 , λ(e) = λ i (e) for all e ∈ E i (i = 1, 2). Moreover, → = → 1 ∪ → 2 ∪ R,
where R contains, for all p ∈ P such that (E 1) p and (E 2) p are non-empty, the pair (e 1 , e 2), where e 1 is the p-maximal event of M 1 and e 2 is the p-minimal event of M 2 . Note that M 1 • M 2 is indeed an MSC and that concatenation is associative.

Peer-to-peer communication In the peer-to-peer (p2p) communication model, any two messages sent from one process to another are always received in the same order as they are sent. This is usually implemented by processes pairwise connected with FIFO channels. Alternative names are FIFO 1-1 [START_REF] Chevrou | On the diversity of asynchronous communication[END_REF] or simply FIFO [START_REF] Babaoglu | Consistent global states of distributed systems: Fundamental concepts and mechanisms[END_REF][START_REF] Charron-Bost | Synchronous, asynchronous, and causally ordered communication[END_REF][START_REF] Tel | Introduction to distributed algorithms[END_REF]. MSCs that show valid computations for the p2p communication model will be called p2p-MSCs. The MSC shown in Fig. 3a is not a p2p-MSC, as m 1 cannot be received after m 2 . Fig. 3b shows an example of p2p-MSC; the only two messages sent by and to the same process are m 3 and m 4 , which are received in the same order as they are sent. Definition 2.2 (p2p-MSCs). A p2p-MSC is an MSC M = (E, →, ⊳, λ) where, for any two send events s and s ′ such that λ(s) ∈ Send(p, q,), λ(s ′) ∈ Send(p, q,), and s → + s ′ , one of the following holds

• either s, s ′ ∈ Matched (M) with s ⊳ r and s ′ ⊳ r ′ and r → + r ′ ,

• or s ′ ∈ Unm(M).

Note that we cannot have two messages m 1 and m 2 , both sent by p to q, in that order, such that m 1 is unmatched and m 2 is matched; unmatched message m 1 excludes the reception of any later message. For this reason, the MSC shown in Fig. 3e is not p2p. On the other hand, the one in Fig. 3f is p2p as the two messages are not addressed to the same process.

Causally ordered communication In the causally ordered (co) communication model, messages are delivered to a process according to the causality of their emissions. In other words, if there are two messages m 1 and m 2 with the same recipient, such that there exists a causal path from m 1 to m 2 , then m 1 must be received before m 2 . Causal ordering was introduced by Lamport in [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF] with the name "happened before" order. Implementations were proposed in [START_REF] Larry L Peterson | Preserving and using context information in interprocess communication[END_REF][START_REF] Schiper | A new algorithm to implement causal ordering[END_REF][START_REF] Ajay | Necessary and sufficient conditions on information for causal message ordering and their optimal implementation[END_REF]. Fig. 3b shows an example of non-causally ordered MSC; there is a causal path between the sending of m 1 and m 3 , hence m 1 should be received before m 3 , which is not the case. On the other hand, the MSC in Fig. 3c is causally ordered; note that the only two messages with the same recipient are m 2 and m 3 , but there is no causal path between their respective send events.

Definition 2.3 (co-MSC

). An MSC M = (E, →, ⊳, λ) is causally ordered if, for any two send events s and s ′ , such that λ(s) ∈ Send (, q,), λ(s ′) ∈ Send (, q,), and s ≤ hb s ′

• either s, s ′ ∈ Matched (M) and r → * r ′ , with r and r ′ receive events such that s ⊳ r and s ′ ⊳ r ′ .

• or s ′ ∈ Unm(M).

Note that in a co-MSC we cannot have two send events s and s ′ addressed to the same process, such that s is unmatched, s ′ is matched, and s ≤ hb s ′ .

Mailbox communication In the mailbox (mb) communicating model, any two messages sent to the same process, regardless of the sender, must be received in the same order as they are sent. In other words, if a process receives m 1 before m 2 , then m 1 must have been sent before m 2 . Essentially, mb coordinates all the senders of a single receiver. For this reason the model is also called FIFO n-1 [START_REF] Chevrou | On the diversity of asynchronous communication[END_REF]. A high-level implementation of the mailbox communication model could consist in a single incoming FIFO channel for each process p, in which all processes enqueue their messages to p. A low-level implementation can be obtained thanks to a shared real-time clock [START_REF] Cristian | The timed asynchronous distributed system model[END_REF] or a global agreement on the order of events [START_REF] Défago | Total order broadcast and multicast algorithms: Taxonomy and survey[END_REF][START_REF] Raynal | Communication and agreement abstractions for fault-tolerant asynchronous distributed systems[END_REF]. The MSC shown in Fig. 3b is not a mb-MSC; m 1 and m 3 have the same recipient, but they are not received in the same order as they are sent. The MSC in Fig. 3c is a mb-MSC; indeed, we are able to find a linearization that respects the mailbox constraints, such as !1 !2 !3 ?2 ?3 ?1 (note that m 2 is both sent and received before m 3).

Definition 2.4 (mb-MSC

). An MSC M = (E, →, ⊳, λ) is a mb-MSC if it has a linearization where, for any two send events s and s ′ , such that λ(s) ∈ Send (, q,), λ(s ′) ∈ Send (, q,), and s s ′

• either s, s ′ ∈ Matched (M) and r r ′ , where s ⊳ r and s ′ ⊳ r ′ ,

• or s ′ ∈ Unm(M).

Such a linearization will be referred to as a mb-linearization. Note that the definition of mb-MSC is based on the existence of a linearization with some properties. The same kind of "existential" definition will be used for all the remaining communication models. In practice, to claim that an MSC is mb, we just need to find a single valid mb-linearization, regardless of all the others. As with co-MSCs, a mb-MSC cannot have two ordered send events s and s ′ addressed to the same process, such that s is unmatched, s ′ is matched. The message related to s would indeed block the buffer and prevent all subsequent receptions included the receive event matching s ′ . At this stage, the difference between co-MSCs and mb-MSCs might be unclear. Section 5 will clarify how all the classes of MSCs that we introduce are related to each other.

FIFO 1-n communication The FIFO 1-n (onen) communicating model is the dual of mb, it coordinates a sender with all the receivers. Any two messages sent by a process must be received in the same order as they are sent. These two messages might be received by different processes and the two receive events might be concurrent. A high-level implementation of the FIFO 1-n communication model could consist in a single outgoing FIFO channel for each process, which is shared by all the other processes. A send event would then push a message on the outgoing FIFO channel. The MSC shown in Fig. 3b is not a onen-MSC; m 1 is sent before m 2 by the same process, but we cannot find a linearization in which they are received in the same order (here, the reason is that ?2 ≤ hb ?1). Fig. 3c shows an example of onen-MSC; m 1 is sent before m 2 by the same process, and we are able to find a linearization where m 1 is received before m 2 , such as !1 !2 !3 ?1 ?2 ?3.

Definition 2.5 (onen-MSC

). An MSC M = (E, →, ⊳, λ) is a onen-MSC if it has a linearization where, for any two send events s and s ′ , such that λ(s) ∈ Send(p, ,), λ(s ′) ∈ Send(p, ,), and s → + s ′ (which implies s s ′)

• either s, s ′ ∈ Matched (M) and r r ′ , with r and r ′ receive events such that s ⊳ r and s ′ ⊳ r ′ ,

• or s ′ ∈ Unm(M). Such a linearization will be referred to as a onen-linearization. Note that a onen-MSC cannot have two send events s and s ′ , executed by the same process, such that s is unmatched, s ′ is matched, and s → + s ′ ; indeed, it would not be possible to find a onen-linearization, according to Definition 2.5. The MSCs shown in Fig. 3e and Fig. 3f are clearly not onen-MSCs.

FIFO n-n communication In the FIFO n-n (nn) communicating model, messages are globally ordered and delivered according to their emission order. Any two messages must be received in the same order as they are sent. These two messages might be sent or received by any process and the two send or receive events might be concurrent. The FIFO n-n coordinates all the senders with all the receivers. A high-level implementation of the FIFO n-n communication model could consist in a single FIFO channel shared by all processes. It is considered also in [START_REF] Basu | On deciding synchronizability for asynchronously communicating systems[END_REF] where it is called many-to-many (denoted * - *). However, as underlined in [START_REF] Chevrou | On the diversity of asynchronous communication[END_REF], such an implementation would be inefficient and unrealistic. The MSC shown in Fig. 3b is clearly not a nn-MSC; if we consider messages m 1 and m 2 we have that, in every linearization, !1 ≤ hb !2 and ?2 ≤ hb ?1. This violates the constraints imposed by the FIFO n-n communication model. The MSC in Fig. 3c is a nn-MSC because we are able to find a linearization that satisfies the FIFO n-n constraint, e.g. !1 !2 !3 ?1 ?2 ?3.

Definition 2.6 (nn-MSC

). An MSC M = (E, →, ⊳, λ) is a nn-MSC if it has a linearization where, for any two send events s and s ′ , such that s s ′

• either s, s ′ ∈ Matched (M) and r r ′ , with r and r ′ receive events such that s ⊳ r and s ′ ⊳ r ′ ,

• or s ′ ∈ Unm(M). Such a linearization will be referred to as a nn-linearization. Note that, in a nn-linearization, unmatched messages can be sent only after all matched messages have been sent. As a consequence, a nn-MSC cannot have an unmatched send event s and a matched send event s ′ , such that s ≤ hb s ′ ; indeed, s would appear before s ′ in every linearization, and we would not be able to find a nn-linearization. The MSCs shown in Fig. 3e and Fig. 3f are both not FIFO n-n, since we have unmatched messages that are sent before matched messages.

RSC communication

The Realizable with Synchronous Communication (rsc) communication model imposes the existence of a scheduling such that any send event is immediately followed by its corresponding receive event. It was introduced in [START_REF] Charron-Bost | Synchronous, asynchronous, and causally ordered communication[END_REF], and it is the asynchronous model that comes closest to synchronous communication. The MSC in Fig. 3d is the only example of rsc-MSC: for instance linearization !1 ?1 !2 ?2 !3 ?3 respects the constraints of the rsc communication model.

Definition 2.7 (rsc-MSC

). An MSC M = (E, →, ⊳, λ) is an rsc-MSC if it has no unmatched send events and there is a linearization where any matched send event is immediately followed by its respective receive event.

Such a linearization will be referred to as an rsc-linearization.

Classes of MSCs

We denote by MSC asy (resp. MSC p2p , MSC co , MSC mb , MSC onen , MSC nn , MSC rsc) the sets of all MSCs (resp. p2p-MSCs, co-MSCs, mb-MSCs, onen-MSCs, nn-MSCs, rsc-MSCs) over the given sets P and M. Note that we do not differentiate between isomorphic MSCs.

Asynchronous communication models as classes of executions

We have defined several communication models as classes of MSCs. To compare to Chevrou et al. sequential hierarchy of communication models [START_REF] Chevrou | On the diversity of asynchronous communication[END_REF], we provide alternative definitions of these communication models based on executions. We only consider p2p, mb, FIFO 1-n and FIFO n-n, we refer to [START_REF] Chevrou | On the diversity of asynchronous communication[END_REF] for clarifying how the asynchronous, rsc, and co communication models may also be defined as sets of executions and fit in this hierarchy.

We consider networks of processes formed by a bunch of FIFO queues that store the messages in transit. Formally, a queuing network is a tuple n = (Q, buf) such that Q is a finite set of queue identifiers, and buf :

P × P → Q assigns a queue to each pair of processes. A queuing network (Q, buf) is p2p if Q = P × P and buf is the identity. The queuing network (Q, buf) is mb if Q = P and buf(p, q) = q; it is called onen if Q = P and buf(p, q) = p. Finally, it is called nn if Q = {0}
and buf(p, q) = 0 for all p, q ∈ P.

Configurations, executions, and operational semantics

A configuration of the queuing network (Q, buf) is a tuple γ = (w i) i∈Q ∈ (M *) Q
, where for each queue identifier i, the queue content w i is a finite sequence of messages. The initial configuration γ ∅ is the one in which all queues are empty, i.e.,

w i = ǫ for all i ∈ Q. A step is a tuple (γ, a, γ ′), (later written γ a -→ γ ′) where γ = (w i) i∈Q , γ ′ = (w ′ i) i∈Q ,
a is an action, and the following holds:

• if a = send (p, q, m), then w ′ i = w i • m and w ′ j = w j for all j ∈ Q \ {i}, where i = buf(p, q).

• if a = rec(p, q, m), then w i = m • w ′ i and w ′ j = w j for all j ∈ Q \ {i}, where i = buf(p, q). An execution of the queuing network (Q, buf) is a finite sequence of actions e = a 1 a 2 . . . a n such that γ ∅ a1 -→ a2 -→ . . . an --→ γ for some configuration γ. e is p2p (resp. mb, onen, nn) if there exists a p2p queuing network (resp. mb, onen, nn) whose set of executions contains e.

Example 3.1. The execution

send (p, q, m 1) • send (q, r, m 2) • rec(q, r, m 2) • rec(p, q, m 1)
is p2p, mb, and onen, but it is not nn (because m 2 is received before m 1).

Example 3.2. The execution

send (p, q, m 1) • send (r, q, m 2) • rec(r, q, m 2)
is p2p and onen, but it is neither mb nor nn (because m 2 "overtakes" m 1). Note that in the final configuration m 1 is still in the queue (m 1 is "unmatched").

Consider a network n with two queue identifiers i 1 and i 2 , and let n ′ be the network obtained by merging the two queues i 1 and i 2 in a same queue. Then n ′ imposes more constraints than n on the sequence of actions it admits, and any n ′ -execution also is an n-execution. From this observation, it follows that the communication models we considered define the hierarchy of executions depicted in Fig. 4. We refer to [START_REF] Chevrou | On the diversity of asynchronous communication[END_REF] for examples illustrating each class of the hierarchy.

To conclude this brief discussion on queuing networks and executions, we clarify how executions are linked to MSCs classes. Indeed a linearization of an MSC defines a total order on its events, and therefore can be interpreted as an execution.

Fact 3.1. A MSC M is p2p (resp. mb, onen, nn) if and only if there exists a linearization of M that induces a p2p execution (resp. a mb, onen, nn execution).

Note that for p2p the claim is stronger as for a p2p-MSC M , all of its linearizations are p2p executions. This is not the case for the other communication models.

MSO definability

We have introduced seven different communication models and the corresponding classes of MSCs. Here, we show that all of these classes are MSO-definable, i.e., for every communication model com, there is an MSO logic formula ϕ com that captures exactly the class MSC com of all com-MSCs. We first recall the formal definition of MSO logic over MSCs.

Definition 4.1 (MSO logic). The set of MSO formulas over MSCs is given by the grammar ϕ

::= true | x → y | x ⊳ y | λ(x) = a | x = y | x ∈ X | ∃x.ϕ | ∃X.ϕ | ϕ ∨ ϕ | ¬ϕ, where a ∈ Σ,
x and y are first-order variables (taken from an infinite set of variables), interpreted as events of an MSC, and X is a second-order variable, interpreted as a set of events. We use common abbreviations such as ∧, ⇒, ∀, etc.

For instance, the formula ¬∃x.(

a∈Send (, ,) λ(x) = a ∧ ¬matched (x)),
with matched (x) = ∃y.x ⊳ y, says that there are no unmatched send events. MSCs (a), (b), (c) and (d) of Fig. 3 satisfy the formula. Given a sentence ϕ, i.e., a formula without free variables, L(ϕ) denotes the set of asynchronous MSCs that satisfy ϕ. The formula true describes the whole set of asynchronous MSCs, i.e., L(true) = MSC asy . The (reflexive) transitive closure of a binary relation defined by an MSO formula with free variables x and y, such as x → y, is MSO-definable (see the formula in [START_REF] Di Giusto | A non-sequential hierarchy of message-passing models (extended version)[END_REF]). We will therefore allow formulas of the form x → + y, x → * y or x ≤ hb y.

The communication models whose definitions are stated as the existence of a linearization enjoying some properties (mb, FIFO 1-n and FIFO n-n) are the most difficult to express in MSO. Indeed, their definition suggests a second-order quantification over a binary relation, but MSO is restricted to second-order quantification over unary predicates. We therefore have to introduce alternative definitions that are closer to the logic and show their equivalence to those given in Section 2. These alternative definitions will also be heavily used in the following sections. The idea is to characterize the MSCs in terms of the acyclicity of a binary relation that is MSO definable.

Peer-to-peer MSCs The MSO formula that defines MSC p2p (i.e., the set of p2p-MSCs) directly follows from Definition 2.2:

ϕ p2p = ¬∃s.∃s ′ .   p∈P,q∈P a,b∈Send (p,q,) (λ(s) = a ∧ λ(s ′) = b) ∧ s → + s ′ ∧ (ψ 1 ∨ ψ 2)  
where ψ 1 and ψ 2 are:

ψ 1 = ∃r.∃r ′ .   s ⊳ r ∧ s ′ ⊳ r ′ ∧ r ′ → + r   ψ 2 = (¬matched (s) ∧ matched (s ′)) matched(x) = ∃y.x ⊳ y
The property ϕ p2p says that there cannot be two matched send events s and s ′ , with the same sender and receiver, such that s → + s ′ and either (i) their receptions happen in the reverse order, or (ii) s is unmatched and s ′ is matched.

Causally ordered MSCs

As for p2p, the MSO-definability of MSC co follows from Definition 2.3:

ϕ co = ¬∃s.∃s ′ .   q∈P a,b∈Send(,q,) (λ(s) = a ∧ λ(s ′) = b) ∧ s ≤ hb s ′ ∧ (ψ 1 ∨ ψ 2)  
where ψ 1 and ψ 2 have been defined above for the p2p case. The property ϕ co says that there cannot be two send events s and s ′ , with the same recipient, such that s ≤ hb s ′ and either (i) their corresponding receive events r and r ′ happen in the opposite order, i.e. r ′ → + r, or (ii) s is unmatched and s ′ is matched.

Mailbox MSCs

For the mailbox communication model, Definition 2.4 cannot be immediately translated into an MSO formula. Thus, we introduce an alternative definition of mb-MSC that is closer to MSO logic; in particular, we define an additional binary relation that represents a constraint under the mb semantics, which ensures that messages received by a process are sent in the same order as they are received. This definition is shown to be equivalent to Definition 2.4 in [START_REF] Di Giusto | A non-sequential hierarchy of message-passing models (extended version)[END_REF]. Definition 4.2 (mb alternative). Let an MSC M = (E, →, ⊳, λ) be fixed, and let ⊏ mb ⊆ E × E be defined as s ⊏ mb s ′ if there is q ∈ P such that λ(s) ∈ Send (, q,), λ(s ′) ∈ Send(, q,), and either:

• s ∈ Matched (M) and s ′ ∈ Unm(M), or • s ⊳ r 1 and s ′ ⊳ r 2 for some r 1 , r 2 ∈ E q such that r 1 → + r 2 . We let ≺ mb = (→ ∪ ⊳ ∪ ⊏ mb) + . M is a mb-MSC if mb is a partial order.
The ⊏ mb relation expresses that two send events that are not necessarily related by a causal path should be scheduled in a precise order because their matching receptions are in this precise order. If mb is a partial order, it means that it is possible to find a linearization , such that ⊆ mb . It is easy to see that such a linearization is exactly what we called a mb-linearization in Definition 2.4. The MSO-definability of MSC mb follows from Definition 4.2; in particular, note that mb is reflexive and transitive by definition, thus we just have to check acyclicity: ϕ mb = ¬∃x. x ≺ mb x where x ≺ mb y is obtained as the MSO-definable transitive closure of the union of the MSO-definable relations →, ⊳, and ⊏ mb , where x ⊏ mb y may be defined as:

x ⊏ mb y = q∈P a,b∈Send (,q,) (λ(x) = a ∧ λ(y) = b) ∧ matched (x) ∧ ¬matched (y) ∨ ∃x ′ .∃y ′ .(x ⊳ x ′ ∧ y ⊳ y ′ ∧ x ′ → + y ′) .
FIFO 1-n MSCs As for the mailbox communication model, we give an alternative definition of onen-MSC; the equivalence with Definition 2.5 is shown in [START_REF] Di Giusto | A non-sequential hierarchy of message-passing models (extended version)[END_REF]. We

Definition
let 1n = (→ ∪ ⊳ ∪ ⊏ 1n) * . M is a onen-MSC if 1n is a partial order.
The ⊏ 1n relation ensures that messages sent by a process are sent and received in an order that is suitable for the onen communication. Since 1n is a partial order, it is possible to find a linearization such that ⊆ 1n . It is not difficult to see that such a linearization is exactly what we called a onen-linearization in Definition 2.5. The existence of a MSO formula that defines MSC onen follows from Definition 4.3 and the MSO definability of ⊏ 1n :

x ⊏ 1n y = p∈P a,b∈Send(p, ,) (λ(x) = a ∧ λ(y) = b) ∧ matched (x) ∧ ¬matched (y) ∨ p∈P a,b∈Rec(p, ,) (λ(x) = a ∧ λ(y) = b) ∧ ∃x ′ .∃y ′ .(x ′ ⊳ x ∧ y ′ ⊳ y ∧ x ′ → + y ′)
FIFO n-n MSCs This case is the most involved. As before we give an alternative definition that introduces an acyclic relation but equivalence to Definition 2.6 does not follow easily as in previous cases. It requires the introduction of an algorithm that finds the FIFO n-n-linearization and whose correct termination guarantees the acyclicity of the binary relation.

Definition 4.4 (nn alternative). For an MSC

M = (E, →, ⊳, λ), let ≺ 1n/mb = (→ ∪ ⊳ ∪ ⊏ mb ∪ ⊏ 1n) + . We define ⊏ nn ⊆ E × E, such that e 1 ⊏ nn e 2 if
one of the following holds:

1. e 1 ≺ 1n/mb e 2 2. λ(e 1) ∈ Rec(, ,), λ(e 2) ∈ Rec(, ,), s 1 ⊳ e 1 and s 2 ⊳ e 2 for some s 1 , s 2 ∈ E, s 1 ≺ 1n/mb s 2 and e 1 ≺ 1n/mb e 2 .

3. λ(e 1) ∈ Send(, ,), λ(e 2) ∈ Send(, ,), e 1 ⊳ r 1 and e 2 ⊳ r 2 for some r 1 , r 2 ∈ E, r 1 ≺ 1n/mb r 2 and e 1 ≺ 1n/mb e 2 .

Algorithm 1 Algorithm for finding a nn-linearization Input: the EDG of an MSC M .

Output: a valid nn-linearization for M , if M is a nn-MSC.

1. If there is a matched send event s with in-degree 0 in the EDG, add s to the linearization and remove it from the EDG, along with its outgoing edges, then jump to step 5. Otherwise, proceed to step 2.

2. If there are no matched send events in the EDG and there is an unmatched send event s with in-degree 0 in the EDG, add s to the linearization and remove it from the EDG, along with its outgoing edges, then jump to step 5. Otherwise, proceed to step 3.

3. If there is a receive event r with in-degree 0 in the EDG, such that r is the receive event of the first message whose sent event was already added to the linearization, add r to the linearization and remove it from the EDG, along with its outgoing edges, then jump to step 5. Otherwise, proceed to step 4.

4. Throw an error and terminate.

5. If all the events of M were added to the linearization, return the linearization and terminate. Otherwise, go back to step 1.

4.

e 1 ∈ Matched (M), e 2 ∈ Unm(M), e 1 ≺ 1n/mb e 2 .
M is a nn-MSC if ⊏ nn is acyclic.

The full proof of the equivalence of Definitions 2.6 and 4.4 can be found in [START_REF] Di Giusto | A non-sequential hierarchy of message-passing models (extended version)[END_REF]. Here we show only the more subtle part. The implication Definition 4.4 ⇒ Definition 2.6 follows from the fact that the order of receive events imposes an order on sends and the fact that a nn-linearization is also a mb and onen-linearization. Proposition 4.1. Let M be an MSC. If ⊏ nn is cyclic, then M is not a nn-MSC.

Let the Event Dependency Graph (EDG) of a nn-MSC M be a graph that has events as nodes and an edge between any two events e 1 and e 2 if e 1 ⊏ nn e 2 . Algorithm 1, given the EDG of an nn-MSC M , computes a nn-linearization of M . We show that, if ⊏ nn is acyclic, this algorithm always terminates correctly. This, along with Proposition 4.1, shows that Definitions 2.6 and 4.4 are equivalent.

Example 4.1. Fig. 5 shows an example of nn-MSC and its EDG. We use it to show how the algorithm that builds a nn-linearization works. Note that, for convenience, not all the edges of the EDG have been drawn, but those missing would only connect events for which there is already a path is our drawing; these edges do not have any impact on the execution of the algorithm. We start by applying step 1 on the event !5, which has in-degree 0. The algorithm starts to build a linearization using !5 as the first event, and all the outgoing edges of !5 are removed from the EDG, along with the event itself. Now, !1 has in-degree 0 and we can apply again step 1. The partial linearization becomes !5 !1. Similarly, we can then apply step 1 on !2 and !3 to get the partial linearization !5 !1 !2 !3. At this point, step 1 and 2 cannot be applied, but we can use step 3 on ?5, which gets added to linearization. We then apply step 3 also to ?1 and ?2, followed by step 1 on !4, step 2 on !6 (which is an unmatched send event), and step 3 on ?3 and ?4. Finally, all the events of the MSC have been added to our linearization, which is !5 !1 !2 !3 ?5 ?1 ?2 !4 !6 ?3 ?4. Note that this is a nn-linearization. We now need to show that (i) if Algorithm 1 terminates correctly (i.e., step 4 is never executed), it returns a nn-linearization, and (ii) if ⊏ nn is acyclic, the algorithm always terminates correctly.

Proposition 4.2. Given an MSC M , if Algorithm 1 returns a linearization then it is a nnlinearization.

Proof.

Step 2 ensures that the order (in the linearization) in which matched messages are sent is the same as the order in which they are received. Moreover, according to step 3, an unmatched send event is added to the linearization only if all the matched send events were already added. The proof proceeds by induction on the number of events added to the linearization and relies on the fact that since ⊏ nn is acyclic then the EDG of the MSC is a DAG (see [START_REF] Di Giusto | A non-sequential hierarchy of message-passing models (extended version)[END_REF]).

Finally, we showed the missing implication Definition 2.6 ⇒ Definition 4.4 and completed the proof of the equivalence of these two definitions. Based on Definition 4.4, we can now write the MSO formula for nn-MSCs as ϕ nn = ¬∃x.x ⊏ + nn x, where we can define x ⊏ nn y as:

x ⊏ nn y = a,b∈Send (, ,) (λ(x) = a ∧ λ(y) = b) ∧ matched (x) ∧ ¬matched (y) ∨ (x ≺ 1n/mb y) ∨ ψ 3 ∨ ψ 4
and ψ 3 , ψ 4 can be specified as:

ψ 3 = a,b∈Rec(, ,) (λ(x) = a ∧ λ(y) = b) ∧ ∃x ′ .∃y ′ .(x ′ ⊳ x ∧ y ′ ⊳ y) ∧ (x ′ ≺ 1n/mb y ′) ∧ ¬(x ≺ 1n/mb y) ψ 4 = a,b∈Send (, ,) (λ(x) = a ∧ λ(y) = b) ∧ ∃x ′ .∃y ′ .(x ⊳ x ′ ∧ y ⊳ y ′) ∧ (x ′ ≺ 1n/mb y ′) ∧ ¬(x ≺ 1n/mb y)
Formulas ψ 3 and ψ 4 encode conditions (2) and (3) in Definition 4.4, respectively. Note that ≺ 1n/mb is MSO-definable, since it is defined as the reflexive transitive closure of the MSO-definable relations →, ⊳, ⊏ mb , and ⊏ 1n .

Realizable with Synchronous Communication MSCs Following the characterization given in [9, Theorem 4.4], we provide an alternative definition of rsc-MSC that is closer to MSO logic. We first recall the concept of crown. Definition 4.5 (Crown). Let M be an MSC. A crown of size k in M is a sequence (s i , r i), i ∈ {1, . . . , k} of pairs of corresponding send and receive events such that

s 1 < hb r 2 , s 2 < hb r 3 , . . . , s k-1 < hb r k , s k < hb r 1 .
Definition 4.6 (rsc alternative). An MSC M = (E, →, ⊳, λ) is a rsc-MSC if and only if it does not contain any crown.

The following MSO formula derives directly from previous definition:

Φ rsc = ¬∃s 1 .∃s 2 .s 1 ∝ s 2 ∧ s 2 ∝ * s 1
where ∝ is defined as In this section we show that the classes of MSCs for all the seven communication models form the hierarchy shown in Fig. 6. Here we just give intuitive explanations for the easy cases and formal proofs for the others. Proofs for all cases can be found in [START_REF] Di Giusto | A non-sequential hierarchy of message-passing models (extended version)[END_REF].

s 1 ∝ s 2 = e∈Send (, ,) (λ(s 1) = e) ∧ s 1 = s 2 ∧ ∃r 2 .(s 1 < hb r 2 ∧ s 2 ⊳ r 2)

Hierarchy of classes of MSCs

Notice that Fig. 4 only talks about single executions; it tells us that there might be an execution that is both mb and FIFO 1-n, but also an execution that is mb but not FIFO 1-n, and vice versa. Consider for instance Fig. 3c, the linearization/execution !1!2!3?1?2?3 is both mb and FIFO 1-n, !1!2!3?2?1?3 is mb but not FIFO 1-n, !1 !3 !2 ?1 ?2 ?3 is FIFO 1-n but not mb. On the other hand, Fig. 6 tells us that, given a onen-MSC, it is always also a mb-MSC; hence, if we are able to find a FIFO 1-n linearization for an MSC, then we can be sure that a mb linearization exists for that MSC. This means that the computation described by a FIFO 1-n MSC is always realizable using the mb communication model.

First of all, by definition every p2p-MSC is an asy-MSC. Fig. 3a shows an example of MSC that is asynchronous but not p2p, hence we have MSC p2p ⊂ MSC asy . In the causally ordered communication model, any two messages addressed to the same process are received in an order that matches the causal order in which they are sent. In particular, it is easy to see that each co-MSC is also a p2p-MSC, since for any two messages sent by a process p to another process q, the two send events are causally ordered. The MSC shown in Fig. 3b is p2p, but not co, hence we can conclude that MSC co ⊂ MSC p2p . We now show that each mb-MSC is a co-MSC.

Proposition 5.1. Every mb-MSC is a co-MSC.

Proof. Let M be a mb-MSC and a mb-linearization of it. Recall that a linearization has to respect the happens-before partial order over M , i.e. ≤ hb ⊆ . Consider any two send events s and s ′ , such that λ(s) ∈ Send (, q,), λ(s ′) ∈ Send(, q,) and s ≤ hb s ′ . Since ≤ hb ⊆ , we have that s s ′ and, by the definition of mb-linearization, either (i) s ′ ∈ Unm(M), or (ii) s, s ′ ∈ Matched (M), s ⊳ r, s ′ ⊳ r ′ and r r ′ . The former clearly respects the definition of co-MSC, so let us focus on the latter. Note that r and r ′ are two receive events executed by the same process, hence r r ′ implies r → + r ′ . It follows that M is a co-MSC. Fig. 7a shows an example of co-MSC that is not mb. It is causally ordered because we cannot find two messages, addressed to the same process, such that the corresponding send events are causally related; on the contrary, the MSC is not mb because we have !4 ⊏ mb !1 and !2 ⊏ mb !3, which lead to a cyclic dependency, e.g. !1 →!2 ⊏ mb !3 →!4 ⊏ mb !1. This example and Proposition 5.1 prove that MSC mb ⊂ MSC co .

In the FIFO n-n communication model, any two messages must be received in the same order as they are sent. It is then easy to observe that each nn-MSC is a onen-MSC, because each nn-linearization is also a onen-linearization. Moreover, Fig. 7b shows an example of MSC that is FIFO 1-n but not FIFO n-n, hence we have that MSC nn ⊂ MSC onen ; in particular, note that for messages m 1 and m 4 we have !1 ≤ hb !4 and ?4 →?1, so there cannot be a nn-linearization, but it is possible to find a onen-linearization, such as !1 !2 ?2 !3 ?3 !4 ?4 ?1. In the rsc model, every send event is immediately followed by its corresponding receive event. rsc is then a special case of FIFO n-n communication, and every rsc-MSC is a nn-MSC because a rsc-linearization is always also a nn-linearization. Besides, Fig. 7c shows an example of MSC that is FIFO n-n but not rsc, therefore MSC rsc ⊂ MSC nn .

Relation between onen-MSCs and mb-MSCs

Finally, we consider the relation between onen-MSCs and mb-MSCs that is not as straightforward as those seen so far. We start by only considering MSCs without unmatched messages. Proposition 5.2. Every onen-MSC without unmatched messages is a mb-MSC.

Proof. We show that the contrapositive is true, i.e., if an MSC is not mailbox (and it does not have unmatched messages), it is also not FIFO 1-n. Suppose M is an asynchronous MSC, but not mailbox. There must be a cycle ξ such that e ≺ mb e, for some event e. We can always explicitly write a cycle e ≺ mb e only using ⊏ mb and < hb . For instance, there might be a cycle e ≺ mb e because we have that e ⊏ mb f < hb g ⊏ mb h ⊏ mb i < hb e. Consider any two adjacent events s 1 and s 2 in the cycle ξ, where ξ has been written using only ⊏ mb and < hb , and we never have two consecutive ≤ hb . This is always possible, since a ≤ hb b ≤ hb c is written as a ≤ hb c. We have two cases:

1. s 1 ⊏ mb s 2 . We know, by definition of ⊏ mb , that s 1 and s 2 must be two send events and that r 1 → + r 2 , where r 1 and r 2 are the receive events that match with s 1 and s 2 , respectively (we are not considering unmatched messages by hypothesis).

2. s 1 < hb s 2 . Since M is asynchronous by hypothesis, ξ has to contain at least one ⊏ mb . If that was not the case, ≤ hb would also be cyclic and M would not be an asynchronous MSC.

Recall that we also wrote ξ in such a way that we do not have two consecutive ≤ hb . It is not difficult to see that s 1 and s 2 have to be send events, since they belong to ξ. We have two cases:

(a) r 1 is in the causal path, i.e. s 1 ⊳ r 1 ≤ hb s 2 . In particular, note that r 1 ≤ hb r 2 .

(b) r 1 is not in the causal path, hence there must be a message m k sent by the same process that sent s 1 , such that s 1 → + s k ⊳ r k ≤ hb s 2 ⊳ r 2 , where s k and r k are the send and receive events associated with m k , respectively. Since messages m 1 and m k are sent by the same process and s 1 → + s k , we should have r 1 ⊏ 1n r k , according to the FIFO 1-n semantics. In particular, note that we have r 1 ⊏ 1n r k ≤ hb r 2 .

In both case (a) and (b), we conclude that r 1 1n r 2 .

Notice that, for either case, a relation between two send events s 1 and s 2 (i.e., s 1 ⊏ mb s 2 or s 1 ≤ hb s 2) always implies a relation between the respective receive events r 1 and r Putting all these implications together, we have that r 1 → + r 2 → + r 3 1n r 4 → + r 5 1n r 1 , which is a cycle for 1n . Note that, given any cycle for mb , we are always able to apply this technique to obtain a cycle for 1n .

The opposite direction is also true and the proof (see [START_REF] Di Giusto | A non-sequential hierarchy of message-passing models (extended version)[END_REF]) uses the same technique to prove that a cycle for 1n always implies a cycle for mb . Proof. Let M be an asynchronous MSC. The proof proceeds as for Proposition 5.2, but unmatched messages introduce some additional cases. Consider any two adjacent events s 1 and s 2 in a cycle ξ for ≺ mb , where ξ has been written using only ⊏ mb and < hb , and we never have two consecutive < hb . These are some additional cases: 3. u 1 ⊏ mb s 2 , where u 1 is the send event of an unmatched message. This case never happens because of how ⊏ mb is defined.

4. u 1 ≤ hb u 2 , where u 1 and u 2 are both send events of unmatched messages. Since both u 1 and u 2 are part of the cycle ξ, there must be an event s 3 such that u 1 ≤ hb u 2 ⊏ mb s 3 . However, u 2 ⊏ mb s 3 falls into case (3), which can never happen.

5. u 1 ≤ hb s 2 , where u 1 is the send event of an unmatched message and s 2 is the send event of a matched message. Since we have a causal path between u 1 and s 2 , there has to be a message m k , sent by the same process that sent m 1 , such that

u 1 → + s k ⊳ r k ≤ hb s 2 ⊳ r 2 2
, where s k and r k are the send and receive events associated with m k , respectively. Since messages m 1 and m k are sent by the same process and m 1 is unmatched, we should have s k ⊏ 1n u 1 , according to the FIFO 1-n semantics, but u 1 → + s k . It follows that if ξ contains u 1 ≤ hb s 2 , we can immediately conclude that M is not a onen-MSC.

6. s 1 ⊏ mb u 2 , where s 1 is the send event of a matched message and u 2 is the send event of an unmatched message. Since both s 1 and u 2 are part of a cycle, there must be an event s 3 such that s 1 ⊏ mb u 2 ≤ hb s 3 ; we cannot have u 2 ⊏ mb s 3 , because of case (3). u 2 ≤ hb s 3 falls into case (5), so we can conclude that M is not a onen-MSC.

We showed that cases (3) and (4) can never happen, whereas (5) and (6) imply that M is not FIFO 1-n. If we combine them with the cases described in Proposition 5.2 we have the full proof.

The MSC in Fig. 3f shows a simple example of an MSC with unmatched messages that is mb but not onen. This, along with Proposition 5.4, effectively shows that MSC onen ⊂ MSC mb .

Application: synchronizability and bounded model-checking

In this section, we show how the MSO characterization induces several decidability results for synchronizability and bounded model-checking problems on systems of communicating finite state machines. A communicating finite state machine is a finite state automaton labeled with send and receive actions; a system S is a finite collection of such machines. An MSC M is an asynchronous behavior of S if every process time line of M is accepted by its corresponding process automaton (see [START_REF] Di Giusto | A non-sequential hierarchy of message-passing models (extended version)[END_REF] for a formal definition of these notions). We write L asy (S) to denote the set of asynchronous behaviors of S, and we write L com (S) to denote the restriction of L asy to a specific communication model com, i.e., L com (S) = L asy (S) ∩ MSC com .

In general, even simple verification problems, e.g., control-state reachability, are undecidable for communicating systems [START_REF] Brand | On communicating finite-state machines[END_REF], under all communication models (except rsc, which we will not consider anymore from now on). They may become decidable if we consider only a certain class of behaviors. This motivates the following definition of generic bounded model-checking problem. Let C be a class of MSCs, the C-bounded model-checking problem for a communication model com ∈ {asy, p2p, co, mb, onen, nn} is: given a system S and a MSO specification ϕ, decide whether L com (S) ∩ C ⊆ L(ϕ). Here, we consider only classes C of MSCs that describe behaviors that are as close as possible to synchronous ones. So the bounded model-checking problem corresponds to an under-approximation of the standard model-checking problem where the system is assumed to be "almost synchronous". The question of the completeness of this under-approximation, i.e., whether L com (S) ⊆ C, will be referred to as the "synchronizability problem".

Bollig et al. [START_REF] Bollig | A unifying framework for deciding synchronizability[END_REF] introduced a general framework that allows us to derive decidability results for the bounded model-checking and synchronizability problems for various classes of MSCs C. Here, we have managed to make this framework parametric in the communication model. To this aim, we require that the communication model, combined with the bounding class C, enforces a bounded treewidth of the MSCs, which is not always the case. Moreover a key lemma in the framework of Bollig et al. relied on the existence of "borderline violations", which was granted by a form of prefix closure of the MSCs of a given class. However, this prefix closure property does not hold for all communication models, and these models must be treated with specific techniques.

Special treewidth and bounded model-checking Special treewidth (STW) is a graph measure that indicates how close a graph is to a tree. An MSC is a graph where the nodes are the events and the edges are represented by the → and the ⊳ relations. Similarly to what has been done by Bollig et al. in [START_REF] Bollig | A unifying framework for deciding synchronizability[END_REF], but adapted to our generic framework, we adopt a game-based definition for special treewidth: Adam and Eve play a turn based "decomposition game" on an MSC M = (E, →, ⊳, λ). M Eve starts to play and does a move, which consists in the following steps:

1. marking some events of M , resulting in the marked MSC fragment (M, U ′), where U ′ ⊆ E is the subset of marked events, 2. removing edges whose both endpoints are marked, in such a way that the resulting MSC is disconnected (i.e. there are at least two different connected components), 3. splitting (M, U) in (M 1 , U 1) and (M 2 , U 2) such that M is the disjoint (unconnected) union of M 1 and M 2 and marked nodes are inherited.

Once Eve does her move, it is Adam's turn. Adam chooses one of the two marked MSC fragments, either (M 1 , U 1) or (M 2 , U 2). Now it is again Eve's turn, and she has to do a move on the marked MSC fragment that was chosen by Adam. The game continues in alternating turns between the two players until they reach a point where all the events on the current marked MSC fragment are marked. For k ∈ N, the game is k-winning for Eve if she has a strategy that allows her, independently of Adam's moves, to end the game in a way that every marked MSC fragment visited during the game has at most k + 1 marked events. The goal of Eve is to keep k as low as possible.

The special treewidth of an MSC is the least k such that the associated game is k-winning for Eve (see for instance [START_REF] Bollig | Non-sequential theory of distributed systems[END_REF]). The set of MSCs whose special treewidth is at most k is denoted by MSC k-stw . It is easy to check that trees have a special treewidth of 1.

Example 6.1. Let M the MSC of the Fig. 3b. In this example, we show that M has a special treewidth of at most 3, since Eve is able to find a strategy that leads to a 3-winning game. We use colors to mark events. Eve starts by marking 4 events. The edges whose both endpoints are marked can be removed (dotted edges in the figure) and the graph becomes disconnected. Eve then splits the graph in 2 and Adam has to choose. Suppose the Adam picks the subgraph with the red and yellow events already marked (top branch in the figure). Eve can mark the third event and, by doing so, the game ends. Suppose Adam chooses the subgraph with the blue and green events (bottom branch). Eve marks the two nodes in the bottom, removes 3 edges, and splits the graph in two. Note that one of the two subgraphs already has all events marked, so Adam picks the other one (top branch). Eve simply marks the missing event and the game ends. This is a 3-winning game for Eve since, independently of Adam's choices, we have at most 4 marked event at each step. Fig. 8 shows an example of a 3-winning game for the MSC in Fig. 3b.

Courcelle's theorem implies that the following problem is decidable: given a MSO formula ϕ and k ≥ 1, decide whether ϕ holds for all MSCs M ∈ MSC k-stw . Therefore, a direct consequence

p q r m 1 m 2 (a) A nn-MSC M . p q r m 1 m 2 (b) A prefix of M .
Figure 9: A nn-MSC with a prefix that is neither a onen-MSC nor a nn-MSC.

of Courcelle's theorem and of our MSO characterization of the communication models is that bounded-model-checking is decidable3 . Theorem 6.1. Let com ∈ {asy, co, p2p, mb, onen, nn, rsc} and k ≥ 1. Then the following problem is decidable: given a system S and a MSO specification ϕ, decide whether L com (S) ∩ MSC k-stw ⊆ L(ϕ).

The synchronizability problem Theorem 6.1 remains true if instead of MSC k-stw we bound the model-checking problem with a class C of MSCs that is both treewidth bounded and MSO definable. The synchronizability problem (SP, for short) consists in deciding whether this bounded model-checking is complete, i.e., whether all the behaviors generated by a given communicating system are included in this class C, i.e., whether L com (S) ⊆ C. Definition 6.1. Let a communication model com and a class C of MSCs be fixed. The (com, C)synchronizability problem is defined as follows: given a system S, decide whether L com (S) ⊆ C.

In [START_REF] Bollig | A unifying framework for deciding synchronizability[END_REF] the authors show that, for com = p2p and com = mb, the (com, C)-synchronizability problem is decidable for several classes C. We generalize their result to other communication models under a general assumption on the bounding class C. Theorem 6.2. For any com ∈ {asy, p2p, co, mb, onen, nn} and for all class of MSCs C, if C is STW-bounded and MSO-definable, then the (com, C)-synchronizability problem is decidable.

The proof of Theorem 6.2 echoes the proof of [START_REF] Bollig | A unifying framework for deciding synchronizability (extended version)[END_REF]Theorem 11], with the main technical argument being the existence of a "borderline violation" (see [START_REF] Bollig | A unifying framework for deciding synchronizability (extended version)[END_REF]Lemma 9]). However, the existence of a borderline violation is more subtle to establish, because MSC onen and MSC nn are not prefixed-closed (see Fig. 9). A way to solve this technical issue is to consider a more strict notion of prefix. All details of the proof of Theorem 6.2 can be found in [START_REF] Di Giusto | A non-sequential hierarchy of message-passing models (extended version)[END_REF].

In the remainder, we investigate which combinations of com and C fit the hypotheses of this theorem. We review the classes of weakly synchronous and weakly k-synchronous inspired by [START_REF] Bouajjani | On the completeness of verifying message passing programs under bounded asynchrony[END_REF], and the classes of existentially k-bounded and universally k-bounded MSCs [START_REF] Genest | A Kleene theorem for a class of communicating automata with effective algorithms[END_REF]. Fig. 10 summarizes the decidability results of the (com, C)-synchronizability problem for each combination of com and C we will consider.

Weakly synchronous MSCs

We start by recalling the definition of the class of weakly synchronous MSCs as introduced in [START_REF] Bollig | A unifying framework for deciding synchronizability[END_REF]. We say an MSC is weakly synchronous if it can be chunked into exchanges, where an exchange is an MSC that allows one to schedule all send events before all receive events. Definition 6.2 (Exchange). Let M = (E, →, ⊳, λ) be an MSC. We say that M is an exchange if SendEv (M) is a ≤ hb -downward-closed set.

Weakly

Weakly ∃k ∀k sync k-sync bounded bounded In other words, an exchange is an MSC M where no send event depends on a receive event. If that is the case, we can find a linearization for M where all the send events are executed before the receive events. Remember that M 1 • M 2 denote the vertical concatenation of MSCs (see Section 2).

asy unbounded STW ✓ ✓ ✓ p2p ✗ [1] ✓ [1] ✓ [1] ✓ [1] co ✗ ✓ ✓ ✓ mb ✓ [1] ✓ [1] ✓ [1] ✓ [1] onen ✓ ✓ ✓ ✓ nn ✓ ✓ ✓ ✓ Figure 10:

Definition 6.3 (Weakly synchronous). We say that

M ∈ MSC is weakly synchronous if it is of the form M = M 1 • M 2 • • • M n such that every M i is an exchange.
In [START_REF] Bollig | A unifying framework for deciding synchronizability[END_REF] it is shown that, for the class of weakly synchronous MSCs, the synchronizability problem is undecidable for p2p, but decidable for mb. Here we investigate the decidability of weak synchronizability for the other communication models. We first show that weak synchronizability is undecidable for causally ordered communication. The proof is an adaptation of the one given in [START_REF] Bollig | A unifying framework for deciding synchronizability (extended version)[END_REF]Theorem 20] for the p2p case (cfr. [START_REF] Di Giusto | A non-sequential hierarchy of message-passing models (extended version)[END_REF]). Proposition 6.1. The following problem is undecidable: given a communicating system S, is every MSC in L co (S) weakly synchronous?

For onen and FIFO n-n, on the other hand, weak synchronizability is decidable. Proposition 6.2. Let com ∈ {onen, nn}. The following problem is decidable: given a communicating system S, is every MSC in L com (S) weakly synchronous?

Proof. We will consider com = onen; the proof for com = nn is similar. We would like to know if every MSC in L onen (S) is in the class of weakly synchronous MSCs. Since every MSC in L onen (S) is a onen-MSC, we can equivalently restrict the problem to the class of weakly synchronous MSCs that are also onen-MSCs. Let C be the class of onen weakly synchronous MSCs; we show that C is MSO-definable and STW-bounded, which implies the decidability of SP for Theorem 6.2. The class of weakly synchronous MSCs was shown to be MSO-definable in [START_REF] Bollig | A unifying framework for deciding synchronizability[END_REF]; to be precise, their characterization is for p2p weakly synchronous MSCs (since their definition of MSC is equivalent to our definition of p2p-MSC), but it also works for (asynchronous) weakly synchronous MSCs. We showed in Section 4 that MSC onen is MSO-definable; it follows that the class of onen weakly synchronous MSCs is also MSO-definable (we just take the conjuction of the the two formulas). The class of mb weakly synchronous MSCs was shown to be STW-bounded in [START_REF] Bollig | A unifying framework for deciding synchronizability[END_REF], and since MSC onen ⊂ MSC mb , we also have that the class of mb weakly synchronous MSCs has a bounded special treewidth.

Weakly k-synchronous MSCs We consider now weakly k-synchronous MSCs ([START_REF] Bollig | A unifying framework for deciding synchronizability[END_REF]), which are the weakly synchronous MSCs such that the number of messages sent per exchange is at most k. Definition 6.4 (k-exchange). Let M = (E, →, ⊳, λ) be an MSC and k ∈ N. M is a k-exchange if M is an exchange and |SendEv (M)| ≤ k.

Definition 6.5 (Weakly k-synchronous). Let k ∈ N. M ∈ MSC is weakly k-synchronous if it is of the form M = M 1 • M 2 • • • M n such that every M i is a k-exchange.
Example 6.2. MSC M 2 in Fig. 11 is weakly 1-synchronous, as it can be decomposed into three 1-exchanges (the decomposition is depicted by the horizontal dashed lines). As for weakly synchronous MSCs, the class of weakly k-synchronous MSCs was already shown to be MSO-definable and STW-bounded in [START_REF] Bollig | A unifying framework for deciding synchronizability[END_REF], and these results still hold even for our definition of MSC. A direct application of Theorem 6.2 shows that, for weakly k-synchronous MSCs, SP is decidable for all communication models. Proposition 6.3. Let com ∈ {asy, p2p, co, mb, onen, nn}. The following problem is decidable: given a communicating system S, is every MSC in L com (S) weakly k-synchronous?

p q r m 1 m 2 m 3
Proof. The class C of weakly k-synchronous MSCs is MSO-definable and STWbounded, therefore the result follows from Theorem 6.2.

Existentially bounded MSCs

We move now to existentially k-bounded MSCs, first introduced by Lohrey and Muschol [START_REF] Lohrey | Bounded MSC communication[END_REF], that form a relevant class of MSC for extending the Büchi-Elgot-Trakhthenbrot theorem from words to MSCs [START_REF] Genest | A Kleene theorem for a class of communicating automata with effective algorithms[END_REF][START_REF] Genest | On communicating automata with bounded channels[END_REF]. Existentially bounded MSCs represent the behavior of systems that can be realized with bounded channels. We stick to the original definition of Lohrey and Muscholl of k-bounded MSCs, where k represents the bound on the number of messages in transit from a given process to another, so that globally there may be up to k|P| 2 in transit. 4 Intuitively, we say that an MSC is existentially k-bounded if it admits a linearization where, at any moment in time, and for all pair of processes p, q, there are no more than k messages in transit from p to q. Such a linearization will be referred to as a k-bounded linearization. We give formal definitions below. Definition 6.6. Let M = (E, →, ⊳, λ) ∈ MSC and k ∈ N. A linearization of M is called k-bounded if, for all e ∈ SendEv (M), with λ(e) = send (p, q, m), we have # Send (p,q,) (, e) -# Rec(p,q,) (, e) ≤ k where # A (R, e) = |{f ∈ E | (f, e) ∈ R and λ(f) ∈ A}|. For instance, # Send (p,q,) (, e) denotes the number of send events from p to q that occured before e according to . Note that, since in reflexive, e itself is counted in # Send (p,q,) (, e). We now look at the definitions of p2p ∃k-bounded MSCs and causally ordered ∃k-bounded, which are quite straightforward. Example 6.3. MSC M 3 in Fig. 12 is existentially 1-bounded, as witnessed by the linearization !2 !1 !3 ?3 ?1 !1 ?2 !3 ?3 . . . Note that M 3 is not weakly synchronous as we cannot divide it into exchanges. Definition 6.8. An MSC M is p2p existentially k-bounded (p2p-∃k-bounded) if it is a p2p-MSC and it is also existentially k-bounded. Definition 6.9. An MSC M is causally ordered existentially k-bounded (co-∃k-bounded) if it is a causally ordered MSC and it is also existentially kbounded.

When moving to the other communication models, the definitions are not as straightforward. Indeed when defining mb, FIFO 1-n and FIFO n-n, we require the existence of a linearization, which represents a sequence of events that can be executed by a mb, resp. FIFO 1-n and FIFO n-n system. Hence, in order to define ∃k-bounded MSCs we should require that there exists a k-bounded linearization that is also a mb-linearization (resp. FIFO 1-n and FIFO n-n), not just any linearization. Definition 6.10. An MSC M is mb existentially k-bounded (mb-∃k-bounded) if it has a kbounded mb-linearization. Definition 6.11. An MSC M is onen existentially k-bounded (onen-∃k-bounded) if it has a k-bounded onen-linearization. Definition 6.12. An MSC M is nn existentially k-bounded (nn-∃k-bounded) if it has a kbounded nn-linearization.

We show that each of the ∃k-bounded classes of MSCs presented so far is MSO-definable and STW-bounded. We then derive the decidability of SP in a similar way to what we did in the proof of Proposition 6.2 for weakly synchronous MSCs.

MSO-definability

We start by investigating the MSO-definability of all the variants of ∃kbounded MSCs, we begin with the most general class of ∃k-bounded MSCs. Following the approach taken in [START_REF] Lohrey | Bounded MSC communication[END_REF], we introduce a binary relation -→ k (b in their work) associated with a given bound k and an MSC M . Let k ≥ 1 and M be a fixed MSC. We have r -→ k s if, for some i ≥ 1 and some channel (p,q)5 : 1. r is the i-th receive event (executed by q). 2. s is the (i + k)-th send event (executed by p).

For any two events s and r such that r -→ k s, every linearization of M in which r is executed after s cannot be k-bounded. Intuitively, we can read r -→ k s as "r has to be executed before s in a k-bounded linearization". A linearization that respects

-→ k (i.e., -→ k ⊆) is k-bounded. Example 6.4. Consider MSC M 4 in Fig 13.
Suppose we want to look for a 2-bounded linearization. For k = 2, we have ?1 -→ 2 !3; if we find a valid linearization that respect the -→ 2 relation, then it is 2-bounded, e.g., !1 !2 ?1 !3 ?2 ?3 (note that ?1 is executed before !3). On the other hand, the linearization !1 !2 !3 ?1 ?2 ?3 is not 2-bounded, since ?1 is executed after !3. In [START_REF] Lohrey | Bounded MSC communication[END_REF] it was shown that an MSC is ∃k-bounded if and only if the relation ≤ hb ∪ -→ k is acyclic. Since ≤ hb and acyclicity are both MSOdefinable, it suffices to find an MSO formula that defines -→ k to claim the MSO-definability of ∃k-bounded MSCs. Unfortunately, -→ k is not MSOdefinable because MSO logic cannot be used to "count" for an arbitrary i. For this reason, we introduce a similar MSO-definable binary relation ֒→ k , and we show that an MSC M is ∃k-bounded MSC iff ≤ hb ∪ ֒→ k is acyclic and another condition holds. Let k ≥ 1 and M be a fixed MSC; we have r ֒→ k s if, for some i ≥ 1 and some channel (p,q):

• There are k + 1 send events (s 1 , . . . , s k , s), where at least one is matched, such that s 1 → + . . . → + s k → + s.

• r is the first receive event for the matched send events among s 1 , . . . , s k , s.

Proposition 6.4. An MSC M is ∃k-bounded if and only if ≤ hb ∪ ֒→ k is acyclic and, for each channel (p,q), there are at most k unmatched send events.

Proof. (⇒) Suppose M is ∃k-bounded, i.e. it has at least one k-bounded linearization . Firstly, notice that every MSC that has more than k unmatched send events in any channel cannot be an ∃k-bounded MSC. We know that ≤ hb ⊆ , and we will show that also ֒→ k ⊆ . This implies that ≤ hb ∪ ֒→ k is acyclic, otherwise we would not be able to find a linearization that respects both ≤ hb and ֒→ k . Suppose, by contradiction, that ֒→ k , i.e. there are two events r and s such that r ֒→ k s and s r. By definition of ֒→ k , there are k send events in a channel (p,q) that are executed before s, and whose respective receive events happens after r. If s is executed before r in the linearization, there will be k + 1 messages in channel (i.e., is not k-bounded). We reached a contradiction, hence ֒→ k ⊆ and ≤ hb ∪ ֒→ k is acyclic. (⇐) Suppose ≤ hb ∪ ֒→ k is acyclic and, for each channel (p,q), there are at most k unmatched send events. If ≤ hb ∪ ֒→ k is acyclic, we are able to find one linearization for the partial order (≤ hb ∪ ֒→ k) * . We show that this linearization is k-bounded. By contradiction, suppose is not k-bounded, i.e., we are able to find k + 1 send events s 1 → + . . . → + s k → + s on a channel (p,q), such that s is executed before any of the respective receive events takes place. Two cases:

• Suppose all the k + 1 send events are unmatched. This is impossible, since we supposed that there are at most k unmatched send events for any channel.

• Suppose there is at least one matched send event between the k + 1 sends. Let the first matched send event be s i and let r be the receive event that is executed first among the receive events for these k + 1 sends. By hypothesis, s r. However, according to the definition of ֒→ k , we must have r ֒→ k s. We reached a contradiction, since we cannot have that s happens before r in a linearization for the partial order (≤ hb ∪ ֒→ k) * , if r ֒→ k s.

According to Proposition 6.4, we can write the MSO formula the defines ∃k-bounded MSCs as

Ψ ∃k = acyclic(≤ hb ∪ ֒→ k) ∧ ¬ ∃s 1 . . . s k+1 .s 1 → + . . . → + s k+1 ∧ allSends pq(k + 1) ∧ allU nm allSends pq(t) = p∈P,q∈P s∈s1,...,st a∈Send (p,q,) (λ(s) = a) allU nm = s∈s1,...,s k+1 (¬matched (s))
where acyclic(≤ hb ∪ ֒→ k) is an MSO formula that checks the acyclicity of ≤ hb ∪ ֒→ k , and the ֒→ k relation can be defined as r ֒→ k s = ∃s 1 . . . s k+1 . s 1 → + . . . → + s k+1 ∧ allSends p q(k + 1) ∧ ∃r.(s∈s1,...,s k+1 s ⊳ r) ∧ e∈s1,...,s k+1 (∃f.e ⊳ f =⇒ r → * f) It follows that, given k ∈ N, the set of existentially k-bounded MSCs is MSO-definable. Causally ordered and p2p existentially k-bounded MSCs are clearly MSO-definable by definition, since we already showed that p2p-MSCs, causally ordered MSCs, and existentially k-bounded MSCs are all MSO-definable. Recall that we introduced the ֒→ k relation because the -→ k relation introduced in [START_REF] Lohrey | Bounded MSC communication[END_REF] was not MSO-definable for asynchronous communication. However, when considering p2p communication but also all of the other communication models, because of the hierarchy shown in Section 5, -→ k becomes MSO-definable; the FIFO behavior ensures that, for any channel (p, q), the i-th matched send event of p matches with the i-th receive event of q. This allows us to define r -→ k s as:

r -→ k s = ∃s 1 ∃s k . (allSends p q(k) ∧ s 1 → s 2 → . . . → s k → s ∧ s 1 ⊳ r)
Recall that an MSC M is mb-∃k-bounded if it has a linearization that is both mb and ∃k-bounded. A linearization is mb if M is mb and is a linear extension of the partial order mb , i.e.,

mb ⊆ . A linearization is ∃k-bounded if -→ k ⊆ . It follows that a linearization -→ k is mb-∃k-bounded if (mb ∪ -→ k) ⊆ . Such a linerization exists only if mb ∪ -→ k is acyclic. If mb ∪ -→ k is
acyclic, its transitive closure always exists and it is a partial order, hence we are always able to find a linear extension. The characterization for onen-∃k-bounded MSCs and nn-∃k-bounded is similar. Summing up:

Proposition 6.5. An MSC M is mb-∃k-bounded iff the relation mb ∪ -→ k is acyclic. An MSC M is onen-∃k-bounded iff the relation 1n ∪ -→ k is acyclic. An MSC M is nn-∃k-bounded iff the relation ⊏ nn ∪ -→ k is acyclic.
The MSO-definability of all the variants of ∃k-bounded MSCs directly follows from Proposition 6.5, since all of these relations were shown to be MSO-definable (Section 4).

Special treewidth

In [5, Lemma 5.37] it was shown that the special treewidth of existentially k-bounded MSCs is bounded by k |P| 2 , for k ≥ 1. Actually, STW-boundedness was shown for the more general class of Concurrent Behaviours with Matching (CBM), but the result is still valid since MSC asy ⊂ CBM. The special treewidth of the other classes of ∃k-bounded MSCs is also bounded, since they are clearly subclasses of ∃k-bounded MSCs.

Universally bounded MSCs An MSC is existentially k-bounded if it has a k-bounded linearization. An MSC is universally k-bounded MSCs if all of its linearizations are k-bounded, hence the name "universally". This class of MSCs was also introduced in [START_REF] Lohrey | Bounded MSC communication[END_REF]. Definition 6.13 (Universally bounded MSC). Let M = (E, →, ⊳, λ) ∈ MSC asy and k ∈ N. M is universally k-bounded (∀k-bounded) if all of its linearizations are k-bounded. Definition 6.14. An MSC M is p2p universally k-bounded (p2p-∀k-bounded) if it is a p2p-MSC and it is also universally k-bounded. Definition 6.15. An MSC M is causally ordered universally k-bounded (co-∀k-bounded) if it is a causally ordered MSC and it is also universally k-bounded.

As for the existential case, the definitions for the other communication models are not as straightforward. For instance, the definition of mb ∀k-bounded MSC should require that all the mb-linearizations of the MSC are k-bounded, but we say nothing about linearizations that are not mb. The same goes for the FIFO 1-n and FIFO n-n communication models. Definition 6.16. An MSC M is mailbox universally k-bounded (mb-∀k-bounded) if it is a mailbox MSC and all of its mailbox linearizations are k-bounded. Definition 6.17. An MSC M is onen universally k-bounded (onen-∀k-bounded) if it is a onen-MSC and all of its onen-linearizations are k-bounded.

MSO-definability Next, we investigate the MSO-definability of all the variants of universally k-bounded MSCs that we discussed. In [START_REF] Lohrey | Bounded MSC communication[END_REF], it is shown that an MSC M is universally kbounded if and only if -→ k ⊆ ≤ hb . In other words, r -→ k s ⇒ r ≤ hb s for any two events r and s. This is equivalent of saying that every linearization of M respects the -→ k relation, since -→ k ⊆ ≤ hb ⊆ . We already saw that -→ k is not MSO-definable when communication is asynchronous, hence we will use the ֒→ k relation to give the following alternative characterization of universally k-bounded MSCs. Proposition 6.6. An MSC M is ∀k-bounded if and only if ֒→ k ⊆ ≤ hb and, for each channel (p,q), there are at most k unmatched send events.

Proof. (⇒) Suppose M is ∀k-bounded, then by definition all of its linearizations are k-bounded. Firstly, notice that every MSC that has more than k unmatched send events in any channel cannot be an ∀k-bounded MSC (not even ∃k-bounded). By contradiction, suppose that ֒→ k ≤ hb , i.e., there are two events r and s such that r ֒→ k s and r hb s. If r hb s, we either have that s ≤ hb r or that s and r incomparable w.r.t. ≤ hb ; note that, in both cases, M must have one linearization where s is executed before r6 . The existence of such a linearization implies that M is not ∀k-bounded.

(⇐) Suppose ֒→ k ⊆ ≤ hb and, for each channel (p,q), there are at most k unmatched send events. By definition, every linearization of M is such that ≤ hb ⊆ ; it follows that ֒→ k ⊆ , which means that every linearization of M is k-bounded, i.e., M is ∀k-bounded.

It follows that p2p-∀k-bounded and co-∀k-bounded MSCs are MSO-definable by definition, since p2p-MSCs, co-MSCs, and universally k-bounded MSCs are all MSO-definable. We already showed that -→ k is MSO-definable when considering p2p communication. The characterization for the other communication models is similar to that given in [START_REF] Lohrey | Bounded MSC communication[END_REF], but it uses the proper relation for each communication model. Proposition 6.7. An MSC M is mb-∀k-bounded if and only if -→ k ⊆ mb . An MSC M is onen-∀k-bounded if and only if -→ k ⊆ 1n . An MSC M is nn-∀k-bounded if and only if -→ k ⊆ ⊏ nn .

Proof. We only show it for the mb communication model. The proof for the other communication models works the same way. Consider an MSC M and a k ∈ N.

(⇐) Suppose -→ k ⊆ mb . For every mailbox linearization of M we have that mb ⊆ . This implies -→ k ⊆ , that is to say every mailbox linearization is k-bounded.

(⇒) Suppose M is a mb-∀k-bounded MSC. By definition, every mailbox linearization of M is k-bounded, i.e., -→ k ⊆ , and we have mb ⊆ , according to the definition of mailbox linearization. Moreover, we also know that mb ∪ -→ k is acyclic, since M is ∃k-bounded and by definition every mb-∀k-bounded MSC is also a mb-∃k-bounded MSC. Suppose now, by contradiction, that -→ k mb . Thus, there must be at least two events r and s such that r -→ k s and r mb s; we also have s mb r because of the acyclicity of mb ∪ -→ k (we cannot have the cycle r -→ k s mb r). Consider a mailbox linearization of M , such that s r. Note that such a mailbox linearization always exists, since r and s are incomparable w.r.t. the partial order mb . This mailbox linearization does not respect -→ k (because we have s r and r -→ k s), so it is not k-bounded. This is a contradiction, since we assumed that M was a mb-∀k-bounded MSC. It has to be that -→ k ⊆ mb .

Using Proposition 6.7, we can now easily write the MSO formulas that define these variants of universally k-bounded MSCs. Special treewidth All the variants of universally k-bounded MSCs that we presented have a bounded special treewidth. This directly follows from the STW-boundedness of the existential counterparts, since every universally k-bounded MSC is existentially k-bounded by definition.

Conclusion

We studied seven different communication models and their corresponding classes of MSCs. These communication models either come from the early days of distributed systems, or are idealized models of communicating systems with queues of messages (spanning from systems on chip to micro-services linked with "buses", or simply concurrent programs with FIFO queues in shared memory). We drew the hierarchy of these communication models and characterized each of them with MSO logic. We showed that all the models fit in a single framework that is used to show the decidability of some verification problems.

To refine the picture, we could consider other logics like FO+TC or LCPDL, and other communication models, such as the FIFO-based implementation of the causally ordered communication model proposed in [START_REF] Mattern | A non-blocking lightweight implementation of causal order message delivery[END_REF], which we expect to sit somewhere between mailbox and causally ordered within the hierarchy that we presented. Moreover, as shown by Fig. 10, the decidability of the synchronizability problem for weakly synchronous MSCs and fully asynchronous communication is not entailed by our techniques, and could be further investigated.

Additional material for Section 4 8.1 MSO-definable properties

In this sections we give MSO formulas for some MSO-definable properties that are used throughout the paper.

Transitive Closure Given a binary relation R, we can express its reflexive transitive closure

R * in MSO as x R * y = ∀X.(x ∈ X ∧ f orward closed(X)) =⇒ y ∈ X f orward closed(X) = ∀z.∀t.(z ∈ X ∧ z R t) =⇒ t ∈ X
The transitive (but not necessarily reflexive) closure of R can also be expressed as

x R + y = ∀X. ∀z, t (z ∈ X ∪ {x} ∧ z R t) =⇒ t ∈ X =⇒ y ∈ X
Acyclicity Given a binary relation R, we can use MSO to express the acyclicity of R, or equivalently, the fact that its transitive closure R + is irreflexive.

Φ acyclic = ¬∃x.(x R + x).

Omitted proofs of Section 4

Mailbox We show here that the two alternative definitions of mb-MSC that we gave are equivalent. Proof. (⇒) We show that if M is a mb-MSC, according to Definition 4.2, then it is also a mb-MSC, according to Definition 2.4. By definition of mb , we must have (i) s mb s ′ for any two matched send events s and s ′ addressed to the same process, such that r → + r, where s ⊳ r and s ′ ⊳ r ′ , and (ii) s mb s ′ , if s and s ′ are a matched and an unmatched send event, respectively. If mb is a partial order, we can find at least one linearization such that mb ⊆ ; such a linearization satisfies the conditions of Definition 2.4. (⇐) We show that if M is not a mb-MSC, according to Definition 4.2, then it is also not a mb-MSC, according to Definition 2.4. Since mb = (→ ∪ ⊳ ∪ ⊏ mb) * is not a partial order, mb must be cyclic 7 . If mb is cyclic, it means that we cannot find a linearization such that mb ⊆ . In other words, we cannot find a linearization where (i) s s ′ for any two matched send events s and s ′ addressed to the same process, such that r → + r, where s ⊳ r and s ′ ⊳ r ′ , and (ii) s s ′ , if s and s ′ are a matched and an unmatched send event, respectively. It follows that M is not a mb-MSC also according to Definition 2.4. Proof. (⇒) We show that if M is a onen-MSC, according to Definition 4.3, then it is also a onen-MSC, according to Definition 2.5. By definition of 1n , we must have (i) r 1n r ′ for any two receive events r and r ′ whose matched send events s and s ′ are such that s → + s ′ , and (ii) s 1n s ′ , if s and s ′ are a matched and an unmatched send event executed by the same process, respectively. If 1n is a partial order, we can find at least one linearization such that

1n ⊆ ; such a linearization satisfies the conditions of Definition 2.5. (⇐) We show that if M is not a onen-MSC, according to Definition 4.3, then it is also not a onen-MSC, according to Definition 2.5. Since 1n = (→ ∪ ⊳ ∪ ⊏ 1n) * is not a partial order, 1n must be cyclic. If 1n is cyclic, it means that we cannot find a linearization such that 1n ⊆ . In other words, we cannot find a linearization where (i) r r ′ for any two receive events r and r ′ whose matched send events s and s ′ are such that s → + s ′ , and (ii) s s ′ , if s and s ′ are a matched and an unmatched send event executed by the same process, respectively. It follows that M is not a onen-MSC also according to Definition 2.5.

FIFO n-n We show here the missing proofs for the equivalence of the two definitions of nn-MSC that we gave. Proposition 8.3. Let M be an MSC. Given two matched send events s 1 and s 2 , and their respective receive events r 1 and r 2 , r 1 ⊏ nn r 2 =⇒ s 1 ⊏ nn s 2 .

Proof. Follows from the definition of ⊏ nn . We have r 1 ⊏ nn r 2 if either:

• r 1 ≺ 1n/mb r 2 . Two cases: either (i) s 1 ≺ 1n/mb s 2 , or (ii) s 1 ≺ 1n/mb s 2 . The first case clearly implies s 1 ⊏ nn s 2 , for rule 1 in the definition of ⊏ nn . The second too, because of rule 3.

• r 1 ≺ 1n/mb r 2 , but r 1 ⊏ nn r 2 . This is only possible if rule 2 in the definition of ⊏ nn was used, which implies s 1 ≺ 1n/mb s 2 and, for rule 1, s 1 ⊏ nn s 2 .

Proposition 4.1. Let M be an MSC. If ⊏ nn is cyclic, then M is not a nn-MSC.

Proof. According to Definition 2.6, an MSC is FIFO n-n if it has at least one nn-linearization. Note that, because of how it is defined, any nn-linearization is always both a mb and a onenlinearization. It follows that the cyclicity of ≺ 1n/mb (not ⊏ nn) implies that M is not FIFO n-n, because it means that we are not even able to find a linearization that is both mb and FIFO 1-n. Moreover, since in a nn-linearization the order in which messages are sent matches the order in which they are received, and unmatched send events can be executed only after matched send events, a nn-MSC always has to satisfy the constraints imposed by the ⊏ nn relation. If ⊏ nn is cyclic, then for sure there is no nn-linearization for M .

Proposition 4.3. Given an MSC M , Algorithm 1 terminates correctly if ⊏ nn is acyclic.

Proof. We want to prove that, if ⊏ nn is acyclic, step 4 of the algorithm is never executed, i.e. it terminates correctly. Note that the acyclicity of ⊏ nn implies that the EDG of M is a DAG. Moreover, at every step of the algorithm we remove nodes and edges from the EDG, so it still remains a DAG. The proof proceeds by induction on the number of events added to the linearization.

Base case: no event has been added to the linearization yet. Since the EDG is a DAG, there must be an event with in-degree 0. In particular, this has to be a send event (a receive event depends on its respective send event, so it cannot have in-degree 0). If it is a matched send event, step 1 is applied. If there are no matched send events, step 2 is applied on an unmatched send. We show that it is impossible to have an unmatched send event of in-degree 0 if there are still matched send events in the EDG, so either step 1 or 2 are applied in the base case. Let s be one of those matched send events and let u be an unmatched send. Because of rule 4 in the definition of ⊏ nn , we have that s ⊏ nn u, which implies that u cannot have in-degree 0 if s is still in the EDG.

Inductive step: we want to show that we are never going to execute step 4. In particular, Step 4 is executed when none of the first three steps can be applied. This happens when there are no matched send events with in-degree 0 and one of the following holds:

• There are still matched send events in the EDG with in-degree > 0, there are no unmatched messages with in-degree 0, and there is no receive event r with in-degree 0 in the EDG, such that r is the receive event of the first message whose sent event was already added to the linearization. Since the EDG is a DAG, there must be at least one receive event with in-degree 0. We want to show that, between these receive events with in-degree 0, there is also the receive event r of the first message whose send event was added to the linearization, so that we can apply step 3 and step 4 is not executed. Suppose, by contradiction, that r has in-degree > 0, so it depends on other events. For any maximal chain in the EDG that contains one of these events, consider the first event e, which clearly has in-degree 0.

In particular, e cannot be a send event, because we would have applied step 1 or step 2.

Hence, e can only be a receive event for a send event that was not the first added to the linearization (and whose respective receive still has not been added). However, this is also impossible, since r e ⊏ nn r implies s e ⊏ nn s, according to Proposition 8.3, and we could not have added s to the linearization before s e . Because we got to a contradiction, the hypothesis that r has in-degree > 0 must be false, and we can indeed apply step 3.

• There are still matched send events in the EDG with in-degree > 0, there is at least one unmatched message with in-degree 0, and there is no receive event r with in-degree 0 in the EDG, such that r is the receive event of the first message whose sent event was already added to the linearization. We show that it is impossible to have an unmatched send event of in-degree 0 if there are still matched send events in the EDG. Let s be one of those matched send events and let u be an unmatched send. Because of rule 4 in the definition of ⊏ nn , we have that s ⊏ nn u, which implies that u cannot have in-degree 0 if s is still in the EDG.

• There are no more matched send events in the EDG, there are no unmatched messages with in-degree 0, and there is no receive event r with in-degree 0 in the EDG, such that r is the receive event of the first message whose sent event was already added to the linearization. Very similar to the first case. Since the EDG is a DAG, there must be at least one receive event with in-degree 0. We want to show that, between these receive events with in-degree 0, there is also the receive event r of the first message whose send event was added to the linearization, so that we can apply step 3 and step 4 is not executed. Suppose, by contradiction, that r has in-degree > 0, so it depends on other events. For any maximal chain in the EDG that contains one of these events, consider the first event e, which clearly has in-degree 0. In particular, e cannot be a send event, because by hypothesis there are no more send events with in-degree 0 in the EDG. Hence, e can only be a receive event for a send event that was not the first added to the linearization (and whose respective receive still has not been added). However, this is also impossible, since r e ⊏ nn r implies s e ⊏ nn s (see Proposition 8.3), and we could not have added s to the linearization before s e . Because we got to a contradiction, the hypothesis that r has in-degree > 0 must be false, and we can indeed apply step 3.

We showed that, if ⊏ nn is acyclic, the algorithm always terminates correctly and computes a valid nn-linearization.

9 Additional material for Section 5

Proposition 9.1. Every co-MSC is a p2p-MSC.

Proof. According to Definition 2.3, and MSC is co if, for any two send events s and s ′ , such that λ(s) ∈ Send(, q,), λ(s ′) ∈ Send (, q,), and s ≤ hb s ′ , we have either (i) s, s ′ ∈ Matched (M) and r → * r ′ , where r and r ′ are two receive events such that s⊳r and s ′ ⊳r ′ , or (ii) s ′ ∈ Unm(M).

The conditions imposed by the Definition 2.2 of p2p are clearly satified by any co-MSC; in particular, note that s → + s ′ implies s ≤ hb s ′ .

Proposition 5.3. Every mb-MSC without unmatched messages is a onen-MSC.

Proof. We show that the contrapositive is true, i.e. if an MSC is not FIFO 1-n (and it does not have unmatched messages), it is also not mailbox. Suppose M is an asynchronous MSC, but not FIFO 1-n. There must be a cycle ξ such that e 1n e, for some event e. Recall that 1n = (→ ∪ ⊏ 1n ∪ ⊏ mb) * and ≤ hb = (→ ∪ ⊏ 1n) * . We can always explicitely write a cycle e 1n e only using ⊏ 1n and ≤ hb . For instance, there might be a cycle e 1n e because we have that e ⊏ 1n f ≤ hb g ⊏ 1n h ⊏ 1n i ≤ hb e. Consider any two adiacent events r 1 and r 2 in the cycle ξ, where ξ has been written using only ⊏ 1n and ≤ hb , and we never have two consecutive ≤ hb . We have two cases:

1. r 1 ⊏ 1n r 2 . By definition of ⊏ 1n , r 1 and r 2 must be two receive events, since we are not considering unmatched send events, and s 1 → + s 2 , where s 1 and s 2 are the send events that match with r 1 and r 2 , respectively.

2. r 1 ≤ hb r 2 . Since M is asynchronous by hypothesis, ξ has to contain at least one ⊏ 1n ; recall that we also wrote ξ in such a way that we do not have two consecutive ≤ hb . It is not difficult to see that r 1 and r 2 have to be receive events, since they belong to ξ. Let s 1 and s 2 be the two send events such that s 1 ⊳ r 1 and s 2 ⊳ r 2 . We have two cases: (a) s 2 is in the causal path between r 1 and r 2 , i.e. s 1 ⊳ r 1 ≤ hb s 2 ⊳ r 2 . In particular, note that s 1 ≤ hb s 2 .

(b) s 2 is not in the causal path between r 1 and r 2 , hence there must be a message m k received by the same process that executes r 2 , such that r 1 ≤ hb s k ⊳ r k → + r 2 , where r k is the send event of m k . Since messages m k and m 2 are received by the same process and r k → + r 2 , we should have s k ⊏ mb s 2 , according to the mailbox semantics.

In particular, note the we have s 1 ≤ hb s k ⊏ mb s 2 .

In both case (a) and (b), we conclude that s 1 mb s 2 .

Notice that, for either cases, a relation between two receive events r 1 and r 2 implies a relation between the respective send events s 1 and s 2 , according to the mailbox semantics. It follows that ξ, which is a cycle for the 1n relation, always implies a cycle for the mb relation.

Proposition 9.2. Every nn-MSC is a onen-MSC.

Proof. Consider Definition 2.6 and Definition 2.5. They are identical, except for the fact that in the FIFO n-n case we consider any two send events, and not just those that are sent by a same process. This is enough to show that each nn-linearization is also a onen-linearization and, therefore, each nn-MSC is a onen-MSC.

Proposition 9.3. Every rsc-MSC is a nn-MSC.

Proof. Consider Definition 2.7 and Definition 2.6. Let us pick an rsc-linearization . If every send event is immediately followed by its matching receive event, and we do not have unmatched messages, then is also a nn-linearization; note that, for any two send events s and s ′ such that s s ′ , we also have r r ′ , where s ⊳ r and s ′ ⊳ r ′ . It follows that each rsc-MSC is a nn-MSC.

10 Additional material for Section 6

Communicating finite state machines

We now recall the definition of communicating systems (aka communicating finite-state machines or message-passing automata), which consist of finite-state machines A p (one for every process p ∈ P) that can communicate through channels from C. Definition 10.1. A system of communicating finite state machines over the set P of rocesses and the set M of messages is a tuple S = (A p) p∈P . For each p ∈ P, A p = (Loc p , δ p , ℓ 0 p) is a finite transition system where Loc p is a finite set of local (control) states, δ p ⊆ Loc p × Σ p × Loc p is the transition relation, and ℓ 0 p ∈ Loc p is the initial state. Given p ∈ P and a transition t = (ℓ, a, ℓ ′) ∈ δ p , we let source(t) = ℓ, target (t) = ℓ ′ , action(t) = a, and msg(t) = m if a ∈ Send(, , m) ∪ Rec(, , m).

Let M = (E, →, ⊳, λ) be an MSC. A run of S on M is a mapping ρ : E → p∈P δ p that assigns to every event e the transition ρ(e) that is executed at e. Thus, we require that (i) for all e ∈ E, we have action(ρ(e)) = λ(e), (ii) for all (e, f) ∈ →, target (ρ(e)) = source(ρ(f)), (iii) for all (e, f) ∈ ⊳, msg(ρ(e)) = msg(ρ(f)), and (iv) for all p ∈ P and e ∈ E p such that there is no f ∈ E with f → e, we have source(ρ(e)) = ℓ 0 p . We write L asy (S) to denote the set of MSCs M admit a run of S. Intuitively, L asy (S) is the set of all asynchronous behaviors of S.

10.2 Proof of Theorem 6.1 Theorem 6.1. Let com ∈ {asy, co, p2p, mb, onen, nn, rsc} and k ≥ 1. Then the following problem is decidable: given a system S and a MSO specification ϕ, decide whether L com (S) ∩ MSC k-stw ⊆ L(ϕ).

Proof. Let com, C, S, and ϕ be fixed. We showed in Section 4 that there is a MSO formula ϕ com that defines MSC com . There is also a MSO formula ϕ S such that L asy (S) = L(ϕ S). 8 Putting everything together, we have

L com (S) ∩ MSC k-stw ⊆ L(ϕ) ⇐⇒ L asy (S) ∩ MSC com ∩ MSC k-stw ⊆ L(ϕ) ⇐⇒ L(ϕ S) ∩ L(ϕ com) ∩ MSC k-stw ⊆ L(ϕ) ⇐⇒ MSC k-stw ⊆ L(ϕ ∨ ¬ϕ com ∨ ¬ϕ S) .
The latter is decidable by Courcelle's theorem [START_REF] Courcelle | Special tree-width and the verification of monadic second-order graph properties[END_REF].

Proof of Theorem 6.2

In order to prove Theorem 6.2, we first need to introduce some concepts and give preliminary proofs.

Definition 10.2 (Prefix). Let M = (E, →, ⊳, λ) ∈ MSC and consider E ⊆ E such that E is ≤ hb -downward-closed, i.e, for all (e, f) ∈ ≤ hb such that f ∈ E, we also have e ∈ E. Then, the MSC M ′ = (E, → ∩ (E × E), ⊳ ∩ (E × E), λ ′), where λ ′ is the restriction of E to E, is called a prefix of M .

If we consider a set E that is 1n -downward-closed, we call M ′ a onen-prefix. If the set E is ⊏ nn -downward-closed, we call M ′ a nn-prefix. Note that every onen or nn-prefix is also a since ≤ hb ⊆ 1n and ≤ hb ⊆ ⊏ nn .

Note that the empty MSC is a prefix of M . We denote the set of prefixes of M by Pref (M), whereas Pref onen (M) and Pref nn (M) are used for the FIFO 1-n and the FIFO n-n variants, respectively. This is extended to sets L ⊆ MSC as expected, letting Pref (L) = M∈L Pref (M).

Proposition 10.1. For com ∈ {asy, p2p, co, mb}, every prefix of a com-MSC is a com-MSC.

Proof. For com = asy it is true by definition. For com = {p2p, mb} it was already shown to be true in [START_REF] Bollig | A unifying framework for deciding synchronizability[END_REF], so we just consider com = co. Let M = (E, →, ⊳, λ) ∈ MSC co and let M 0 = (E 0 , → 0 , ⊳ 0 , λ 0) be a prefix of M . By contradiction, suppose that M 0 is not a co-MSC. There must be two distinct s, s ′ ∈ E 0 such that λ(s) ∈ Send (, q,), λ(s ′) ∈ Send (, q,), s ≤ (M0) hb s ′ and either (i) r ′ → + r, where r and r ′ are two receive events such that s ⊳ r and s ′ ⊳ r ′ , or (ii) s ∈ Unm(M 0) and s ′ ∈ Matched (M 0). In both cases, M would also not be a co-a MSC, since E 0 ⊆ E, → 0 ⊆ →, and ⊳ 0 ⊆ ⊳. This is a contradiction, thus M 0 has to be causally ordered.

Note that this proposition is not true for the FIFO 1-n and the FIFO n-n communication models. Fig. 9 shows an example of nn-MSC with a prefix that is neither a nn-MSC nor a onen-MSC. Proposition 10.2. Every onen-prefix of a onen-MSC is a onen-MSC.

Proof. Let M = (E, →, ⊳, λ) ∈ MSC onen and let M 0 = (E 0 , → 0 , ⊳ 0 , λ 0) be a onen-prefix of M , where E 0 ⊆ E. Firstly, the 1n -downward-closeness of E 0 guarantees that M 0 is still an MSC. We need to prove that it is a onen-MSC. By contradiction, suppose that M 0 is not a onen-MSC. Then, there are distinct e, f ∈ E 0 such that e ⊆ 1n , so e 1n f 1n e. This implies that M is not a onen-MSC, because 1n is cyclic, which is a contradiction. Hence M 0 is a onen-MSC. Proposition 10.3. Every nn-prefix of a nn-MSC is a nn-MSC.

Proof. Let M = (E, →, ⊳, λ) ∈ MSC nn and let M 0 = (E 0 , → 0 , ⊳ 0 , λ 0) be a nn-prefix of M , where E 0 ⊆ E. Firstly, the ⊏ (M) nn -downward-closeness of E 0 guarantees that M 0 is still an MSC. We need to prove that it is a nn-MSC. By contradiction, suppose that M 0 is not a nn-MSC. Then, there are distinct e, f ∈ E 0 such that e ⊏ nn e. This implies that M is not a nn-MSC, because ⊏ (M) nn is cyclic, which is a contradiction. Hence M 0 is a nn-MSC.

The next lemma is about the prefix closure of a communicating system and it follows from Proposition 10.1.

 Figure 1: An MSC.

 . The goal is to show the relation between the sequential view of Chevrou et al. and the partial order one we adopt. Section 4 characterizes the classes of MSCs via MSO logic. In Section 5, we compare all the communication

Figure 2 :

 2 Figure 2: Main contributions

3 (3 (2 (

 332 c) asy, p2p, co, mb, onen, nn. d) asy, p2p, co, mb, onen, nn, rsc. f) asy, p2p, co, mb.

Figure 3 :

 3 Figure 3: Examples of MSCs for various communication models.

Figure 4 :

 4 Figure 4: Hierarchy of communication models based on sets of executions (taken from [10])

Figure 5 :

 5 Figure 5: An MSC and its EDG. In the EDG, only meaningful edges are shown.

Proposition 4 . 3 .

 43 Given an MSC M , Algorithm 1 terminates correctly if ⊏ nn is acyclic.

 Figure 6: MSC classes.

2 (

 2 c) nn, not rsc.

Figure 7 :

 7 Figure 7: Examples of MSCs for various communication models.

Proposition 5 . 3 .Proposition 5 . 4 .

 5354 Every mb-MSC without unmatched messages is a onen-MSC.Interestingly enough, Proposition 5.2 and 5.3 show that the classes of mb-MSCs and onen-MSCs coincide if we do not allow unmatched messages. This changes when we add unmatched messages into the mix. However, Proposition 5.2 still holds. Every onen-MSC is a mb-MSC.

Figure 8 :

 8 Figure 8: Decomposition game for the MSC of Fig. 3b. This is a 3-winning game for Eve.

Figure 11 :

 11 Figure 11: MSC M 2

Definition 6 . 7 (3 Figure 12

 67312 Figure 12: MSC M 3

3 Figure 13

 313 Figure 13: MSC M 4 .

Φ

 mb-∀k-b = ¬∃r.∃s.(r -→ k s ∧ ¬(r mb s)) Φ onen-∀k-b = ¬∃r.∃s.(r -→ k s ∧ ¬(r 1n s)) Φ nn-∀k-b = ¬∃r.∃s.(r -→ k s ∧ ¬(r ⊏ nn s))

Proposition 8 . 1 .

 81 Definition 2.4 and Definition 4.2 of mb-MSC are equivalent.

FIFO 1 -nProposition 8 . 2 .

 182 We show that the two alternative definitions of onen-MSC that we gave are equivalent. Definition 2.5 and Definition 4.3 of onen-MSC are equivalent.

 0 ∪ ⊳ 0 ∪ ⊏ (M0) 1n) * . As E 0 ⊆ E, we have that → 0 ⊆ →, ⊳ 0 ⊆ ⊳, ⊏ (M0) 1n ⊆ ⊏ 1n . Clearly, (M0) 1n

 As E 0 ⊆ E, we have that → 0 ⊆ →, ⊳ 0 ⊆ ⊳, ≺ 1n/mb ⊆ ≺ 1n/mb . Clearly, ⊏

 2 , according to the FIFO 1-n semantics. It follows that ξ, which is a cycle for the mb relation, always implies a cycle for the 1n relation (and if 1n is cyclic, M is not a onen-MSC), as shown by the following example. Let M be a non-mailbox MSC, and suppose we have a cycle s 1 ⊏ mb s 2 ⊏ mb s 3 ≤ hb s 4 ⊏ mb s 5 ≤ hb s 1 . s 1 ⊏ mb s 2 falls into case (1), so it implies r 1 → + r 2 . The same goes for s 2 ⊏ mb r 3 , which implies r 2 → + r 3 . s 3 ≤ hb s 4 falls into case (2), and implies that r 3 1n r 4 . s 4 ⊏ mb s 5 falls into case (1) and it implies r 4 → + r 5 . s 5 ≤ hb s 1 falls into case (2) and implies that r 5 1n r 1 .

 Table summarising the (un)decidability results for the synchronizability problems (each combination of a communication model com and a class C of MSCs is a different synchronizability problem). The symbol ✗ stands for undecidability and unbounded special treewidth of MSC com ∩ C, whereas ✓ stands for decidability and bounded STW of MSC com ∩ C. [1] indicates that the result was shown by Bollig et al. [3]. Unbounded STW stands for unbounded STW of MSC com ∩ C (but not necessarily undecidability).

This relation was introduced in[START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF], and is also referred to as the happened before relation, or sometimes causal relation or causality relation, e.g. in[START_REF] Charron-Bost | Synchronous, asynchronous, and causally ordered communication[END_REF][START_REF] Bouajjani | On the completeness of verifying message passing programs under bounded asynchrony[END_REF] .

Note that we can have m k = m 2

cfr. proof in[START_REF] Di Giusto | A non-sequential hierarchy of message-passing models (extended version)[END_REF]

This may look surprising in our general context to count messages in transit in that way, but it can be seen that, up to picking a different value for the bound k, it is equivalent to the possibly more intuitive definition based on counting all messages in transit whatever their sender and receiver.

Recall that (p, q) is a channel where messages are sent by p and received by q.

If two elements a and b of a set are incomparable w.r.t. a partial order ≤, it is always possible to find a total order of the elements (that respects ≤) where a comes before b, or viceversa.

mb is reflexive and transitive by definition, if it were also acyclic it would be a partial order

The formula simply encodes the existence of a run of S on the MSC using a MSO variable X l for each control state l, with the meaning that X l is the set of events before which the local communicating automaton was in state l. See[START_REF] Bollig | Non-sequential theory of distributed systems[END_REF] Theorem 3.4] for a detailed proof.

There is no channel between P1 and P2, and we only have unidirectional communication channels from provers to verifiers; it is impossible to have a causal path between two send events of P1 and P2.

 Proposition 10.4. For all com ∈ {asy, p2p, mb, co}, L com (S) is prefix-closed: Pref (L com (S)) ⊆ L com (S).

Similar results also hold for the FIFO 1-n and FIFO n-n communication models. Proposition 10.5. L onen (S) is onen-prefix-closed: Pref onen (L onen (S)) ⊆ L onen (S).

Proof. Given a system S, we have that L onen (S) = L p2p (S) ∩ MSC onen . Note that, because of how we defined a onen-prefix, we have that Pref onen (L onen (S)) = Pref (L onen (S)) ∩ MSC onen . Moreover, Pref (L onen (S)) ⊆ Pref (L p2p (S)), and Pref (L onen (S)) ⊆ L p2p (S) for Proposition 10.4. Putting everything together, Pref onen (L onen (S)) ⊆ L p2p (S) ∩ MSC onen = L onen (S).

Proposition 10.6. L nn (S) is nn-prefix-closed:

Proof. Given a system S, we have that L nn (S) = L p2p (S) ∩ MSC nn . Note that, because of how we defined a nn-prefix, we have that Pref nn (L nn (S)) = Pref (L nn (S)) ∩ MSC nn . Moreover, Pref (L nn (S)) ⊆ Pref (L p2p (S)), and Pref (L nn (S)) ⊆ L p2p (S) for Proposition 10.4. Putting everything together, Pref nn (L nn (S)) ⊆ L p2p (S) ∩ MSC nn = L nn (S).

In this last part we prove a series of statements to conclude that, when we have a STWbounded class C, the synchronizability problem can be reduced to bounded model-checking, which we showed to be decidable in Theorem 6.1.

Proof. Already proved in [START_REF] Bollig | A unifying framework for deciding synchronizability[END_REF], but we adapt the proof to our setting. Let k and C be fixed, and let M ∈ MSC\ C be fixed. If the empty MSC is not in C, then we are done, since it is a valid prefix of M and it is in MSC (k+2)-stw \ C. Otherwise, let M ′ ∈ Pref (M) \ C such that, for all ≤ hb -maximal events e of M ′ , removing e (along with its adjacent edges) gives an MSC in C. In other words, M ′ is the "shortest" prefix of M that is not in C. We obtain such an MSC by successively removing ≤ hb -maximal events. Let e be a ≤ hb -maximal event of M ′ , and let M ′′ = M ′ \ {e}. Since M ′ was taken minimal in terms of number of events, M ′′ ∈ C. So Eve has a winning strategy with k + 1 colors for M ′′ . Let us design a winning strategy with k + 3 colors for Eve for M ′ , which will show the claim.

Observe that the event e occurs at the end of the timeline of a process (say p), and it is part of at most two edges:

• one with the previous p-event (if any)

• one with the corresponding send event (if e is a receive event)

Let e 1 , e 2 be the two neighbours of e. The strategy of Eve is the following: in the first round, mark e, e 1 , e 2 , then erase the edges (e 1 , e) and (e 2 , e), then split the remaining graph in two parts: M ′′ on the one side, and the single node graph {e} on the other side. Then Eve applies its winning strategy for M ′′ , except that initially the two events e 1 , e 2 are marked (so she may need up to k + 3 colors).

We have similar results also for the FIFO 1-n and FIFO n-n communication models. Proof. Let k and C be fixed, and let M ∈ MSC onen \ C be fixed. If the empty MSC is not in C, then we are done, since it is a valid onen-prefix of M and it is in MSC (k+2)-stw \ C. Otherwise, let M ′ ∈ Pref onen (M) \ C such that, for all 1n -maximal events e of M ′ , removing e (along with its adjacent edges) gives an MSC in C. In other words, M ′ is the "shortest" prefix of M that is not in C. We obtain such an MSC by successively removing 1n -maximal events. Let e be (M ′) 1n -maximal and let M ′′ = M ′ \ {e}. Since M ′ was taken minimal in terms of number of events, M ′′ ∈ C. The proof proceeds exactly as the proof of Proposition 10.7.

Proposition 10.9. Let k ∈ N and C ⊆ MSC k-stw . For all M ∈ MSC nn \ C, we have

Proof. Let k and C be fixed, and let M ∈ MSC nn \ C. If the empty MSC is not in C, then we are done, since it is a valid nn-prefix of M and it is in

nn -maximal events e of M ′ , removing e (along with its adjacent edges) gives an MSC in C. In other words, M ′ is the "shortest" prefix of M that is not in C. We obtain such an MSC by successively removing ⊏ (M) nn -maximal events. Let e be ⊏ (M ′) nn -maximal and let M ′′ = M ′ \ {e}. Since M ′ was taken minimal in terms of number of events, M ′′ ∈ C. The proof proceeds exactly as the proof of Proposition 10.7.

The following proposition is the last ingredient that we need to prove Theorem 6.2.

Proposition 10.10. Let S be a communicating system, com ∈ {asy, p2p, co, mb, onen, nn, rsc}, k ∈ N, and

Proof. For com ∈ {asy, p2p, co, mb}, the proposition follows from Proposition 10.7. For com ∈ {onen, nn}, it follows from Proposition 10.8 and Proposition 10.9, respectively. Theorem 6.2. For any com ∈ {asy, p2p, co, mb, onen, nn} and for all class of MSCs C, if C is STW-bounded and MSO-definable, then the (com, C)-synchronizability problem is decidable.

Proof. According to Proposition 10.10, we have L com (S) ⊆ C iff L com (S) ∩ MSC (k+2)-stw ⊆ C. The latter is decidable according to Theorem 6.1.

10.4 Proof of Proposition 6.1 Proposition 6.1. The following problem is undecidable: given a communicating system S, is every MSC in L co (S) weakly synchronous?

The proof is very similar to the one of [START_REF] Bollig | A unifying framework for deciding synchronizability (extended version)[END_REF]Theorem 20] for the p2p case. We do the same reduction from the Post correspondence problem. The original proof considered a p2p system S with four machines (P1, P2, V1, V2), where we have unidirectional communication channels from provers (P1 and P2) to verifiers (V1 and V2). In particular notice that all the possible behaviors of S are causally ordered, i.e. L p2p (S) ⊆ MSC co ; according to how we built our system S, it is impossible to have a pair of causally-related send events of P1 and P2 9 , which implies that causal ordering is already ensured by any possible p2p behavior of S. The rest of the proof is identical to the p2p case.