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Abstract

There is a wide variety of message-passing communication models,
ranging from synchronous ”rendez-vous” communications to fully asynchronous/out-
of-order communications. For large-scale distributed systems, the commu-
nication model is determined by the transport layer of the network, and
a few classes of orders of message delivery (FIFO, causally ordered) have
been identified in the early days of distributed computing. For local-scale
message-passing applications, e.g., running on a single machine, the com-
munication model may be determined by the actual implementation of
message buffers and by how FIFO queues are used. While large-scale
communication models, such as causal ordering, are defined by logical
axioms, local-scale models are often defined by an operational semantics.
In this work, we connect these two approaches, and we present a unified
hierarchy of communication models encompassing both large-scale and
local-scale models, based on their non-sequential behaviors. We also show
that all the communication models we consider can be axiomatised in
the monadic second order logic, and may therefore benefit from several
bounded verification techniques based on bounded special treewidth.

1 Introduction

Reasoning about distributed message-passing applications is notoriously hard.
One reason is that the communication architecture on which the application runs
may vary, and must be accurately specified. Indeed, an approximation of the
communication model may hide deadlocks or safety errors, such as unspecified
receptions.

In synchronous communication (or rendez-vous communication), send and
receive events are viewed as a single event, i.e., a receive event and the cor-
responding send event happen simultaneously. The idea behind asynchronous
communication, instead, is to decouple send and receive events, so that a receive
event can happen indefinitely after the corresponding send event. A prominent
model of systems with asynchronous communication is the one of communicat-
ing finite state machines, where each agent is a finite state machine that can push



and pop messages from FIFO queues. Despite the simplicity of this model, most
of decision problems concerning this model are undecidable [8]. For this reason,
several model-checking tools, like SPIN, assume that communication buffers are
bounded in order to keep a finite set of configurations. To overcome this limita-
tion, several bounded model-checking techniques for finite state machines have
been proposed, including (universal) buffer boundedness, existential bounded-
ness [17], bounded context-switch [31], or k-synchronizability [7], to only quote
a few, completed by a few approaches based on over-approximation [18, 6]. One
problem of interest, in the case of bounded model-checking techniques, is the
completeness of the analysis, or in other words, whether the system behaviour
is completely captured by the bounded semantics. Recently, Bollig et al [4] pro-
posed a general framework that helps developing new bounded model-checking
techniques for which the completeness problem is ensured to be decidable. While
this framework is very parametric in the bounded model-checking techniques un-
der consideration, it is quite rigid in the communication model that is assumed
among all participants.

In this paper we show how to further generalize this framework to handle
many models of communications. To do so, we first clarify and classify some
of these communication models. On one hand, we consider communication
models that were proposed in the early days of large-scale distributed comput-
ing to establish the correctness of some distributed algorithms, such as causal
ordering [22] for the correctness of Lamport’s distributed mutual exclusion al-
gorithm (see also [32] for more examples), or the weaker "FIFO” peer-to-peer
assumption. On the other hand, we look at communication models that emerge
naturally when considering local-scale message-passing applications, which are
based on predictable message buffering supported by local FIFO queues (for in-
stance "mailboxes”). Such communication models have been considered in more
recent works (for instance in [2]) and have caused some confusion, specifically
regarding the difference between causal ordering and mailboxes [7, 15].

The classification and axiomatisation of large-scale communication models
received great attention in the late 90s [9], while the local-scale communication
models have only started to be investigated quite recently by Chevrou et al. [10],
focusing on a sequential view of the behaviors of message-passing applications
(to be detailed below). At the same time, several works [20, 33, 7, 23] recently
addressed the verification of asynchronous message-passing applications by re-
duction to their synchronous semantics (see also [24] for a seminal work on these
questions). These results strongly rely on the ability to safely approximate an
asynchronous communication model by a synchronous one. There is therefore a
need to clarify how the synchronous-asynchronous spectrum of communication
models is organized.

In this work, we start from the sequential, interleaving-based, hierarchy es-
tablished by Chevrou et al. [10], where a communication model is represented by
a class of sequential executions; we revisit this hierarchy with a ”non-sequential”,
truly concurrent point of view: we define a communication model as a class of
Message Sequence Charts (MSCs in the following). Our MSCs are a graphical
representation of computations of distributed systems, and they are a simplified



version of the ITU recommendation [19].
In an MSC, such as the one in Fig. 1, each vertical line is

called a process line and it represents the order in which p q r
events are executed by a single process, with time running q ],
from top to bottom; arrows are used to represent messages .mz
and they connect a send event with the corresponding match- 72 =112

ing receive. Given a message m;, we will use i and 7i to  o3ll2 v
denote the corresponding matching send and receive events, 3
respectively. A single process line defines a total order over
the events executed by that process, i.e., an event e happens
before another event e’ if e is higher in the process line; in
Fig. 1, if we look at process g we see that 71 happens before
72. However, in general MSCs only specify a partial order
over events. Consider the events !1 and 12 in Fig. 1, which
are executed by two different processes; these two events are
truly concurrent, meaning that this MSC does not tell us which one is exe-
cuted first. Even though events on different processes can be concurrent, this
is not always the case. For instance, a send event must always happen before
the matching receive event. Graphically, this happens before relation between
events on different processes is represented by a path that follows the direction
of the arrows and runs from top to bottom. This will be referred to as a causal
path, because it estabilishes a causal relation between events. Fig. 1 shows an
example of causal path between the events 2 and 73.

As mentioned before, in this work we interpret communication models as
classes of MSCs. This non-sequential view of the communication models is ar-
guably the ”standard one”, rather than the sequential point of view adopted
by Chevrou et al. It is more relevant for comparing communication models, as
some of them, such as causally ordered communications, intrinsically rely on
this non-sequential view and the happens-before relation. It is also more accu-
rate: for instance, as we shall later see, some inclusions between communication
models are missed by the sequential hierarchy. Such inclusions are interesting
to know; for instance, it can be useful to know that if a system is safe when it
runs on mailbox communications, it will also be safe when run on a transport
layer that ensures causal delivery, but that the converse does not hold.

Large-scale communication models are quite easy to axiomatize in a formal
language, such as monadic second order logic (MSO) over MSCs. Local-scale
communication models, on the other hand, are easy to define by means of an
operational semantics involving FIFO queues, but their axiomatization in MSO
(in the perspective of extending Bollig et al framework) is error prone and
requires care.

Our contributions are the following:

Figure 1: An ex-
ample of MSC.
Red arrows de-
note a causal
path.

o We review the peer-to-peer FIFO (p2p), causally ordered (co), mailbox
(mb), FIFO 1—n (onen), FIFO n—n (nn), asynchronous (asy), and syn-
chronous (rsc) communication models and propose definitions of these
models in terms of classes of MSCs. For the communication models whose
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(a) The hierarchy of

MSC classes (b) (Un)decidability results for the synchronizability

problems, [1] indicates that the result was shown in [4].

Figure 2: Main contributions

intuition stems from an operational semantics, we provide an alternative
operational definition, and we show soundness and completeness.

e From these definitions, we deduce a new non-sequential hierarchy of com-
munication models (see Fig. 2a) and establish the strictness of this hier-
archy by means of several examples. Surprisingly, the FIFO 1—n class,
that could be thought of as the ”dual” of the mailbox class, is a subclass
of mailbox class. This strongly contrasts with Chevrou et al. sequential
hierarchy, where FIFO 1—n and mailbox are incomparable. The compar-
ison between the FIFO 1—n and mailbox classes is non-trivial in our non-
sequential setting, and it motivates the introduction of several alternative
characterizations of these communication models.

e We show that all of these communication models can be axiomatised in
MSO. This result is rather subtle for mailbox and FIFO 1—n, and highly
non-trivial for FIFO n—n. For the latter, we develop a constructive proof
based on an algorithm that computes a FIFO n—n linearization of an
MSC.

e Building on the MSO characterization of these communication models, we
derive several new decidability results (cfr. Fig. 2b) for bounded model-
checking of systems of communicating finite state machines under various
bounded assumptions (existential boundedness, weak synchronizability,
ete).

Outline The paper is organized as follows. Section 2 describes the commu-
nication models we consider. We also recall the notion of MSC and introduce
formal definitions for these models, seen as classes of MSCs. In Section 3, we
rely on an operational semantics to provide an alternative definition for some
of these communication models, which we prove to be sound and complete.
Section 4 characterizes the classes of MSCs via MSO logic. In Section 5, we




compare all of the considered communication models and show our main result:
a strict non-sequential hierarchy of communication models. Finally, Section 6
shows some (un)decidability results for various bounded model-checking prob-
lems based on MSO and on the notion of special treewidth. Related works are
discussed all along the paper in correspondance to specific notions. A version of
this paper with some additional material and all the proofs is available at [14]

2 Asynchronous communication models as classes
of MSCs

In this section, we give both informal descriptions and formal definitions of the
communication models that will be considered in the paper. All of them impose
different constraints on the order in which messages can be received.

We will use the following customary conventions: RT denotes the transitive
closure of a binary relation R, while R* denotes the transitive and reflexive
closure. When R* is denoted by a symbol suggesting a partial order, like <,
we write e.g. < for RT. The cardinality of a set A is |A]. We assume a
finite set of processes P = {p,q,...} and a finite set of message contents (or
just "message”) M = {m,...}. Each process may either (asynchronously) send
a message to another one, or wait until it receives a message. We therefore
consider two kinds of actions. A send action is of the form send(p, g, m); it is
executed by process p and sends message m to process q. The corresponding
receive action executed by ¢ is rec(p, q, m). We write Send(p, g, _) to denote the
set {send(p,q, m) | m € M}, and Rec(p,q, _) for the set {rec(p,q, m) | m € M}.
Similarly, for p € P, we set Send(p, _, _) = {send(p,q,m) | ¢ € P and m € M},
etc. Moreover, 3, = Send(p, _, _) U Rec(_,p, _) denotes the set of all actions

that are executed by p, and ¥ = UpeP Yp is the set of all the actions. When p and
q are clear from the context, we may write !i (resp. ?i) instead of send(p, ¢, m;)

(resp. Tec(pv q, ml))

Fully asynchronous communication In the fully asynchronous communi-
cation model (asy), messages can be received at any time once they have been
sent, and send events are non-blocking. It can be modeled as a bag where all
messages are stored and retrieved by processes when necessary (as described in
[10] and [2]). Tt is also referred to as NON-FIFO (cfr. [9]). An MSC that shows
a valid computation for the fully asynchronous communication model will be
called a fully asynchronous MSC (or simply MSC). An example of such an MSC
can be found in Fig. 3a; indeed, even if message m, is sent before ms, process ¢
does not have to receive m; first. Below, we give the formal definition of MSC.

Definition 2.1 (MSC). An MSC over P and M is a tuple M = (€,—, <, ),
where & is a finite (possibly empty) set of events, A : £ — X is a labelling function
that associates an action to each event, and —, <1 are binary relations on & that
satisfy the following three conditions. For p € P, let £, = {e € £ | A(e) € Ep}
be the set of events that are executed by p.



1. The process relation —C & x £ relates an event to its immediate successor
on the same process: —= J,cp —*p for some relations —, C &, x &, such
that —, is the direct successor relation of a total order on &,.

2. The message relation << C £ x £ relates pairs of matching send/receive
events:

(2a) for every pair (e, f) € <, there are two processes p, ¢ and a message
m such that A(e) = send(p, g, m) and A(f) = rec(p, g, m).

(2b) for all f € &, with A(f) = rec(p,q,m), there is exactly one e € &
such that e < f.

3. The happens-before relation! <j;, defined by (— U <1)*, is a partial order
on €.

If, for two events e and f, we have that e <p; f, we say that there is a causal
path between e and f. Note that the same message m may occur repeatedly
on a given MSC, hence the A labelling function. In most of our examples, we
avoid repeating twice a same message, hence events and actions are univocally
identified. Definition 2.1 of (fully asynchronous) MSC will serve as a basis on
which the other communication models will build on, adding some additional
constraints.

According to Condition (2), every receive event must have a matching send
event. However, note that, there may be unmatched send events. An unmatched
send event represents the scenario in which the recipient is not ready to receive
a specific message. This is the case of message m; in Fig. 3e. We will always
depict unmatched messages with dashed arrows pointing to the time line of the
destination process. We let SendEv(M) = {e € £ | A(e) is a send action},
RecEv(M) = {e € £ | A(e) is a receive action}, Matched(M) = {e € £ | there
is f € € such that e < f}, and Unm(M) = {e € £ | A(e) is a send action and
there is no f € £ such that e < f}.

Example 2.1. For a set of processes P = {p,q,r} and a set of messages M =
{my, m2,m3}, Fig. 1 shows an MSC M = (£, —, <, \) where, for instance, we
have!l < 71,71 — 72, and 12 <j; ?73. The set of actions is ¥ = {send(p, ¢, m1),

send(r,q, ma), send(q, p, ms), rec(p, q,m1), rec(r,q, mz), rec(q, p, m3)}, or, using
the lightweight notation, ¥ = {!1,12,13, 71,72, 73}.

Intuitively, a linearization represents the order in which events are executed
by the distributed system according to absolute time, i.e., as they are seen by
an external viewer that has a global view of all the processes. More formally, let
M = (€,—,<,A) be an MSC. A linearization of M is a (reflexive) total order
~ C & x & such that <p;, C ~-. In other words, a linearization of M represents
a possible way to schedule its events. For convenience, we will omit the relation
~~ when writing a linearization, e.g., !1 1312 72 73 71 is a possible linearization
of the MSC in Fig. 3c.

1This relation was introduced in [22], and is also referred to as the happened before relation,
or sometimes causal relation or causality relation, e.g. in [9, 7] .



< < %
4 ma
g mo
\ ms3 N\ 3
my
(a) asy. (b) asy, p2p. (c) asy, p2p, co, mb,
onen, nn.
p q r p q r
my
ma m
| m3 ma
(d) rse. (e) asy. (f) asy, p2p, co, mb.

Figure 3: Examples of MSCs for various communication models.

Let My = (81,—)1,<]1,/\1) and My = (82,—)2,<]2,/\2) be two MSCs. The
concatenation My - My of My and My is the MSC (&, —, <1, \) where & is the
disjoint union of & and &, < = <1 U<z, A(e) = Ai(e) for alle € &; (i = 1,2).
Moreover, — = —1 U —2 U R, where R contains, for all p € P such that (&1),
and (&), are non-empty, the pair (e1,ez), where e; is the p-maximal event of
M; and es is the p-minimal event of Ms. Note that M7 - Ms is indeed an MSC
and that concatenation is associative.

Peer-to-peer communication In the peer-to-peer (p2p) communication model,
any two messages sent from one process to another are always received in
the same order as they are sent. A straightforward implementation would be
connecting processes pairwise with FIFO channels. For this reason, alterna-
tive names for this communication model are FIFO 1—-1 [10] or simply FIFO
[1,9, 30]. MSCs that show valid computations for the p2p communication model
will be called p2p-MSCs. The MSC shown in Fig. 3a is not a p2p-MSC, as my
cannot be received after ms. Fig. 3b shows an example of p2p-MSC; the only
two messages sent by and to the same process are m3 and my, which are received

in the same order as they are sent.

Definition 2.2 (p2p-MSCs). A p2p-MSC is an MSC M = (€, —, <, \) where,
for any two send events s and s’ such that A(s) € Send(p,q,_), A\(s') €
Send(p,q, ), and s =T s, one of the following holds

e cither s, s’ € Matched(M) with s <r and s’ <7’ and r =T 7/,
e or s’ € Unm(M).

Note that, according to this definition, we cannot have two messages m; and
ms, both sent by p to ¢ in that order, such that m; is unmatched and ms is
matched; unmatched message m; excludes the reception of any later message.
For this reason, the MSC shown in Fig. 3e is not p2p. On the other hand, the



MSC in Fig. 3f is p2p because the two messages are not sent by and addressed
to the same process.

Causally ordered communication In the causally ordered (co) communi-
cation model, messages are delivered to a process according to the causality
of their emissions. In other words, if there are two messages m; and mq with
the same recipient, such that m4 is causally sent before mqy (i.e., there exists a
causal path from the first send to the second one), then m; must be received
before my. This type of partial order was introduced by Lamport in [22] with
the "happened before” order. Later on, some implementations were proposed
in [27, 29, 21]. Fig. 3b shows an example of non-causally ordered MSC; there is
a causal path between the sending of m; and ms, hence m; should be received
before mg, which is not the case here. On the other hand, the MSC in Fig. 3c is
causally ordered; note that the only two messages with the same recipient are
me and mg, but there is no causal path between their respective send events.
Below the formal definition of causally ordered MSC (co-MSC).

Definition 2.3 (co-MSC). An MSC M = (£,—,<, A) is causally ordered if,
for any two send events s and s, such that A(s) € Send(_,q,_), \(s') €
Send(_,q,_), and s <pp s

o cither s,s' € Matched(M) and r —* v/, where r and 7’ are two receive
events such that s <r and s’ <r'.

e or s’ € Unm(M).

Note that in a co-MSC we cannot have two send events s and s’ addressed
to the same process, such that s is unmatched, s’ is matched, and s <p; s'.

Mailbox communication In the mailbox (mb) communicating model, any
two messages sent to a process must be received in the same order as they
are sent (according to absolute time). These two messages might be sent by
different processes and the two send events might be concurrent (i.e., there is
no causal path between them). In other words, if a process receives m; before
mso, then m; must have been sent before msy. Essentially, mb coordinates all
the senders of a single receiver. For this reason the model is also called FIFO
n—1 [10]. A high-level implementation of the mailbox communication model
could consist in a single incoming FIFO channel for each process p, in which
all processes enqueue their messages to p. A low-level implementation can be
obtained thanks to a shared real-time clock [12] or a global agreement on the
order of events [13, 28]. The MSC shown in Fig. 3b is not a mb-MSC; m; and
mg have the same recipient, but they are not received in the same order as
they are sent. The MSC in Fig. 3c is a mb-MSC; indeed, we are able to find
a linearization that respects the mailbox constraints, such as !1 12 13 72 73 71
(note that mg is both sent and received before m3). Below the definition of
mb-MSC.



Definition 2.4 (mb-MSC). An MSC M = (£,—,<, ) is a mb-MSC' if it has
a linearization ~» where, for any two send events s and s, such that A(s) €
Send(_,q, _), A(s') € Send(_,q, _), and s ~ s

o cither s,s’ € Matched(M) and r ~» ¢/, where s <r and s’ < v/,
e or s’ € Unm(M).

Such a linearization will be referred to as a mb-linearization. Note that the
definition of mb-MSC is based on the existence of a linearization with some prop-
erties. The same kind of ”existential” definition will be used for the remaining
communication models. In practice, to claim that an MSC is mb, we just need
to find a single valid mb-linearization, regardless of all the others. As with co-
MSCs, a mb-MSC cannot have two ordered send events s and s’ addressed to the
same process, such that s is unmatched, s’ is matched. The message related to
s would indeed block the buffer and prevent all subsequent receptions included
the receive event matching s’. At this stage, the difference between co-MSCs
and mb-MSCs might be unclear. Section 5 will clarify how all the classes of
MSCs that we introduce are related to each other.

FIFO 1—n communication The FIFO 1—n (onen) communicating model is
the dual of mb, it coordinates a sender with all the receivers. Any two messages
sent by a process must be received in the same order (in absolute time) as
they are sent. These two messages might be received by different processes and
the two receive events might be concurrent. A high-level implementation of
the FIFO 1—n communication model could consist in a single outgoing FIFO
channel for each process, which is shared by all the other processes. A send event
would then push a message on the outgoing FIFO channel. The MSC shown
in Fig. 3b is not a onen-MSC; m; and ms are sent in this order by the same
process, but they are received in the opposite order (note that there is a causal
path between the reception of ms and the reception of m1, so 72 happens before
?1 in every linearization of this MSC). Fig. 3¢ shows an example of onen-MSC;
my is sent before mgy by the same process, and we are able to find a linearization
where my is received before mo, such as 111213 71 72 73.

Definition 2.5 (onen-MSC). An MSC M = (£,—,<,) is a onen-MSC if
it has a linearization ~» where, for any two send events s and s’, such that
A(s) € Send(p, _, _), A(s') € Send(p, _, _), and s =1 s’ (which implies s ~ s’)

e cither s,s" € Matched(M) and r ~» ', with r and r’ receive events such
that s <r and s’ <7/,

e or s’ € Unm(M).

Such a linearization will be referred to as a onen-linearization. Note that a
onen-MSC cannot have two send events s and s’, executed by the same process,
such that s is unmatched, s’ is matched, and s =1 s'; indeed, it would not
be possible to find a onen-linearization, according to Definition 2.5. The MSCs
shown in Fig. 3e and Fig. 3f are clearly not onen-MSCs.



FIFO n—n communication In the FIFO n—n (nn) communicating model,
messages are globally ordered and delivered according to their emission order.
Any two messages must be received in the same order as they are sent, in abso-
lute time. These two messages might be sent or received by any process and the
two send or receive events might be concurrent. The FIFO n—n coordinates all
the senders with all the receivers. A high-level implementation of the FIFO n—n
communication model could consist in a single FIFO channel shared by all pro-
cesses. It is considered also in [2] where it is called many-to-many (denoted *-*).
However, as underlined in [10], such an implementation would be inefficient and
unrealistic. The MSC shown in Fig. 3b is clearly not a nn-MSC; if we consider
messages m1 and msy we have that, in every linearization, !1 <p;!2 and 72 <p;71.
This violates the constraints imposed by the FIFO n—n communication model.
The MSC in Fig. 3c is a nn-MSC because we are able to find a linearization that
satisfies the FIFO n—n constraint, e.g. 11213 71 72 73.

Definition 2.6 (nn-MSC). An MSC M = (£,—, <, A) is a nn-MSC if it has a
linearization ~» where, for any two send events s and s’, such that s ~ s

e cither s,s’ € Matched(M) and r ~» 7/, with r and 7’ receive events such
that s <r and s <17/,

e or s € Unm(M).

Such a linearization will be referred to as a nn-linearization. Note that, in a
nn-linearization, unmatched messages can be sent only after all matched mes-
sages have been sent. As a consequence, a nn-MSC cannot have an unmatched
send event s and a matched send event s’, such that s <pp §'; indeed, s would
appear before s’ in every linearization, and we would not be able to find a nn-
linearization. The MSCs shown in Fig. 3e and Fig. 3f are both not FIFO n—n,
since we have unmatched messages that are sent before matched messages.

RSC communication The Realizable with Synchronous Communication (rsc)
communication model imposes the existence of a scheduling such that any send
event is immediately followed by its corresponding receive event. It was in-
troduced in [9], and it is the asynchronous model that comes closest to syn-
chronous communication. The MSC in Fig. 3d is the only example of rsc-MSC:
for instance linearization !1 71 12 72 13 73 respects the constraints of the rsc
communication model.

Definition 2.7 (rsc-MSC). An MSC M = (£, —, <, A) is an rsc-MSC if it has
no unmatched send events and there is a linearization ~» where any matched
send event is immediately followed by its respective receive event.

Such a linearization will be referred to as an rsc-linearization.

Classes of MSCs We denote by MSC,gy (resp. MSCpop, MSCeo, MSCyy,
MSConen;, MSCyy, MSC,s.) the sets of all MSCs (resp. p2p-MSCs, co-MSCs, mb-
MSCs, onen-MSCs, nn-MSCs, rsc-MSCs) over the given sets P and M. Note
that we do not differentiate between isomorphic MSCs.
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3 Asynchronous communication models as classes
of executions

In the previous section, we defined several communication models as classes of
MSCs. In this section, we provide alternative definitions of these communication
models, that are closer to how they have been defined in other works. We
establish the equivalence of the two alternative definitions for each concerned
model. We also recall the notion of execution and Chevrou et al. sequential
hierarchy of communication models seen as set of executions.

We consider networks of processes formed by a bunch of FIFO queues that
store the messages in transit. Formally, a quewing network is a tuple n = (9Q, buf)
such that 9 is a finite set of queue identifiers, and buf : P x P — £ assigns a
queue to each pair of processes. A queuing network (Q, buf) is p2p if Q =P x P
and buf is the identity. The queuing network (9, buf) is mb if Q = P and
buf(p, q) = g; it is called onen if Q = P and buf(p, ¢) = p. Finally, it is called nn
if 9 = {0} and buf(p,q) =0 for all p,q € P.

Configurations, executions, and operational semantics A configuration
of the queuing network (£, buf) is a tuple v = (w;)icq € (M*)2, where for each
queue identifier ¢, the queue content w; is a finite sequence of messages. The
initial configuration 7y is the one in which all queues are empty, i.e. w; = € for
alli € Q. A step is a tuple (v, a,v’), (later written v = /) where v = (w;)icq,
v = (w})ieq, a is an action, and the following holds:

e if a = send(p,q,m), then w; = w; - m and w; = w; for all j € Q\ {i},

where ¢ = buf(p, q).

e if a = rec(p, ¢, m), then w; = m-w; and w} = w; for all j € Q\ {i}, where

i = buf(p, q).
An execution of the queuing network (9, buf) is a finite sequence of actions
a1 asz an .
e = aiasz...ay such that vy —— ... — ~ for some configuration ~. The

execution is p2p (resp. mb, onen, nn) if its queuing network is.
Example 3.1. The execution
send(p, q, m1) - send(q,r,ms) - rec(q,r, ma) - rec(p, q, my)
is p2p, mb, and onen, but it is not nn (because mq is received before myq).
Example 3.2. The execution
send(p,q, m1) - send(r,q,mz) - rec(r, q, m2)

is p2p and onen, but it is neither mb nor nn (because mg ”overtakes” my). Note
that in the final configuration m; is still in the queue (mq is "unmatched”).

11



Figure 4: Hierarchy of communication models based on sets of executions (taken
from [10])

Consider a network n with two queue identifiers 4; and i3, and let n’ be
the network obtained by merging the two queues ¢; and i3 in a same queue.
Then n’ imposes more constraints than n on the sequence of actions it admits,
and any n’-execution also is an n-execution. From this observation, it follows
that the communication models we considered define the hierarchy of executions
depicted in Fig. 4. We refer to [10] for clarifying how the asynchronous, rsc,
and co communication models may also be defined as sets of executions and fit
in this hierarchy; we also refer to [10] for examples illustrating the strictness of
this hierarchy.

To conclude this brief discussion on queuing networks and executions, we
clarify in what sense the operational semantics we introduced in this section are
sound and complete with respect to the axiomatic definitions of the communi-
cation models we gave in Section 2. Remember that a linearization ~~ of a MSC
defines a total order on its events, and therefore an execution.

Fact 3.1. A MSC M is p2p (resp. mb, onen, nn) if and only if there exists
a linearization ~» of M that induces a p2p execution (resp. a mb, onen, nn
execution).

Note that, moreover, a MSC M is p2p if and only if all of its linearizations
induce p2p executions.

4 MSO definability

We have introduced seven different communication models and the correspond-
ing classes of MSCs. Here, we show that all of these classes are MSO-definable,
i.e. for every communication model com, there is a Monadic Second Order
Logic formula ¢com that captures exactly the class MSCqop of all com-MSCs.
The communication models whose definitions are stated as the existence of a
linearization enjoying some properties are the most difficult to express in MSO.
Indeed, their definition suggests a second-order quantification over a binary rela-
tion, but MSO is restricted to second-order quantification over unary predicates.

We therefore have to introduce alternative definitions (equivalent to those
given in Section 2) that are closer to the logic, in order to prove MSO-definability.

12



These alternative definitions will also be heavily used in the following sections
for proofs. We first recall the formal definition of MSO logic over MSCs.

Definition 4.1 (MSO logic). The set of MSO formulas over MSCs is given
by the grammar ¢ s=true |z - y |2 <y | AMz) =a |z =y |z € X |
Jr.p | AX .0 | oV @ | mp, where a € X, x and y are first-order variables (taken
from an infinite set of variables), interpreted as events of an MSC, and X is a
second-order variable, interpreted as a set of events.

We use common abbreviations such as A, =, V, etc. For instance, the formula

—3Jz.( \/ Az) = a N —matched(x)),
acSend(_,_,_)

with matched(x) = Jy.x <y, says that there are no unmatched send events.
MSCs (a), (b), (c¢) and (d) of Fig. 3 satisfy the formula. Given a sentence ¢,
i.e., a formula without free variables, we let L(y) denote the set of asynchronous
MSCs that satisfy ¢. The formula true therefore describes the whole set of
asynchronous MSCs, i.e. L(true) = MSC,gy. The (reflexive) transitive closure
of a binary relation defined by an MSO formula with free variables z and v,
such as  — g, is MSO-definable (see the formula in [14]). We will therefore
write formulas of the form z —1 y, z —=* y or & <p; ¥.

Peer-to-peer MSCs The MSO formula that defines MSCpy, (i-e. the set of
p2p-MSCs) directly follows from Definition 2.2:

orp = 3535 [ \/ V@ =a AN =b) A s—Fs A (Vi)
pEP,qEP a,beSend(p,q,_)

where 1 and v, are:

s<ar A
=TI | < A 1y = (—~matched(s) A matched(s"))
=t

matched(x) = Jy.x <y

The property @p2p says that there cannot be two matched send events s and
s’, with the same sender and receiver, such that s =% s’ and either (i) their
receptions happen in the reverse order, or (ii) s is unmatched and s’ is matched.

Causally ordered MSCs As with p2p-MSCs, the MSO-definability of MSC,
follows from Definition 2.3, given in Section 2:

oo = 3535 | \/ Vo Q) =anAXs)=b) A s<ps A (W1V)

q€P a,beSend(_,q,_)
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where 17 and 1y have been defined above for the p2p case. The property o
says that there cannot be two send events s and s’, with the same recipient, such
that s <pp s' and either (i) their corresponding receive events r and ' happen
in the opposite order, i.e. v —T r, or (ii) s is unmatched and s’ is matched.

Mailbox MSCs For the mailbox communication model, Definition 2.4 cannot
be easily translated into an MSO formula. Thus, we introduce an alternative
definition of mb-MSC that is closer to MSO logic; in particular, we define an
additional binary relation that represents a constraint under the mb semantics,
which ensures that messages received by a process are sent in the same order as

they are received. This definition is shown to be equivalent to Definition 2.4 in
[14].

Definition 4.2 (mb alternative). Let an MSC M = (€, —, <1, \) be fixed, and let
Cump C EXE be defined as s Ty, s’ if there is ¢ € P such that A(s) € Send(_,q, _),
A(s') € Send(_,q, _), and either:

e s € Matched(M) and s’ € Unm(M), or
e s<r; and s’ <7y for some r1,ry € &, such that r; =T rq.
We let <pp = (— U < U Cpp) ™. M is a mb-MSC if <, is a partial order.

The Cpp relation expresses that two send events that are not necessarily
related by a causal path should be scheduled in a precise order because their
matching receptions are in this precise order. If <, is a partial order, it means
that it is possible to find a linearization ~-, such that ~» C <. It is easy
to see that such a linearization is exactly what we called a mb-linearization in
Definition 2.4. The MSO-definability of MSCy, follows from Definition 4.2; in
particular, note that <y is reflexive and transitive by definition, thus we just
have to check acyclicity: ¢mp = ~3Jz. © <pp  where © <y, v is obtained as the
MSO-definable transitive closure of the union of the MSO-definable relations
—, <, and Cpp, where x Ty, y may be defined as:

matched(x) A\ ~matched(y)
tCawy=\ (@) =anrA@) —b)A(
g€eP
a,beSend(__,q,_)

FIFO 1—n MSCs As with the mailbox communication model, we give an
alternative definition of onen-MSC; the equivalence with Definition 2.5 is shown
in [14].

Definition 4.3 (onen alternative). For an MSC M = (£, —, <, \), let Ty, C
E x € be defined as e; C1, eg if there are two events e; and es, and p € P such
that either:

o \e1) € Send(p, _,_), Mez) € Send(p, _,_), e1 € Matched(M), and
ez € Unm(M), or

14
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e \e1) € Rec(p, _, _), Me2) € Rec(p, _,_), s1 < ey and sg < ey for some

51,82 € Ep, and s1 =T sq.
We let <1, = (— U 9 U Cyn)*. M is a onen-MSC if <y, is a partial order.

The C3, relation ensures that messages sent by a process are sent and re-
ceived in an order that is suitable for the onen communication. Since <y, is a
partial order, it is possible to find a linearization ~» such that ~» C <3,. It is
not difficult to see that such a linearization is exactly what we called a onen-
linearization in Definition 2.5. The existence of a MSO formula that defines
MSCopnen follows from Definition 4.3 and the MSO definability of Cy,:

(\/ per (AMz) =a A Ay) =b) A matched(z) N —matched(y)

TCmy= a,beSend(p,_,_)

V per (AMx)=a A Ny)=0b) A I/ Ty . (" <z Ay <y A2/ =T y)

a,be Rec(p,_,_)

FIFO n—n MSCs In order to show the MSO-definability of nn-MSCs we give
an alternative definition and prove that it is equivalent to Definition 2.6. Unlike
mailbox and FIFO 1—n communication models, the equivalence is not trivial.

Definition 4.4 (nn alternative). For an MSC M = (£, —, <, ), let <1p/mp =
(= U< U Cp U L) We define C,nC € x &, such that e; Ty e2 if one of
the following holds:

le =1n/mb €2

2. Me1) € Rec(_,_,_), Mez) € Rec(_, _,_), s1 ey and sz < ey for some
$1,82 €&, 81 <1n/mb 52 and elﬁln/mbeg.

3. Mey) € Send(_, _,_), Mez) € Send(_, _, _), e1 <71 and ey <rg for some
71,72 € €, 11 <1n/mb T2 and €141, /mp€2.

4. e1 € Matched(M), ez € Unm(M), e141, /mpe2-
M is a nn-MSC if C,, is acyclic.

As for the other communication models, the equivalence of Definitions 2.6
and 4.4 can be found in [14]. The implication Definition 4.4 = Definition 2.6
follows from the fact that the order of receive events imposes an order on sends
and the fact that a nn-linearization is also a mb and onen-linearization.

Proposition 4.1. Let M be an MSC. If C,, is cyclic, then M is not a nn-MSC.

Let the Fvent Dependency Graph (EDG) of a nn-MSC M be a graph that
has events as nodes and an edge between any two events e; and es if e; Cpp €3.
Algorithm 1, given the EDG of an nn-MSC M, computes a nn-linearization
of M. We show that, if C,, is acyclic, this algorithm always terminates cor-
rectly. This, along with Proposition 4.1, effectively shows that Definition 2.6
and Definition 4.4 are equivalent.

15
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Algorithm 1 Algorithm for finding a nn-linearization
Input: the EDG of an MSC M.
Output: a valid nn-linearization for M, if M is a nn-MSC.

1. If there is a matched send event s with in-degree 0 in the EDG, add s to
the linearization and remove it from the EDG, along with its outgoing
edges, then jump to step 5. Otherwise, proceed to step 2.

2. If there are no matched send events in the EDG and there is an
unmatched send event s with in-degree 0 in the EDG, add s to the
linearization and remove it from the EDG, along with its outgoing edges,
then jump to step 5. Otherwise, proceed to step 3.

3. If there is a receive event r with in-degree 0 in the EDG, such that r is
the receive event of the first message whose sent event was already added
to the linearization, add r to the linearization and remove it from the
EDG, along with its outgoing edges, then jump to step 5. Otherwise,
proceed to step 4.

4. Throw an error and terminate.

5. If all the events of M were added to the linearization, return the
linearization and terminate. Otherwise, go back to step 1.

Example 4.1. Fig. 5 shows an example of nn-MSC and its EDG. We use it
to show how the algorithm that builds a nn-linearization works. Note that, for
convenience, not all the edges of the EDG have been drawn, but those missing
would only connect events for which there is already a path is our drawing;
these edges do not have any impact on the execution of the algorithm. We start
by applying step 1 on the event !5, which has in-degree 0. The algorithm starts
to build a linearization using !5 as the first event, and all the outgoing edges
of 15 are removed from the EDG, along with the event itself. Now, !1 has in-
degree 0 and we can apply again step 1. The partial linearization becomes !5 !1.
Similarly, we can then apply step 1 on !2 and !3 to get the partial linearization
151112 13. At this point, step 1 and 2 cannot be applied, but we can use step 3
on 75, which gets added to linearization. We then apply step 3 also to 71 and
72, followed by step 1 on !4, step 2 on !6 (which is an unmatched send event),
and step 3 on 73 and 74. Finally, all the events of the MSC have been added
to our linearization, which is !5 11 1213 75 71 72 14 16 73 74. Note that this is a
nn-linearization.

We now need to show that (i) if Algorithm 1 terminates correctly (i.e. step
4 is never executed), it returns a nn-linearization, and (ii) if C,, is acyclic, the
algorithm always terminates correctly.

Proposition 4.2. Given an MSC M, if Algorithm 1 returns a linearization
then it is a nn-linearization.
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Figure 5: An MSC and its EDG. In the EDG, only meaningful edges are shown.

Proof. Step 2 ensures that the order (in the linearization) in which matched
messages are sent is the same as the order in which they are received. Moreover,
according to step 3, an unmatched send event is added to the linearization only
if all the matched send events were already added. O

Proposition 4.3. Given an MSC M, Algorithm 1 terminates correctly if Cp,
is acyclic.

The proof proceeds by induction on the number of events added to the
linearization and relies on the fact that since C,, is acyclic then the EDG of the
MSC is a DAG (see [14]).

Finally, we showed the missing implication Definition 2.6 = Definition 4.4
and completed the proof of the equivalence of these two definitions. Based
on Definition 4.4, we can now write the MSO formula for nn-MSCs as ¢p, =
—Jz.x T, z, where we can define z Cp, y as:

(\/a7besend(7)7)7)(/\(:1:) =a A Ay)=0b) AN matched(x) A ﬂmatched(y)) \Y

TCnny =
(T <1tmby) V WPz V. Yy

and 13, ¥4 can be specified as:

\/a,bERec(i,i,i)()\(x) =a N A(y) = b) A
'y (2 <z Ay <Qy) A (@ <anymb ¥) A (T <1n/mb Y)

\/a,bESend(i,i,i)()\(x) =a A A(y) = b) A
'y (<" A y<y) A (@ <unymb ¥) A (T <1n/mb Y)

Y3 =

Yy =
Formulas 13 and 14 encode conditions (2) and (3) in Definition 4.4, respec-

tively. Note that <in/mp is MSO-definable, since it is defined as the reflexive
transitive closure of the MSO-definable relations —, <1, Cpp, and Ciy.
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Realizable with Synchronous Communication MSCs Following the char-
acterization given in [9, Theorem 4.4], we provide an alternative definition of
rsc-MSC that is closer to MSO logic. We first introduce the concept of crown.

Definition 4.5 (Crown). Let M be an MSC. A crown of size k in M is a
sequence ((s;,7;), 1 € {1,...,k}) of pairs of corresponding send and receive
events such that

S1 <nb 72,52 <pbT3,.--,8k—1 <hb Tk, Sk <hb T1-

Definition 4.6 (rsc alternative). An MSC M = (£, —, <1, ) is a rsc-MSC if
and only if it does not contain any crown.

The following MSO formula derives directly from previous definition:
Droc = 13571.389.57 X 859 A 89 F sy
where o is defined as
§1 O §g = \/ (A(s1) =€) A 81 # s2 A Tra(s1 <pp T2 A s24712)

ecSend(_,_,_)

5 Hierarchy of classes of MSCs

In this section we show that the classes of MSCs for all the

seven communication models form the hierarchy shown in asy
Fig. 6. Here we just give intuitive explanations for the easy p2p
cases and formal proofs for the others. Proofs for all cases co

mb

can be found in [14].

Notice that Fig. 4 only talks about single executions; -
it tells us that there might be an execution that is both rsc
mb and FIFO 1—n, but also an execution that is mb but
not FIFO 1—n, and vice versa. Consider for instance Figure 6: MSC
Fig. 3c, the linearization/execution 111213717273 is both mb classes.
and FIFO 1—n, !1!2!3727173 is mb but not FIFO 1—n, 11 13
12 71 72 73 is FIFO 1—n but not mb. On the other hand, Fig. 6 tells us that,
given a onen-MSC, it is always also a mb-MSC; hence, if we are able to find a
FIFO 1—n linearization for an MSC, then we can be sure that a mb linearization
exists for that MSC. This means that the computation described by a FIFO 1—n
MSC is always realizable using the mb communication model.

First of all, by definition every p2p-MSC is an asy-MSC. Fig. 3a shows an
example of MSC that is asynchronous but not p2p, hence we have MSC,op, C
MSC,sy. In the causally ordered communication model, any two messages ad-
dressed to the same process are received in an order that matches the causal
order in which they are sent. In particular, it is easy to see that each co-MSC
is also a p2p-MSC, since for any two messages sent by a process p to another
process ¢, the two send events are causally ordered. The MSC shown in Fig. 3b
is p2p, but not co, hence we can conclude that MSC., C MSC,op. We now show
that each mb-MSC is a co-MSC.

onen
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Figure 7: Examples of MSCs for various communication models.

Proposition 5.1. Every mb-MSC is a co-MSC.

Proof. Let M be a mb-MSC and ~~ a mb-linearization of it. Recall that a lin-
earization has to respect the happens-before partial order over M, i.e. <pp C ~~.
Consider any two send events s and s', such that A(s) € Send(_,q, _), A(s') €
Send(_,q, _) and s <pp s’. Since <pp C ~~, we have that s ~ s’ and, by the def-
inition of mb-linearization, either (i) s’ € Unm(M), or (ii) s, s’ € Matched(M),
s<ar, s <r’ and r ~ r’. The former clearly respects the definition of co-MSC,
so let us focus on the latter. Note that r and 7’ are two receive events executed
by the same process, hence r ~» 7’ implies r —* /. It follows that M is a
co-MSC. O

Fig. 7a shows an example of co-MSC that is not mb. It is causally ordered
because we cannot find two messages, addressed to the same process, such that
the corresponding send events are causally related; on the contrary, the MSC is
not mb because we have !4 Cp!1 and 12 Cpp!3, which lead to a cyclic dependency,
eg. 1 =12 Cw!3 =4 Cp!l. This example and Proposition 5.1 prove that
MSCyp C MSCq,.

In the FIFO n—n communication model, any two messages must be received
in the same order as they are sent. It is then easy to observe that each nn-MSC
is a onen-MSC, because each nn-linearization is also a onen-linearization. More-
over, Fig. 7b shows an example of MSC that is FIFO 1—n but not FIFO n—n,
hence we have that MSCy, C MSCypen; in particular, note that for messages m;
and my4 we have !1 <pp!4 and 74 —71, so there cannot be a nn-linearization,
but it is possible to find a onen-linearization, such as !1 12 72 13 73 14 74 71.
In the rsc model, every send event is immediately followed by its correspond-
ing receive event. rsc is then a special case of FIFO n—n communication, and
every rsc-MSC is a nn-MSC because a rsc-linearization is always also a nn-
linearization. Besides, Fig. 7c shows an example of MSC that is FIFO n—n but
not rsc, therefore MSC,sc C MSCy,.

5.1 Relation between onen-MSCs and mb-MSCs

Finally, the relation between onen-MSCs and mb-MSCs is not as straightforward
as those seen so far. We start by only considering MSCs without unmatched
messages.

Proposition 5.2. Every onen-MSC without unmatched messages is a mb-MSC.
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Proof. We show that the contrapositive is true, i.e. if an MSC is not mailbox
(and it does not have unmatched messages), it is also not FIFO 1—n. Suppose
M is an asynchronous MSC, but not mailbox. There must be a cycle £ such
that e <u, e, for some event e. We can always explicitly write a cycle e < €
only using Cpp, and <pyp. For instance, there might be a cycle e <, e because we
have that e Cup f <np g Cup h Cup @ <pp €. Consider any two adjacent events
s1 and sg in the cycle &, where ¢ has been written using only Cpp and <pp, and
we never have two consecutive <p;. This is always possible, since a <pp b <pp ¢
is written as a <pp c. We have two cases:

1. s1 Cup S2. We know, by definition of Ty, that s; and so must be two
send events and that r; —T 7, where r; and ry are the receive events
that match with s; and sa, respectively (we are not considering unmatched
messages by hypothesis).

2. 51 <pp S2. Since M is asynchronous by hypothesis, £ has to contain at
least one Cpp. If that was not the case, <p; would also be cyclic and M
would not be an asynchronous MSC. Recall that we also wrote £ in such
a way that we do not have two consecutive <p;. It is not difficult to see
that s; and sz have to be send events, since they belong to £. We have
two cases:

(a) 71 is in the causal path, i.e. s1 <97y <pp $2. In particular, note that
71 <hb 2.

(b) ry is not in the causal path, hence there must be a message my, sent
by the same process that sent s1, such that s; —T s, <11 <pp s2<I79,
where s, and r; are the send and receive events associated with my,
respectively. Since messages mi and my are sent by the same process
and s; —7 s, we should have r; Ty, 7%, according to the FIFO 1—n
semantics. In particular, note that we have rq Cig 7 <pp T2.

In both case (a) and (b), we conclude that r; <, 7o.

Notice that, for either cases, a relation between two send events s; and sq (i.e.
$1 Cmp S2 O 51 <pp S2) always implies a relation between the respective receive
events 1 and 1o, according to the FIFO 1—n semantics. It follows that £, which
is a cycle for the =, relation, always implies a cycle for the <y, relation (and
if <4, is cyclic, M is not a onen-MSC), as shown by the following example. Let
M be a non-mailbox MSC, and suppose we have a cycle s1 Cup S2 Tub S3 <hp
S4 Cup 85 <pp S1. 81 Cmp s2 falls into case (1), so it implies 71 —T 75. The
same goes for s; Cp, 73, which implies 7o —T r3. s3 <pp s4 falls into case
(2), and implies that r3 <i, r4. S4 Cm S5 falls into case (1) and it implies
ry =T r5. 85 <pp 51 falls into case (2) and implies that 75 =<y, 1. Putting all
these implications together, we have that r1 —7 ro =7 r3 <45 74 =1 75 <40 71,
which is a cycle for <4,. Note that, given any cycle for <, we are always able
to apply this technique to obtain a cycle for <. O
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The opposite direction is also true and the proof [14] uses the same technique
to prove that a cycle for <, always implies a cycle for <pp.

Proposition 5.3. Every mb-MSC without unmatched messages is a onen-MSC.

Interestingly enough, Proposition 5.2 and 5.3 show that the classes of mb-
MSCs and onen-MSCs coincide if we do not allow unmatched messages. This
changes when we add unmatched messages into the mix. However, Proposi-
tion 5.2 still holds.

Proposition 5.4. Every onen-MSC is a mb-MSC.

Proof. Let M be an asynchronous MSC. The proof proceeds as for Proposi-
tion 5.2, but unmatched messages introduce some additional cases. Consider
any two adjacent events s; and sg in a cycle £ for <y, where € has been written
using only Cnp and <pp, and we never have two consecutive <pp. These are
some additional cases:

3. uy Cmp S2, where ug is the send event of an unmatched message. This case
never happens because of how Cy is defined.

4. uy <pp uo, where u; and us are both send events of unmatched messages.
Since both u; and wuy are part of the cycle £, there must be an event s3
such that uy <pp ug Cup s3. However, us Ty s3 falls into case (3), which
can never happen.

5. uy <pp S2, where u; is the send event of an unmatched message and ss is
the send event of a matched message. Since we have a causal path between
u1 and s, there has to be a message my, sent by the same process that
sent mq, such that u; =1 s, <rp <pp S2 <192, where s;, and 7y, are the
send and receive events associated with my, respectively. Since messages
mq and my, are sent by the same process and m; is unmatched, we should
have s, Cin 41, according to the FIFO 1—n semantics, but u; — si. It
follows that if £ contains u; <pp S2, we can immediately conclude that M
is not a onen-MSC.

6. s1 Cmb u2, where s7 is the send event of a matched message and wus is the
send event of an unmatched message. Since both s; and us are part of a
cycle, there must be an event s3 such that s; Cpp, uo <pp S3; we cannot
have us Cm, S3, because of case (3). ug <pp ss falls into case (5), so we
can conclude that M is not a onen-MSC.

We showed that cases (3) and (4) can never happen, whereas (5) and (6) imply
that M is not FIFO 1—n. If we combine them with the cases described in
Proposition 5.2 we have the full proof. O

The MSC in Fig. 3f shows a simple example of an MSC with unmatched
messages that is mb but not onen. This, along with Proposition 5.4, effectively
shows that MSCopen C MSCpy.

2Note that we can have my, = ma

21



6 Application: synchronizability and bounded
model-checking

In this section, we show how the MSO characterization induces several decid-
ability results for synchronizability and bounded model-checking problems on
systems of communicating finite state machines. A communicating finite state
machine is a finite state automaton labeled with send and receive actions; a
system S is a finite collection of such machines. An MSC M is an asynchronous
behavior of S if every process time line of M is accepted by its corresponding
process automaton (see [14] for a formal definition of these notions). We write
L.sy(S) to denote the set of asynchronous behaviors of S, and we write Leom (S)
to denote the restriction of Lagy to com MSCs, i.e. Leom(S) = Lagy(S)NMMSCeom.

In general, even simple verification problems, e.g., control-state reachability,
are undecidable for communicating systems [8], under all communication models
(except rsc, which we won’t consider anymore from now on). They may become
decidable if we consider only a certain class of behaviors. This motivates the
following definition of generic bounded model-checking problem. Let C be a class
of MSCs, the C-bounded model-checking problem for a communication model
com € {asy, p2p, co,mb, onen,nn} is: given a system S and a MSO specification
¢, decide whether Leom (S)NC C L(p). We consider classes C of MSCs that share
the same intuition that they only contain ”almost synchronous” MSCs. So the
bounded model-checking problem corresponds to an under-approximation of the
standard model-checking problem where the system is assumed to be ”almost
synchronous”. The question of the completeness of this under-approximation,
i.e. whether Leom(S) C C, will be referred to as the ”synchronizability problem”.

Bollig et al. [4] introduced a general framework that allows us to derive decid-
ability results for the bounded model-checking and synchronizability problems
for various classes of MSCs C. The communication model is however a fixed
parameter in their framework. Here, we have managed to make this framework
parametric in the communication model. To this aim, we require that the com-
munication model, combined with the bounding class C, enforces a bounded
treewidth of the MSCs, which is not always the case. Moreover a key lemma
in the framework of Bollig et al. relied on the existence of ”borderline viola-
tions”, which was granted by a form of prefix closure of the MSCs of a given
class. However, this prefix closure property does not hold for all communication
models, and these models must be treated with specific techniques.

Special treewidth and bounded model-checking Recall that special treewidth
(STW) is a graph measure that indicates how close a graph is to a tree. An
MSC is a graph where the nodes are the events and the edges are represented

by the — and the < relations. Similarly to what has been done by Bollig et al.

in [4], but adapted to our generic framework, we adopt a game-based definition

for special treewidth: Adam and Eve play a turn based ” decomposition game”

on an MSC M = (£,—,<,)). M Eve starts to play and does a move, which
consists in the following steps:
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1. marking some events of M, resulting in the marked MSC fragment (M, U’),
where U’ C £ is the subset of marked events,

2. removing edges whose both endpoints are marked, in such a way that
the resulting MSC is disconnected (i.e. there are at least two different
connected components),

3. splitting (M,U) in (M;,U;) and (Ms,Uz) such that M is the disjoint
(unconnected) union of M; and M3 and marked nodes are inherited.

Once Eve does her move, it is Adam’s turn. Adam simply chooses one of the
two marked MSC fragments, either (M;,U;) or (Ma, Us). Now it is again Eve’s
turn, and she has to do a move on the marked MSC fragment that was chosen by
Adam. The game continues in alternating turns between the two players until
they reach a point where all the events on the current marked MSC fragment
are marked. For k£ € N, we say that the game is k-winning for Eve if she has
a strategy that allows her, independently of Adam’s moves, to end the game in
a way that every marked MSC fragment visited during the game has at most
k + 1 marked events. The goal of Eve is to keep k as low as possible.

The special treewidth of an MSC is the least k such that the associated
game is k-winning for Eve (see for instance Ey]) The set of MSCs whose special
treewidth is at most k is denoted by MSC™*™. Tt is easy to check that trees
have a special treewidth of 1.

Courcelle’s theorem implies that the following problem is decidable: given a
MSO formula ¢ and k > 1, decide whether ¢ holds for all MSCs M € MSCF=™.
Therefore, a direct consequence of Courcelle’s theorem and of our MSO char-
acterization of the communication models is that bounded-model-checking is
decidable?.

Theorem 6.1. Let com € {asy, co, p2p,mb, onen,nn, rsc} and k > 1 be fixed.
Then the following problem is decidable: given a system S and a MSO specifi-
cation ¢, decide whether Leom(S) N MSCH™ C L(y).

The synchronizability problem Theorem 6.1 remains true if instead of
MSCH ™ we bound the model-checking problem with a class C of MSCs that
is both treewidth bounded and MSO definable. The synchronizability problem
(SP, for short) consists in deciding whether this bounded model-checking is
complete, i.e. whether all the behaviors generated by a given communicating
system are included in this class C, i.e. whether Lcom(S) C C.

Definition 6.1. Let a communication model com and a class C of MSCs be
fixed. The (com,C)-synchronizability problem is defined as follows: given a
system S, decide whether Lo (S) C C.

In [4] the authors show that, for com = p2p and com = mb, the (com,C)-
synchronizability problem is decidable for several classes C. We generalize their

3cfr. proof in [14]
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(a) A nn-MSC M. (b) A prefix of M.

Figure 8: A nn-MSC with a prefix that is neither a onen-MSC nor a nn-MSC.

Weakly Weakly Jk vk

sync k-sync | bounded | bounded
asy | unbounded STW v v v
p2p XTi] O | v | 70
co X v v v
mb v (1] v (1] v 1] v 1]
onen v v v v
nn v v v v

Figure 9: Table summarising the (un)decidability results for the synchronizabil-
ity problems (each combination of a communication model com and a class C
of MSCs is a different synchronizability problem). The symbol X stands for un-
decidability and unbounded special treewidth of MSC¢om, NC, whereas v stands
for decidability and bounded STW of MSCcom NC. [1] indicates that the result
was shown by Bollig et al. [4]. Unbounded STW stands for unbounded STW of
MSCeom NC (but not necessarily undecidability).

result to other communication models under a general assumption on the bound-
ing class C.

Theorem 6.2. For any com € {asy,p2p, co,mb, onen,nn} and for all class of
MSCsC, if C is STW-bounded and MSO-definable, then the (com, C)-synchronizability
problem is decidable.

The proof of Theorem 6.2 resembles the proof of [5, Theorem 11], and the
main technical argument of the existence of a "borderline violation” remains
(see [5, Lemma 9]). However, the existence of a borderline violation is more
subtle to establish, because the MSCypen and MSC,, are not prefixed-closed (see
Fig. 8). A way to solve this technical problem is to consider a more strict notion
of prefix. All details of the proof of Theorem 6.2 can be found in [14].

In the remainder, we investigate which combinations of com and C fit the
hypotheses of this theorem. We review the classes of weakly synchronous and
weakly k-synchronous inspired by [7], and the classes of existentially k-bounded
and universally k-bounded MSCs [17]. Fig. 9 summarizes the decidability results
of the (com, C)-synchronizability problem for each combination of com and C we
will consider in the next sections.
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Weakly synchronous MSCs We start by recalling the definition of the class
of weakly synchronous MSCs as introduced in [4]. We say an MSC is weakly
synchronous if it can be chunked into ezchanges, where an exchange is an MSC
that allows one to schedule all send events before all receive events.

Definition 6.2 (Exchange). Let M = (£, —, <9, A) be an MSC. We say that M
is an exchange if SendFEv(M) is a <p,-downward-closed set.

In other words, an exchange is an MSC M where no send event depends on
a receive event. If that is the case, we can find a linearization for M where all
the send events are executed before the receive events. Remember that M7 - My
denote the vertical concatenation of MSCs (see Section 2).

Definition 6.3 (Weakly synchronous). We say that M € MSC is weakly syn-
chronous if it is of the form M = My - My --- M, such that every M, is an
exchange.

In [4] it is shown that, for the class of weakly synchronous MSCs, the synchro-
nizability problem is undecidable for com = p2p, but decidable for com = mb.
Here we investigate the decidability of weak synchronizability for the other com-
munication models. We first show that weak synchronizability is undecidable
for causally ordered communication. The proof is an adaptation of the one given
in [5, Theorem 20] for the p2p case (cfr. [14]).

Proposition 6.1. The following problem is undecidable: given a communicat-
ing system S, is every MSC in L (S) weakly synchronous?

For onen and FIFO n—n, on the other hand, weak synchronizability is de-
cidable.

Proposition 6.2. Let com € {onen, nn}. The following problem is decidable:
given a communicating system S, is every MSC in L.om (S) weakly synchronous?

Proof. We will consider com = onen; the proof for com = nn is similar. We
would like to know if every MSC in Lopen(S) is in the class of weakly syn-
chronous MSCs. Since every MSC in Lopen(S) is a onen-MSC, we can equiv-
alently restrict the problem to the class of weakly synchronous MSCs that are
also onen-MSCs. Let C be the class of onen weakly synchronous MSCs; we show
that C is MSO-definable and STW-bounded, which implies the decidability of
SP for Theorem 6.2. The class of weakly synchronous MSCs was shown to
be MSO-definable in [4]; to be precise, their characterization is for p2p weakly
synchronous MSCs (since their definition of MSC is equivalent to our definition
of p2p-MSC), but it also works for (asynchronous) weakly synchronous MSCs.
We showed in Section 4 that MSCyuen is MSO-definable; it follows that the
class of onen weakly synchronous MSCs is also MSO-definable (we just take
the conjuction of the the two formulas). The class of mb weakly synchronous
MSCs was shown to be STW-bounded in [4], and since MSCopen C MSCyp,, we
also have that the class of mb weakly synchronous MSCs has a bounded special
treewidth. O
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Weakly k-synchronous MSCs We consider now weakly
k-synchronous MSCs ([4]), which are the weakly synchronous
MSCs such that the number of messages sent per exchange is
at most k.

Definition 6.4 (k-exchange). Let M = (£,—,<,\) be an
MSC and k € N. M is a k-exchange if M is an exchange and
|SendEv(M)| < k.

Definition 6.5 (Weakly k-synchronous). Let k € N. M €
MSC is weakly k-synchronous if it is of the form M = M; -
My - - - My, such that every M; is a k-exchange.

Example 6.1. MSC M, in Fig. 10 is weakly 1-synchronous,
as it can be decomposed into three 1-exchanges (the decomposition is depicted
by the horizontal dashed lines).

As for weakly synchronous MSCs, the class of weakly k-synchronous MSCs
was already shown to be MSO-definable and STW-bounded in [4], and these
results still hold even for our definition of MSC. A direct application of The-
orem 6.2 shows that, for weakly k-synchronous MSCs, SP is decidable for all
communication models.

Proposition 6.3. Let com € {asy, p2p, co, mb, onen, nn}. The following
problem is decidable: given a communicating system S, is every MSC in L¢om (S)
weakly k-synchronous?

Proof. The class C of weakly k-synchronous MSCs is MSO-definable and STW-
bounded, therefore the result follows from Theorem 6.2. O

Existentially bounded MSCs We move now to existentially k-bounded
MSCs, first introduced by Lohrey and Muschol [25], that form a relevant class
of MSC for extending the Biichi-Elgot-Trakhthenbrot theorem from words to
MSCs [17, 16]. Existentially bounded MSCs represent the behavior of systems
that can be realized with bounded channels. We stick to the original defini-
tion of Lohrey and Muscholl of k-bounded MSCs, where k represents the bound
on the number of messages in transit from a given process to another, so that
globally there may be up to k|P|? in transit.* Intuitively, we say that an MSC
is existentially k-bounded if it admits a linearization where, at any moment
in time, and for all pair of processes p, g, there are no more than k messages
in transit from p to ¢. Such a linearization will be referred to as a k-bounded
linearization. We give formal definitions below.

4This may look surprising in our general context to count messages in transit in that way,
but it can be seen that, up to picking a different value for the bound k, it is equivalent to
the possibly more intuitive definition based on counting all messages in transit whatever their
sender and receiver.
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Definition 6.6. Let M = (£, —,<,A) € MSC and k € N. A linearization ~» of
M is called k-bounded if, for all e € SendEv(M), with A(e) = send(p, g, m), we
have

#Send(p,q,i)(wa 6) - #Rec(p,q,i)(wv 6) S k

where #4(R,e) = |{f € £ | (f,e) € R and A(f) € A}|. For instance,
#Send(p,q, )(~,€) denotes the number of send events from p to ¢ that occured
before e according to ~». Note that, since ~» in reflexive, e itself is counted in

#Send(p,q,_) (Wu e)'

Definition 6.7 (Existentially bounded MSC). Let M = (£, —, <, A) € MSCyqy
and k € N. M is ezistentially k-bounded (Jk-bounded) if it has a k-bounded

linearization.

We now look at the definitions of p2p Fk-bounded MSCs
and causally ordered Jk-bounded, which are quite straightfor-
ward.

Example 6.2. MSC M3 in Fig. 11 is existentially 1-bounded,
as witnessed by the linearization 2 1113 73 7111 72 13 73...
Note that M3 is not weakly synchronous as we cannot divide
it into exchanges.

Definition 6.8. An MSC M is p2p existentially k-bounded
(p2p-Tk-bounded) if it is a p2p-MSC and it is also existentially
k-bounded.

Figure 11:
MSC M3

Definition 6.9. An MSC M is causally ordered existentially k-bounded (co-3k-
bounded) if it is a causally ordered MSC and it is also existentially k-bounded.

When moving on to the other communication models, the definitions are not
as straightforward. For instance, the definition of mb Jk-bounded MSC should
require that there exists a k-bounded linearization that is also a mb-linearization,
not just any linearization. Recall that an MSC is a mb-MSC if it has at least one
mb-linearization, which represents a sequence of events that can be executed by
a mb system. Following this intuition, we want one of these mb-linearizations to
be k-bounded, not just any linearization.

Definition 6.10. An MSC M is mb existentially k-bounded (mb-3k-bounded) if
it has a k-bounded mb-linearization.

Definition 6.11. An MSC M is onen existentially k-bounded (onen-3k-bounded)
if it has a k-bounded onen-linearization.

Definition 6.12. An MSC M is nn ezistentially k-bounded (nn-3k-bounded) if
it has a k-bounded nn-linearization.

We show that each of the Jk-bounded classes of MSCs presented so far is
MSO-definable and STW-bounded. We then derive the decidability of SP in a

similar way to what we did in the proof of Proposition 6.2 for weakly synchronous
MSCs.
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MSO-definability We start by investigating the MSO-definability of all the
variants of Jk-bounded MSCs, we begin with the most general class of k-
bounded MSCs. Following the approach taken in [25], we introduce a binary
relation — (~ in their work) associated with a given bound & and an MSC
M. Let k> 1 and M be a fixed MSC. We have r —, s if, for some ¢ > 1 and
some channel (p,q)°:

1. r is the i-th receive event (executed by q).
2. s is the (¢ + k)-th send event (executed by p).

For any two events s and 7 such that r —, s, every linearization of M in which
r is executed after s cannot be k-bounded. Intuitively, we can read r — s as
”r has to be executed before s in a k-bounded linearization”. A linearization
~ that respects — (i.e. — C ~>) is k-bounded.

Example 6.3. Consider MSC M, in Fig 12. Suppose we want to look for a 2-
bounded linearization. For k = 2, we have 71 ——5!3; if we find a valid lineariza-
tion that respect the —9 relation, then it is 2-bounded, e.g., 1112 71 13 72 73
(note that 71 is executed before !3). On the other hand, the linearization
111213 71 72 73 is not 2-bounded, since 71 is executed after !3.

In [25] it was shown that an MSC is Jk-bounded if and

only if the relation <p, U —— is acyclic. Since <p; and p q
acyclicity are both MSO-definable, it suffices to find an MSO mi N
formula that defines —, to claim the MSO-definability of 3k- ma

bounded MSCs. Unfortunately, — is not MSO-definable >
because MSO logic cannot be used to ”count” for an arbitrary >
1. For this reason, we introduce a similar MSO-definable bi-

nary relation <, and we show that an MSC M is 3k-bounded Figure 12:
MSC iff <pp U <> is acyclic and another condition holds. Let MSC M,.

k > 1 and M be a fixed MSC; we have r < s if, for some ¢ > 1 and some
channel (p,q):

e There are k + 1 send events (s1, ..., Sk, $), where at least one is matched,
such that s =1 ... =21 s, =T s.

e 7 is the first receive event for the matched send events among s1, . .., Sk, S.

Proposition 6.4. An MSC M is dk-bounded if and only if <p; U <>, is acyclic
and, for each channel (p,q), there are at most k& unmatched send events.

Proof. (=) Suppose M is Jk-bounded, i.e. it has at least one k-bounded lin-
earization ~». Firstly, notice that every MSC that has more than k& unmatched
send events in any channel cannot be an Jk-bounded MSC. We know that
<pp € ~», and we will show that also < C ~~. This implies that <p, U < is
acyclic, otherwise we would not be able to find a linearization ~~ that respects

5Recall that (p, q) is a channel where messages are sent by p and received by g.
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both <pp and <. Suppose, by contradiction, that < ;{ ~=, i.e. there are two
events r and s such that r < s and s ~» r. By definition of <, there are k
send events in a channel (p,q) that are executed before s, and whose respective
receive events happens after r. If s is executed before r in the linearization,
there will be k + 1 messages in channel (i.e. ~ is not k-bounded). We reached
a contradiction, hence < C ~~ and <p, U < is acyclic.

(<) Suppose <pp U <, is acyclic and, for each channel (p,q), there are at
most k unmatched send events. If <p, U < is acyclic, we are able to find
one linearization ~~ for the partial order (<p, U <—)*. We show that this
linearization is k-bounded. By contradiction, suppose ~~ is not k-bounded, i.e.
we are able to find &+ 1 send events s; =1 ... =T s, =T s on a channel (p,q),
such that s is executed before any of the respective receive events takes place.
Two cases:

e Suppose all the £ + 1 send events are unmatched. This is impossible,
since we supposed that there are at most k£ unmatched send events for
any channel.

e Suppose there is at least one matched send event between the k+ 1 sends.
Let the first matched send event be s; and let r be the receive event
that is executed first among the receive events for these k + 1 sends. By
hypothesis, s ~ r. However, according to the definition of <, we must
have r < s. We reached a contradiction, since we cannot have that s
happens before 7 in a linearization for the partial order (<pp U <)%, if
T —k S.

O

According to Proposition 6.4, we can write the MSO formula the defines 3k-
bounded MSCs as

Uay, = acyclic(Spp U k) A (351 cooskg1.s1 = =T spr A allSends_pg(k 4 1) A allUnm)
allSends pq(t) = \/ A V) =a)
peP,qEP s€51,...,5¢ acSend(p,q,_)

allUnm = /\ (—matched(s))

where acyclic(<pp U <) is an MSO formula that checks the acyclicity of
<pp U <=k, and the < relation can be defined as

rsp s —=3si. . .5 s1 =T ... =T sgr1 A allSends p_g(k+1) A
kS =381...8k+1- I(Ves, Sk+18<7‘) A Nees, ... Sk+1(3f,e<1f = r " f)

.....

It follows that, given k € N, the set of existentially k-bounded MSCs is MSO-
definable. Causally ordered and p2p existentially k-bounded MSCs are clearly
MSO-definable by definition, since we already showed that p2p-MSCs, causally
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ordered MSCs, and existentially k-bounded MSCs are all MSO-definable. Recall
that we introduced the < relation because the ——; relation introduced in
[25] was not MSO-definable for asynchronous communication. However, when
considering p2p communication but also all of the other communication models,
because of the hierarchy shown in Section 5, —; becomes MSO-definable; the
FIFO behavior ensures that, for any channel (p, ¢), the i-th matched send event
of p matches with the i-th receive event of q. This allows us to define r — s
as:

r—p s=13s1....3s;. (allSendsp_q(k) N s1 = 83— ... = s —8 A s1<4r)

Recall that an MSC M is mb-dk-bounded if it has a linearization that is both
mb and Jk-bounded. A linearization ~» is mb if M is mb and ~» is a linear
extension of the partial order <y, i.e. =mp C ~». A linearization ~- is Jk-
bounded if —j, C ~». It follows that a linearization — is mb-Jk-bounded if
(Zm U —>) C ~». Such a linerization exists only if <, U —> is acyclic.
If < U +—— is acyclic, its transitive closure always exists and it is a partial
order, hence we are always able to find a linear extension. The characterization
for onen-Jk-bounded MSCs and nn-Jk-bounded is very similar. Summing up:

Proposition 6.5. An MSC M is mb-Jk-bounded iff the relation <y, U — is
acyclic.

An MSC M is onen-Jk-bounded iff the relation <, U — is acyclic.

An MSC M is nn-Jk-bounded iff the relation C,, U — is acyclic.

The MSO-definability of all the variants of 3k-bounded MSCs directly follows
from Proposition 6.5, since all of these relations were shown to be MSO-definable
(Section 4).

Special treewidth In [3, Lemma 5.37] it was shown that the special treewidth
of existentially k-bounded MSCs is bounded by k |P|?, for k > 1. Actually, STW-
boundedness was shown for the more general class of Concurrent Behaviours
with Matching (CBM), but the result is still valid since MSC,sy C CBM. The
special treewidth of the other classes of Fk-bounded MSCs is also bounded, since
they are clearly subclasses of 3k-bounded MSCs.

Universally bounded MSCs An MSC is existentially k-bounded if it has a
k-bounded linearization. An MSC is universally k-bounded MSCs if all of its
linearizations are k-bounded, hence the name ”universally”. This class of MSCs
was also introduced in [25].

Definition 6.13 (Universally bounded MSC). Let M = (£, =, <, \) € MSCyqy
and k € N. M is universally k-bounded (Yk-bounded) if all of its linearizations
are k-bounded.

Definition 6.14. An MSC M is p2p uniwversally k-bounded (p2p-Vk-bounded)
if it is a p2p-MSC and it is also universally k-bounded.
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Definition 6.15. An MSC M is causally ordered universally k-bounded (co-Vk-
bounded) if it is a causally ordered MSC and it is also universally k-bounded.

As for the existential case, the definitions for the other communication mod-
els are not as straightforward. For instance, the definition of mb Vk-bounded
MSC should require that all the mb-linearizations of the MSC are k-bounded,
but we say nothing about linearizations that are not mb. The same goes for the
FIFO 1—n and FIFO n—n communication models.

Definition 6.16. An MSC M is mailbox universally k-bounded (mb-Vk-bounded)
if it is a mailbox MSC and all of its mailbox linearizations are k-bounded.

Definition 6.17. An MSC M is onen universally k-bounded (onen-Vk-bounded)
if it is a onen-MSC and all of its onen-linearizations are k-bounded.

MSO-definability In this section, we will investigate the MSO-definability
of all the variants of universally k-bounded MSCs that we discussed. In [25], it
is shown that an MSC M is universally k-bounded if and only if —; C <.
In other words, r —; s = r <pp s for any two events r and s. This is
equivalent to saying that every linearization ~~ of M respects the — relation,
since — C <pp C ~». We already saw that — is not MSO-definable when
communication is asynchronous, hence we will use the < relation to give the
following alternative characterization of universally k-bounded MSCs.

Proposition 6.6. An MSC M is Vk-bounded if and only if <, C <p; and, for
each channel (p,q), there are at most k unmatched send events.

Proof. (=) Suppose M is Vk-bounded, which by definition means that all of
its linearizations are k-bounded. Firstly, notice that every MSC that has more
than k& unmatched send events in any channel cannot be an Vk-bounded MSC
(not even Jk-bounded). By contradiction, suppose that <, & <p, i.e. there
are two events 7 and s such that r <, s and r £pp, s. If r £y s, we either
have that s <p; 7 or that s and r are incomparable w.r.t. <p;; note that, in
both cases, M must have one linearization where s is executed before 5. The
existence of such a linearization implies that M is not Vk-bounded.

(<) Suppose < C <pp and, for each channel (p,q), there are at most k
unmatched send events. By definition, every linearization ~» of M is such that
<np C ~; it follows that < C ~~, which means that every linearization of M
is k-bounded, i.e. M is Vk-bounded. O

It follows that p2p-Vk-bounded and co-Vk-bounded MSCs are MSO-definable
by definition, since p2p-MSCs, co-MSCs, and universally k-bounded MSCs are
all MSO-definable. We already showed that ——j is MSO-definable when con-
sidering p2p communication. The characterization for the other communication
models is similar to that given in [25], but it uses the proper relation for each
communication model.

SIf two elements a and b of a set are incomparable w.r.t. a partial order <, it is always
possible to find a total order of the elements (that respects <) where a comes before b, or
viceversa.
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Proposition 6.7. An MSC M is mb-Vk-bounded if and only if — C <pp.
An MSC M is onen-Vk-bounded if and only if —; C =<yq,.
An MSC M is nn-Vk-bounded if and only if — 5 C Chn.

Proof. We only show it for the mb communication model. The proof for the
other communication models works the same way. Consider an MSC M and a
ke N.

(<) Suppose —j, C =y,. For every mailbox linearization ~ of M we have
that <y, C ~». This implies —j, C ~», that is to say every mailbox linearization
is k-bounded.

(=) Suppose M is a mb-Vk-bounded MSC. By definition, every mailbox
linearization ~» of M is k-bounded, i.e. ——>; C ~», and we have < C ~,
according to the definition of mailbox linearization. Moreover, we also know
that < U — is acyclic, since M is dk-bounded and by definition every mb-
Vk-bounded MSC is also a mb-3k-bounded MSC. Suppose now, by contradiction,
that ——y g =umb- Thus, there must be at least two events r and s such that
r —p sand r A, S; we also have s A, 7 because of the acyclicity of <pp U —
(we cannot have the cycle r — s <y 7). Consider a mailbox linearization ~~
of M, such that s ~» r. Note that such a mailbox linearization always exists,
since r and s are incomparable w.r.t. the partial order <y ,. This mailbox
linearization does not respect —j, (because we have s ~» r and r —, s), so
it is not k-bounded. This is a contradiction, since we assumed that M was a
mb-Vk-bounded MSC. It has to be that —, C <. O

Using Proposition 6.7, we can now easily write the MSO formulas that define
these variants of universally k-bounded MSCs.

Dppviky = 23 3s.(r — SA (1 < 8))
Donenvib = 3r.3s.(r — s A (1 =4 8))
Dpnviy = I 3s.(r —>k S A (T Ton 8))

Special treewidth All the variants of universally k-bounded MSCs that we
presented have a bounded special treewidth. This directly follows from the
STW-boundedness of the existential counterparts, since every universally k-
bounded MSC is existentially k-bounded by definition.

7 Conclusion

We studied seven different communication models and their corresponding classes
of MSCs, we characterized each of these classes with MSO logic, and draw the
hierarchy of these communication models. These results were then applied to
deal with (un)decidability of some verification problems.

To refine the picture, we could consider other logics like FO4+TC or LCPDL,
and other communication models, such as the FIFO-based implementation of
the causally ordered communication model proposed in [26], which we expect
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to sit somewhere between mailbox and causally ordered within the hierarchy
that we presented. Moreover, as shown by Fig. 9, the decidability of the syn-
chronizability problem for weakly synchronous MSCs and fully asynchronous
communication is not entailed by our techniques, and could be studied in future
works.
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A Additional material for Section 4

A.1 MSO-definable properties

In this sections we give MSO formulas for some MSO-definable properties that
are used throughout the paper.

Transitive Closure Given a binary relation R, we can express its reflexive
transitive closure R* in MSO as

r R y=VX.(re X A forward_closed(X)) = ye X

forward_closed(X) =Vz¥t.(2€ X N zRt) = te X

The transitive (but not necessarily reflexive) closure of R can also be expressed
as

tRTy=VX. (Vz,t (: € XU{a}AzRt) = teX) = yeX

Acyclicity Given a binary relation R, we can use MSO to express the acyclic-
ity of R, or equivalently, the fact that its transitive closure RT is irreflexive.

(I)acyclic = ﬁﬂ(b((ﬂ Rt (E)

A.2 Omitted proofs of Section 4

Mailbox We show here that the two alternative definitions of mb-MSC that
we gave are equivalent.

Proposition A.1. Definition 2.4 and Definition 4.2 of mb-MSC are equivalent.

Proof. (=) We show that if M is a mb-MSC, according to Definition 4.2, then
it is also a mb-MSC, according to Definition 2.4. By definition of <, we must
have (i) s = s’ for any two matched send events s and s’ addressed to the
same process, such that r —% r, where s <r and s’ <17/, and (ii) s =< &', if
s and s’ are a matched and an unmatched send event, respectively. If <y is a
partial order, we can find at least one linearization ~» such that <, C ~~; such
a linearization satisfies the conditions of Definition 2.4.

(<) We show that if M is not a mb-MSC, according to Definition 4.2, then it is
also not a mb-MSC, according to Definition 2.4. Since <pp = (— U < U Cpp)* is
not a partial order, <, must be cyclic”. If <y, is cyclic, it means that we cannot
find a linearization ~~» such that <, C ~». In other words, we cannot find a
linearization where (i) s ~» s’ for any two matched send events s and s’ addressed
to the same process, such that r —+ 7, where s <\r and s’ <7/, and (ii) s ~ &/,
if s and s’ are a matched and an unmatched send event, respectively. It follows
that M is not a mb-MSC also according to Definition 2.4. O

7<m is reflexive and transitive by definition, if it were also acyclic it would be a partial
order
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FIFO 1—n We show that the two alternative definitions of onen-MSC that
we gave are equivalent.

Proposition A.2. Definition 2.5 and Definition 4.3 of onen-MSC are equiva-
lent.

Proof. (=) We show that if M is a onen-MSC, according to Definition 4.3, then
it is also a onen-MSC, according to Definition 2.5. By definition of <i,, we must
have (i) r <4, 7 for any two receive events r and ' whose matched send events
s and s” are such that s =7 &', and (ii) s <, &', if s and s’ are a matched and
an unmatched send event executed by the same process, respectively. If <y, is
a partial order, we can find at least one linearization ~~ such that <y, C ~;
such a linearization satisfies the conditions of Definition 2.5.

(<) We show that if M is not a onen-MSC, according to Definition 4.3, then it is
also not a onen-MSC, according to Definition 2.5. Since <1, = (= U < U Cyp)*
is not a partial order, <y, must be cyclic. If <i, is cyclic, it means that we
cannot find a linearization ~» such that <;;, C ~». In other words, we cannot
find a linearization where (i) r ~» r’ for any two receive events r and ' whose
matched send events s and s’ are such that s —1 &/, and (i) s ~ &', if s
and s’ are a matched and an unmatched send event executed by the same
process, respectively. It follows that M is not a onen-MSC also according to
Definition 2.5. O

FIFO n—n We show here the missing proofs for the equivalence of the two
definitions of nn-MSC that we gave.

Proposition A.3. Let M be an MSC. Given two matched send events s; and
s2, and their respective receive events r1 and ro, 11 Cpn 72 = S1 Cnn S2.

Proof. Follows from the definition of C,,. We have r; Cp, 72 if either:

® 71 <1n/mb 2. Two cases: either (i) s1 <15/mb S2, or (ii) 81741n/mbS2- The
first case clearly implies s1 Cnn So, for rule 1 in the definition of C,,. The
second too, because of rule 3.

® 7171 /mbT2, Put 71 Con 72. This is only possible if rule 2 in the definition
of Cpn was used, which implies 81 <1n/mp s2 and, for rule 1, 51 Cpn S2.

O
Proposition 4.1. Let M be an MSC. If ,, is cyclic, then M is not a nn-MSC.

Proof. According to Definition 2.6, an MSC is FIFO n—n if it has at least one
nn-linearization. Note that, because of how it is defined, any nn-linearization is
always both amb and a onen-linearization. It follows that the cyclicity of <1,/mb
(not Cpp) implies that M is not FIFO n—n, because it means that we are not
even able to find a linearization that is both mb and FIFO 1—n. Moreover, since
in a nn-linearization the order in which messages are sent matches the order in
which they are received, and unmatched send events can be executed only after
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matched send events, a nn-MSC always has to satisfy the constraints imposed
by the C,, relation. If C,, is cyclic, then for sure there is no nn-linearization
for M. O

Proposition 4.3. Given an MSC M, Algorithm 1 terminates correctly if Cnn
is acyclic.

Proof. We want to prove that, if C,, is acyclic, step 4 of the algorithm is never
executed, i.e. it terminates correctly. Note that the acyclicity of C,, implies
that the EDG of M is a DAG. Moreover, at every step of the algorithm we
remove nodes and edges from the EDG, so it still remains a DAG. The proof
proceeds by induction on the number of events added to the linearization.
Base case: no event has been added to the linearization yet. Since the EDG is
a DAG, there must be an event with in-degree 0. In particular, this has to be
a send event (a receive event depends on its respective send event, so it cannot
have in-degree 0). If it is a matched send event, step 1 is applied. If there are
no matched send events, step 2 is applied on an unmatched send. We show that
it is impossible to have an unmatched send event of in-degree 0 if there are still
matched send events in the EDG, so either step 1 or 2 are applied in the base
case. Let s be one of those matched send events and let v be an unmatched
send. Because of rule 4 in the definition of C,,, we have that s C,, u, which
implies that u cannot have in-degree 0 if s is still in the EDG.

Inductive step: we want to show that we are never going to execute step 4. In
particular, Step 4 is executed when none of the first three steps can be applied.
This happens when there are no matched send events with in-degree 0 and one
of the following holds:

e There are still matched send events in the EDG with in-degree > 0, there
are no unmatched messages with in-degree 0, and there is no receive event
r with in-degree 0 in the EDG, such that r is the receive event of the first
message whose sent event was already added to the linearization. Since the
EDG is a DAG, there must be at least one receive event with in-degree
0. We want to show that, between these receive events with in-degree
0, there is also the receive event r of the first message whose send event
was added to the linearization, so that we can apply step 3 and step 4 is
not executed. Suppose, by contradiction, that r has in-degree > 0, so it
depends on other events. For any maximal chain in the EDG that contains
one of these events, consider the first event e, which clearly has in-degree
0. In particular, e cannot be a send event, because we would have applied
step 1 or step 2. Hence, e can only be a receive event for a send event that
was not the first added to the linearization (and whose respective receive
still has not been added). However, this is also impossible, since 7e Con 7
implies s¢ Cpn 8, according to Proposition A.3, and we could not have
added s to the linearization before s.. Because we got to a contradiction,
the hypothesis that r has in-degree > 0 must be false, and we can indeed

apply step 3.
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e There are still matched send events in the EDG with in-degree > 0, there
is at least one unmatched message with in-degree 0, and there is no receive
event r with in-degree 0 in the EDG, such that r is the receive event of the
first message whose sent event was already added to the linearization. We
show that it is impossible to have an unmatched send event of in-degree
0 if there are still matched send events in the EDG. Let s be one of those
matched send events and let u be an unmatched send. Because of rule 4
in the definition of C,,, we have that s C,, u, which implies that u cannot
have in-degree 0 if s is still in the EDG.

e There are no more matched send events in the EDG, there are no un-
matched messages with in-degree 0, and there is no receive event r with
in-degree 0 in the EDG, such that r is the receive event of the first mes-
sage whose sent event was already added to the linearization. Very similar
to the first case. Since the EDG is a DAG, there must be at least one
receive event with in-degree 0. We want to show that, between these re-
ceive events with in-degree 0, there is also the receive event r of the first
message whose send event was added to the linearization, so that we can
apply step 3 and step 4 is not executed. Suppose, by contradiction, that r
has in-degree > 0, so it depends on other events. For any maximal chain
in the EDG that contains one of these events, consider the first event e,
which clearly has in-degree 0. In particular, e cannot be a send event,
because by hypothesis there are no more send events with in-degree 0 in
the EDG. Hence, e can only be a receive event for a send event that was
not the first added to the linearization (and whose respective receive still
has not been added). However, this is also impossible, since r. Cpp 7 im-
plies s, Cnn s (see Proposition A.3), and we could not have added s to the
linearization before s.. Because we got to a contradiction, the hypothesis
that r has in-degree > 0 must be false, and we can indeed apply step 3.

We showed that, if Cp, is acyclic, the algorithm always terminates correctly and
computes a valid nn-linearization. O

B Additional material for Section 5

Proposition B.1. Every co-MSC is a p2p-MSC.

Proof. According to Definition 2.3, and MSC is co if, for any two send events s
and ', such that A(s) € Send(_,q,_), A(s") € Send(_,q,_), and s <pp ', we
have either (i) s,s’ € Matched(M) and r —* 7', where r and r’ are two receive
events such that s <tr and s’ <r/, or (ii) s’ € Unm(M). The conditions imposed
by the Definition 2.2 of p2p are clearly satified by any co-MSC; in particular,

note that s = s’ implies s <y s’ O

Proposition 5.3. Every mb-MSC without unmatched messages is a onen-MSC.
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Proof. We show that the contrapositive is true, i.e. if an MSC is not FIFO 1—n
(and it does not have unmatched messages), it is also not mailbox. Suppose
M is an asynchronous MSC, but not FIFO 1—n. There must be a cycle £ such
that e <y, e, for some event e. Recall that <y, = (= U Ciy U Cwp)* and
<np = (= ULC1w)*. We can always explicitely write a cycle e <4, e only using
C1n and <pp. For instance, there might be a cycle e <1, e because we have that
€ Cin f <np g Cin h C1n @ <pp e. Consider any two adiacent events r; and 79
in the cycle &, where £ has been written using only 1, and <3, and we never
have two consecutive <j;. We have two cases:

1. r1 Cia 2. By definition of Ci,, 1 and 72 must be two receive events,
since we are not considering unmatched send events, and s; —T so, where
s1 and s are the send events that match with r and 7o, respectively.

2. 11 <pp r2. Since M is asynchronous by hypothesis, £ has to contain at
least one [Ci,; recall that we also wrote ¢ in such a way that we do not
have two consecutive <. It is not difficult to see that r; and r9 have to
be receive events, since they belong to £. Let s; and sy be the two send
events such that s; < ry and so < ry. We have two cases:

(a) so is in the causal path between r; and 7o, i.e. s1 <411 <pp 2 < ra.
In particular, note that s; <pp So.

(b) s2 is not in the causal path between r1 and r2, hence there must be
a message my received by the same process that executes ry, such
that 1 <pp sx <71 —7T 1o, Where 7}, is the send event of my. Since
messages my, and my are received by the same process and 7, — 7T 79,
we should have s; Cpp S2, according to the mailbox semantics. In
particular, note the we have s1 <pp S Cup S2-

In both case (a) and (b), we conclude that s1 <pp Sa2.

Notice that, for either cases, a relation between two receive events r; and 79
implies a relation between the respective send events s; and sg, according to
the mailbox semantics. It follows that £, which is a cycle for the <y, relation,
always implies a cycle for the <y, relation. O

Proposition B.2. Every nn-MSC is a onen-MSC.

Proof. Consider Definition 2.6 and Definition 2.5. They are identical, except
for the fact that in the FIFO n—n case we consider any two send events, and
not just those that are sent by a same process. This is enough to show that
each nn-linearization is also a onen-linearization and, therefore, each nn-MSC is

a onen-MSC. O
Proposition B.3. Every rsc-MSC is a nn-MSC.

Proof. Consider Definition 2.7 and Definition 2.6. Let us pick an rsc-linearization
~+. If every send event is immediately followed by its matching receive event,
and we do not have unmatched messages, then ~~ is also a nn-linearization; note
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that, for any two send events s and s’ such that s ~ s, we also have r ~ 1/,
where s <17 and s’ <17’. It follows that each rsc-MSC is a nn-MSC. O

C Additional material for Section 6

C.1 Communicating finite state machines

We now recall the definition of communicating systems (aka communicating
finite-state machines or message-passing automata), which consist of finite-state
machines A, (one for every process p € P) that can communicate through
channels from C.

Definition C.1. A system of communicating finite state machines over the set
PP of rocesses and the set M of messages is a tuple S = (Ap)pep. For eachp € P,
A, = (Locy, 0p, 62) is a finite transition system where Loc,, is a finite set of local
(control) states, d, C Loc, x ¥, x Loc, is the transition relation, and ég € Loc,

is the initial state.

Given p € P and a transition ¢t = (¢,a,l') € 0p, we let source(t) = ¢,
target(t) = ¢', action(t) = a, and msg(t) = mifa € Send(_, _,m)URec(_, _,m).

Let M = (£,—,<,\) be an MSC. A run of S on M is a mapping p : £ —
UpeP Jd, that assigns to every event e the transition p(e) that is executed at e.
Thus, we require that (i) for all e € £, we have action(p(e)) = A(e), (ii) for all
(e, 1) € —, target(p(e)) = source(p(f)), (i) forall (e, f) € <1, msg(p(e)) = msg(p()).
and (iv) for all p € P and e € &, such that there is no f € £ with f — e, we
have source(p(e)) = £9.

We write Lagy(S) to denote the set of MSCs M that admit a run of S.
Intuitively, Lasy(S) is the set of all asynchronous behaviors of S.

C.2 Special Treewidth

Example C.1. Let M the MSC of the Fig. 3b. In this example, we show that
M has a special treewidth of at most 3, since Eve is able to find a strategy that
leads to a 3-winning game. We use colors to mark events. Eve starts by marking
4 events. The edges whose both endpoints are marked can be removed (dotted
edges in the figure) and the graph becomes disconnected. Eve then splits the
graph in 2 and Adam has to choose. Suppose the Adam picks the subgraph with
the red and yellow events already marked (top branch in the figure). Eve can
mark the third event and, by doing so, the game ends. Suppose Adam chooses
the subgraph with the blue and green events (bottom branch). Eve marks the
two nodes in the bottom, removes 3 edges, and splits the graph in two. Note
that one of the two subgraphs already has all events marked, so Adam zpicks
the other one (top branch). Eve simply marks the missing event and the game
ends. This is a 3-winning game for Eve since, independently of Adam’s choices,
we have at most 4 marked event at each step. Fig. 13 shows an example of a
3-winning game for the MSC in Fig. 3b.
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Figure 13: Decomposition game for the MSC of Fig. 3b. This is a 3-winning
game for Eve.

C.3 Proof of Theorem 6.1

Theorem 6.1. Let com € {asy, co, p2p,mb, onen,nn, rsc} and k& > 1 be fixed.
Then the following problem is decidable: given a system S and a MSO specifi-
cation ¢, decide whether Leom(S) N MSCH™ C L(y).

Proof. Let com, C, S, and ¢ be fixed. We showed in Section 4 that there is a
MSO formula @com, that defines MSCeop- There is also a MSO formula s such
that Lasy(S) = L(ips).® Putting everything together, we have

Leom(S) NMSCF™ C L(y)

Lasy(S) NMMSCeom N MSCH™ C L(p)

L(ps) N L(peom) N MSCH™ C L(p)

MSCH™ C L(p V ~@eom V —¢s) -

I 11

The latter is decidable by Courcelle’s theorem [11]. O

C.4 Proof of Theorem 6.2

In order to prove Theorem 6.2, we first need to introduce some concepts and
give preliminary proofs.

Definition C.2 (Prefix). Let M = (£,—,<1,A) € MSC and consider £ C &
such that E is <p,-downward-closed, i.e, for all (e, f) € <p such that f € E,
we also have e € E. Then, the MSC M’ = (E,—»N(E x E),<N(E x E),\),
where )\ is the restriction of £ to E, is called a prefiz of M.

If we consider a set E that is <,-downward-closed, we call M’ a onen-prefiz.
If the set E is Cpn-downward-closed, we call M’ a nn-prefiz. Note that every
onen or nn-prefix is also a prefix, since <p;C <1, and <ppC Con-

Note that the empty MSC is a prefix of M. We denote the set of prefixes of
M by Pref (M), whereas Pref o, (M) and Pref (M) are used for the FIFO 1—n

onen(

8The formula simply encodes the existence of a run of S on the MSC using a MSO variable
X for each control state [, with the meaning that X; is the set of events before which the
local communicating automaton was in state [. See [3, Theorem 3.4] for a detailed proof.
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and the FIFO n—n variants, respectively. This is extended to sets L C MSC as
expected, letting Pref (L) = U, Pref(M).

Proposition C.1. For com € {asy, p2p, co,mb}, every prefix of a com-MSC is
a com-MSC.

Proof. For com = asy it is true by definition. For com = {p2p,mb} it was
already shown to be true in [4], so we just consider com = co. Let M =
(E,—,<9,A) € MSC,, and let My = (&9, —0, <0, o) be a prefix of M. By
contradiction, suppose that My is not a co-MSC. There must be two distinct
s,s" € & such that A(s) € Send(_,q,_), A(s") € Send(_,q,_), s SZJZ\:IO) s’
and either (i) ' —* 7, where r and 7’ are two receive events such that s <1 r
and s’ <7/, or (ii) s € Unm(My) and s’ € Matched(Mp). In both cases, M
would also not be a co-a MSC, since & C &£, —¢ C —, and <g C <. This is a
contradiction, thus My has to be causally ordered. O

Note that this proposition is not true for the FIFO 1—n and the FIFO n—n
communication models. Fig. 8 shows an example of nn-MSC with a prefix that
is neither a nn-MSC nor a onen-MSC.

Proposition C.2. Every onen-prefix of a onen-MSC is a onen-MSC.

Proof. Let M = (£,—,<9,A) € MSCopen and let My = (€, —0, <0, Ao) be a
onen-prefix of M, where & C £. Firstly, the <j,-downward-closeness of &
guarantees that M is still an MSC. We need to prove that it is a onen-MSC.
By contradiction, suppose that M is not a onen-MSC. Then, there are distinct
e, f € & such that e jgnMO) f jgnMO) e, where jgﬁ%): (=0 U< U :ﬁﬁ“’)*. As
& C &, we have that —¢ C —, <g C <, Eﬁﬁ“’ C C1a. Clearly, jgnMO)gjln, SO
e =11 [ =1n e. This implies that M is not a onen-MSC, because <y, is cyclic,
which is a contradiction. Hence M is a onen-MSC. O

Proposition C.3. Every nn-prefix of a nn-MSC is a nn-MSC.

Proof. Let M = (€,—,<,\) € MSCyy, and let My = (€, —0, <0, Ao) be a
nn-prefix of M, where & C &. Firstly, the Eﬁﬂ/[)-downward—closeness of &
guarantees that Mj is still an MSC. We need to prove that it is a nn-MSC.
By contradiction, suppose that Mj is not a nn-MSC. Then, there are distinct

e, f € & such that e ES\]X[O) f ES,]X[O) e. As & C &, we have that —¢ C —,

<o € <, <1n/mb € <1n/mb- Clearly, I:E,ﬁ‘,”f’)g E,(,ﬂ/[), S0 e Er(,ﬂ/[) f :Sﬁ“ e. This
implies that M is not a nn-MSC, because :&ﬁ“ is cyclic, which is a contradiction.
Hence My is a nn-MSC. O

The next lemma is about the prefix closure of a communicating system and
it follows from Proposition C.1.

Proposition C.4. For all com € {asy, p2p,mb, co}, Leom(S) is prefix-closed:
Pref(Leom(S)) € Leom(S)-
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Similar results also hold for the FIFO 1—n and FIFO n—n communication
models.

Proposition C.5. Loen(S) is onen-prefix-closed: Pref o (Lonen(S)) € Lonen(S).

Proof. Given asystem S, we have that Lenen(S) = Lp2p(S)NMSCopen. Note that,
because of how we defined a onen-prefix, we have that Prefonen(Lonen(S)) =
Pref(Lonen(S)) N MSCopen. Moreover, Pref(Lonen(S)) € Pref(Lpzp(S)), and
Pref(Lonen(S)) € Lpap(S) for Proposition C.4. Putting everything together,
Pref gnen(Lonen(S)) € Lpap(S) N MSCopen = Lonen(S)- O

Proposition C.6. L,,(S) is nn-prefix-closed:
Pref oy (Lan(S)) € Laa(S).

Proof. Given a system S, we have that Lny,(S) = Lpzp(S) N MSCy,.  Note
that, because of how we defined a nn-prefix, we have that Pref, (L, ( )
Pref (Lyn(S))NMSCpy. Moreover, Pref (Lua(S)) C Pref (Lyop(S)), and Pref(L
Lyop(S) for Proposition C.4. Putting everything together, Pref . (Lnn(S))
Lpop(S) "TMSCry = Lin(S).

Dlﬁ/-\ I

In this last part we prove a series of statements to conclude that, when we
have a STW-bounded class C, the synchronizability problem can be reduced to
bounded model-checking, which we showed to be decidable in Theorem 6.1.

Proposition C.7. Let k € Nand C C MSCF™_ For all M € MSC\ C, we have
(Pref(M) N MSCHEF2stwy\ ¢ £ ¢,

Proof. Already proved in [4], but we adapt the proof to our setting. Let & and
C be fixed, and let M € MSC\C be fixed. If the empty MSC is not in C, then we
are done, since it is a valid prefix of M and it is in MSCF+2)-sw \ C. Otherwise,
let M" € Pref(M)\ C such that, for all <p;-maximal events e of M’, removing
e (along with its adjacent edges) gives an MSC in C. In other words, M’ is the
"shortest” prefix of M that is not in C. We obtain such an MSC by successively
removing <jp,-maximal events. Let e be a <j,-maximal event of M’, and let
M" = M’ \ {e}. Since M’ was taken minimal in terms of number of events,
M" € C. So Eve has a winning strategy with k+ 1 colors for M”. Let us design
a winning strategy with k 4+ 3 colors for Eve for M’ which will show the claim.

Observe that the event e occurs at the end of the timeline of a process (say
p), and it is part of at most two edges:

e one with the previous p-event (if any)
e one with the corresponding send event (if e is a receive event)

Let e1, e2 be the two neighbours of e. The strategy of Eve is the following: in
the first round, mark e, e1, es, then erase the edges (e1, e¢) and (ez, ), then split
the remaining graph in two parts: M’ on the one side, and the single node
graph {e} on the other side. Then Eve applies its winning strategy for M",
except that initially the two events ej, ez are marked (so she may need up to
k + 3 colors). O
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We have similar results also for the FIFO 1—n and FIFO n—n communica-
tion models.

Proposition C.8. Let k € N and C C MSCF*™. For all M € MSCopen \ C, we
have
(Pref on(M) N MSCHEF2stwy\ ¢ ).

Proof. Let k and C be fixed, and let M € MSCepen \ C be fixed. If the empty
MSC is not in C, then we are done, since it is a valid onen-prefix of M and it
is in MSCH+2%\ ¢ Otherwise, let M’ € Pref,,. (M) \ C such that, for all
=<ip-maximal events e of M’, removing e (along with its adjacent edges) gives
an MSC in C. In other words, M’ is the ”"shortest” prefix of M that is not in
C. We obtain such an MSC by successively removing <;,-maximal events. Let
e be jgiw/)—maximal and let M = M'\ {e}. Since M’ was taken minimal in
terms of number of events, M” € C. The proof proceeds exactly as the proof of
Proposition C.7. O

Proposition C.9. Let Kk € N and C C MSCH™ For all M € MSCy, \C, we
have
(Pref (M) N MSCHFT2stwy\ ¢ £ ),

Proof. Let k and C be fixed, and let M € MSCy, \ C. If the empty MSC is not in
C, then we are done, since it is a valid nn-prefix of M and it is in MSC<k+2)'5tW\C.
Otherwise, let M’ € Pref,,(M) \ C such that, for all C ) _maximal events e of
M’, removing e (along with its adjacent edges) gives an MSC in C. In other
words, M’ is the ”"shortest” prefix of M that is not in C. We obtain such an
MSC by successively removing E,(,f\,/[)-maximal events. Let e be Eg]yl)-maximal
and let M"” = M’ \ {e}. Since M’ was taken minimal in terms of number of
events, M" € C. The proof proceeds exactly as the proof of Proposition C.7. O

The following proposition is the last ingredient that we need to prove The-
orem 6.2.

Proposition C.10. Let S be a communicating system, com € {asy, p2p,
co, mb, onen, nn, rsc}, k € N, and C C MSCF™ " Then, Leom(S) C C iff
Leom(S) NMSCHF2stw ¢,

Proof. For com € {asy, p2p, co, mb}, the proposition follows from Proposi-
tion C.7. For com € {onen,nn}, it follows from Proposition C.8 and Proposi-
tion C.9, respectively. O

Theorem 6.2. For any com € {asy,p2p, co,mb, onen,nn} and for all class of
MSCs C, if C is STW-bounded and MSO-definable, then the (com, C)-synchronizability
problem is decidable.

Proof. According to Proposition C.10, we have Lcom(S) C C iff Leom(S) N
MSC(kt2)-stw C C. The latter is decidable according to Theorem 6.1. O
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C.5 Proof of Proposition 6.1

Proposition 6.1. The following problem is undecidable: given a communicat-
ing system S, is every MSC in L (S) weakly synchronous?

The proof is very similar to the one of [5, Theorem 20] for the p2p case.
We do the same reduction from the Post correspondence problem. The original
proof considered a p2p system S with four machines (P1, P2, V1, V2), where
we have unidirectional communication channels from provers (P1 and P2) to
verifiers (V1 and V2). In particular notice that all the possible behaviors of
S are causally ordered, i.e. Lyop(S) € MSC,o; according to how we built our
system S, it is impossible to have a pair of causally-related send events of P1
and P2°, which implies that causal ordering is already ensured by any possible
p2p behavior of §. The rest of the proof is identical to the p2p case.

9There is no channel between P1 and P2, and we only have unidirectional communication
channels from provers to verifiers; it is impossible to have a causal path between two send
events of P1 and P2.
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