
HAL Id: hal-03823357
https://hal.science/hal-03823357v2

Submitted on 4 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A drag-and-drop proof tactic
Pablo Donato, Pierre-Yves Strub, Benjamin Werner

To cite this version:
Pablo Donato, Pierre-Yves Strub, Benjamin Werner. A drag-and-drop proof tactic. CPP 2022: 11th
ACM SIGPLAN International Conference on Certified Programs and Proofs, Jan 2022, Philadelphia,
United States. pp.197-209, �10.1145/3497775.3503692�. �hal-03823357v2�

https://hal.science/hal-03823357v2
https://hal.archives-ouvertes.fr

A Drag-and-Drop Proof Tactic
Pablo Donato

pablo.donato@polytechnique.edu
École polytechnique

LIX

France

Pierre-Yves Strub

pierre-yves.strub@polytechnique.edu
École polytechnique

LIX

France

Benjamin Werner

benjamin.werner@polytechnique.edu
École polytechnique

LIX

France

Abstract
We explore the features of a user interface where formal

proofs can be built through gestural actions. In particular,

we show how proof construction steps can be associated to

drag-and-drop actions. We argue that this can provide quick

and intuitive proof construction steps. This work builds on

theoretical tools coming from deep inference. It also resumes

and integrates some ideas of the former proof-by-pointing

project.

CCS Concepts: •Mathematics of computing→ Mathe-
matical software; •Human-centered computing→ Graph-
ical user interfaces; Gestural input; • Theory of computa-
tion → Proof theory; Equational logic and rewriting; Con-
structive mathematics.

Keywords: logic, formal proofs, user interfaces, deep infer-

ence

ACM Reference Format:
Pablo Donato, Pierre-Yves Strub, and Benjamin Werner. 2022. A

Drag-and-Drop Proof Tactic. In Proceedings of the 11th ACM SIG-
PLAN International Conference on Certified Programs and Proofs
(CPP ’22), January 17–18, 2022, Philadelphia, PA, USA. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3497775.3503692

1 Introduction
Most Interactive Theorem Provers allow the user to incre-

mentally construct formal proofs through an interaction loop.

One progresses through a sequence of states corresponding
to incomplete proofs. Each of these states is itself described

by a finite set of goals and the proof is completed once there

are no goals left. From the user’s point of view, a goal ap-

pears as a sequent, in the sense coined by Gentzen. In the

case of intuitionistic logic that is:

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9182-5/22/01. . . $15.00

https://doi.org/10.1145/3497775.3503692

• One particular proposition 𝐴 which is to be proved; we
designate it as the goal’s conclusion,

• a set of propositions Γ corresponding to hypotheses.

On paper, this sequent is written Γ ⊢ 𝐴. The user performs

actions on one such goal at a time, and the actions transform

the goal, or rather replace the goal by a new set of goals.

When this set is empty, the goal is said to be solved.

The actions performed by the user can be more or less

sophisticated. But, fundamentally, one finds elementary com-

mands which correspond roughly to the logical rules, gen-

erally of natural deduction. For instance, a goal Γ ⊢ 𝐴 ∨ 𝐵

(resp. Γ ⊢ 𝐴 ∧ 𝐵) can be turned into either a goal Γ ⊢ 𝐴 or a

goal Γ ⊢ 𝐵 (resp. into two goals Γ ⊢ 𝐴 and Γ ⊢ 𝐵).
To sum up, during the proof construction process, a state

is a set of sequents. These goals/sequents are modified by

commands, which allow the user to navigate from the original

statement of the theorem to the state where there are no

goals left to be proved.

In the dominant paradigm, these commands are provided

by the user in text form; since Robin Milner and LCF [23],

they are called tactics. Proof files are literally proof-scripts;
that is the sequence of tactics typed-in by the user.

The present work is a form of continuation of the Proof-by-
Pointing (PbP) effort, initiated in the 1990’s by Gilles Kahn,

Yves Bertot, Laurent Théry and their group [4]. Both works

share a main idea which is to replace the textual tactic com-

mands by gestural actions performed by the user on a graph-

ical user interface. In both cases, the items the user performs

actions on are the current goal’s conclusion and hypotheses.

What is new in our work is that we allow not only to click on
(subterms of) these items, but also to move them in order to

drag-and-drop (DnD) one item onto another. This enriches

the language of actions in, we argue, an intuitive way. We

should point out that what is proposed here is not meant to

replace but to complement the proof-by-pointing features.

We thus envision a general proof-by-action paradigm, which

includes both PbP and DnD features.

In this article, we focus on how drag-and-drop actions

implement proof construction operations corresponding to

the core logic; that is how they deal with logical connectives,

quantifiers and equality.We have started to implement this in

a prototype namedActema (for Active Mathematics) running

through a web HTML5/JavaScript interface. This possibility

to experiment in practice, even though yet on a small scale,

gave valuable feedback for crafting the way DnD actions are

https://doi.org/10.1145/3497775.3503692
https://doi.org/10.1145/3497775.3503692

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Pablo Donato, Pierre-Yves Strub, and Benjamin Werner

to be translated into proof construction steps in an intuitive

and practical way.

The rest of this article is organized as follows. Section 2 ex-

plains the motivations behind this work, and section 3 briefly

outlines its logical setting. Section 4 describes the basic fea-

tures of a graphical proof interface based on our principles,

and illustrates them with a famous syllogism from Aristotle.

Section 5 shows how it can integrate basic proof-by-pointing

capabilities. The next two sections explain, through further

examples, how the drag-and-drop paradigm works; first for

so-called rewrite actions involving equalities, then for ac-

tions involving logical connectives and quantifiers. Section 8

introduces the notions of context and polarity, in order to

prove the correctness of our system. Section 9 explains how

DnD actions are specified by the user interactively, through

schemas called linkages. Section 10 describes how linkages

translate into logical steps, as well as some properties of

this translation. Section 11 studies a proof of a small logical

riddle in Actema, highlighting some benefits of our approach

compared to textual systems. We end with a discussion on

some related works in section 12, and then conclude.

2 Motivations
Since this work is about changing the very way the user

interacts with an interactive theorem prover, we feel it is

important to make some disclaimers about the aims and the

scope of what is presented here.

From a development point of view, we are still at a very

preliminary stage. Building a real-size proof system integrat-

ing the ideas we present would require an important effort

and is still a long term goal. Some concepts however have

emerged, which, we hope allow to sketch some aspects of

the look-and-feel of such a system, and what some of its

advantages could be.

Also, at this stage, we focus on basic proof constructions

and on how the gestural approach can help make them more

efficient andmore intuitive. Some of the illustrative examples

we give below could probably be dealt with using advanced

proof search tactics, but we believe this does not make them

irrelevant. Rather than (sub)goals to be proved, these exam-

ples should be seen as generic situations often encountered

in the course of a proof, which require small and local trans-

formations to the statements involved.

The idea of interactive theorem provers is that automation

and user actions complement each other, and we here focus

on the latter for the time being. The question of integrat-

ing drag-and-drop actions and powerful proof automation

techniques is left for future work.

Finally, precisely because our approach is about giving the

user a smoother control of the proof construction process,

we see a possibility for our work to help making future proof

systems more suited for education.

3 Logical Setting
Any proof system must implement a given logical formalism.

What we describe here ought to be applied to a wide range

of formalisms, but in this article we focus on the core of in-

tuitionistic first-order logic with equality (FOL). This allows

us to consider sequents where hypotheses are unordered

which, in turn, simplifies the technical presentations. We

will thus write Γ, 𝐴 ⊢ 𝐵 for a sequent where 𝐴 is among the

hypotheses.

We use and do not recall the usual definitions of terms

and propositions in first order logic. We assume a first order

language (function and predicate symbols) is given. Provabil-

ity is defined over sequents Γ ⊢ 𝐴 by the usual logical rules

of natural deduction (NJ) and/or sequent calculus (LJ).

Equality is treated in a common way: = is a binary pred-

icate symbol written in the usual infix notation, together

with the reflexivity axiom ∀𝑥 .𝑥 = 𝑥 and the Leibniz scheme,

stating that for any proposition 𝐴 one has

∀𝑥 .∀𝑦.𝑥 = 𝑦 ∧𝐴 ⇒ 𝐴 [𝑥 \ 𝑦] .

We will not consider, on paper, the details of variable

renaming in substitutions, implicitly applying the so-called

Barendregt convention, that bound and free variables are

distinct and that a variable is bound at most once.

Extending this work to simple extensions of FOL, like

multi-sorted predicate calculus is straightforward (and ac-

tually done in the prototype). Some more interesting points

may show up when considering how to apply this work to

more complex formalisms like type theories. We will not

explore these questions here.

Another interesting and promising question is how our ap-

proach extends to classical logic(s), that is multi-conclusion

classical sequents. In this text we only give a few hints on

this topic.

4 A First Example
4.1 Layout
One advantage of the proof-by-actions paradigm, is that it

allows a very lean visual layout of the proof state. There is

no need to name hypotheses. In the prototype we also dis-

pense with a text buffer, since proofs are solely built through

graphical actions.

Figure 1 shows the layout of the system using the ancient

example of Aristotle. A goal appears as a set of items whose
nature is defined by their respective colors

1
:

• A red item which is the proposition to be proved, that

is the conclusion,
• blue items, which are the local hypotheses.

1
We are well aware that, in later implementations, this color-based distinc-

tion ought to be complemented by some other visual distinction, at least

for users with impaired color vision. But in the present description we stick

to the red/blue denomination, as it is conveniently concise.

A Drag-and-Drop Proof Tactic CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

Figure 1. A partial screenshot showing a goal in the Actema prototype. The conclusion is red on the right, the two hypotheses blue on the

left. The grey dotted arrows have been added to show the two possible actions.

The items are what the user can act upon: either by clicking
on them, or by moving them.

Finally, note that each goal is displayed on a tab.

4.2 Two Kinds of Actions
In this example, there are two possible actions.

• A first one is to bring together, by drag-and-drop, the

red conclusionMort(Socr) with the succedant of the

first hypothesis Mort(𝑥). This will transform the goal

by changing the conclusion to Hum(Socr).
• A second possibility is to combine the two hypotheses;

more precisely to bring together the item Hum(Socr)
with the premise Hum(𝑥) of the first hypothesis. This
will yield a new hypothesis Mort(Socr).

The first case is what we call a backward step where the
conclusion is modified by using a hypothesis. The second

case is a forward step where two known facts are combined

to deduce a new fact, that is an additional blue item.

In both cases, the proof can then be finished invoking

the logical axiom rule. In practice this means bringing to-

gether the blue hypothesis Hum(Socr) (resp. the new blue

factMort(Socr)) with the red goal.

4.3 Modeling the Mechanism
A backward step involves a hypothesis, here ∀𝑥 .Hum(𝑥) ⇒
Mort(𝑥) and the conclusion, here Mort(Socr). Furthermore,

the action actually links together two subterms of each of

these items; this is written by squaring these subterms. The

symbol ⊢, used as an operator, is meant to describe the result

of the interaction. Internally, the behavior of this operator is

defined by a set of rewrite rules given in figures 3 and 4. Here

is the sequence of rewrites corresponding to the example
2
:

∀𝑥 .Hum(𝑥) ⇒ Mort(𝑥) ⊢ Mort(Socr)
▷ Hum(Socr) ⇒ Mort(Socr) ⊢ Mort(Socr) L∀i
▷ Hum(Socr) ∧ (Mort(Socr) ⊢ Mort(Socr)) L⇒2

▷ Hum(Socr) ∧ ⊤ id
▷ Hum(Socr) neur

Notice that:

• These elementary rewrites are not visible for the user.

What she/he sees is the final result of the action, that

is the last expression of the rewrite sequence.

• The definitions of the rewrite rules in figures 3 and 4

do not involve squared subterms. The information of

which subterms are squared is only used by the system

to decide which rules to apply in which order.

In general, the action solves the goal when the interaction

ends with the trivially true proposition ⊤. The base case

being the action corresponding to the axiom/identity rule id:
𝐴 ⊢ 𝐴 ▷ ⊤.

A forward step, on the other hand, involves two (subterms

of two) hypotheses. The interaction operator between two

hypotheses is written ∗. In the example above, the detail of

the interaction is:

∀𝑥 .Hum(𝑥) ⇒ Mort(𝑥) ∗ Hum(Socr)
▷ Hum(Socr) ⇒ Mort(Socr) ∗ Hum(Socr) F∀i
▷ (Hum(Socr) ⊢ Hum(Socr)) ⇒ Mort(Socr) F⇒1

▷ ⊤ ⇒ Mort(Socr) id
▷ Mort(Socr) neul

The final result is the new hypothesis.

We come back to the study of the rewrite rules of ⊢ and ∗
further down.

2
Note that ⊢ has lower precedence than all logical connectives.

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Pablo Donato, Pierre-Yves Strub, and Benjamin Werner

5 Proof Steps through Clicks
Drag-and-drop actions involve two items. Some proof steps

involve only one item; they can be associated to the action

of clicking on this item. The general scheme is that clicking

on a connective or quantifier allows to “break” or destruct

this connective. The results of clicks are not very surprising,

but this feature is necessary to complement drag-and-drop

actions.

• Clicking on a blue conjunction 𝐴 ∧ 𝐵 transforms the

item into two separate blue items 𝐴 and 𝐵.

• Clicking on a red conjunction𝐴∧𝐵 splits the goal into

two subgoals, whose conclusions are respectively 𝐴

and 𝐵.

• Clicking on a blue disjunction 𝐴 ∨ 𝐵 splits the goal

into two subgoals of same conclusion, with 𝐴 (resp. 𝐵)

added as a new hypothesis.

• Clicking on the left (resp. right)-hand subterm of a red

disjunction 𝐴 ∨ 𝐵 replaces this red conclusion by 𝐴

(resp. 𝐵).

• Clicking on a red implication 𝐴 ⇒ 𝐵 breaks it into a

new red conclusion 𝐵 and a new blue hypothesis 𝐴.

• Clicking on a red universal quantifier ∀𝑥 .𝐴 introduces

a new object 𝑥 and the conclusion becomes 𝐴.

• Clicking on a blue existential ∃𝑥 .𝐴 introduces a new

object 𝑥 together with a blue hypothesis 𝐴.

• Clicking on a red equality 𝑡 = 𝑡 solves the goal imme-

diately.

One can see that these actions correspond essentially to

the introduction rules of the head connective for the conclu-

sion, and the elimination rule for the hypotheses.

It is possible to associate some more complex effects to

click actions performed on locations deeper under connec-

tives. This is the essence of proof-by-pointing, and [4] pro-

vides ample description. Since we here focus on drag-and-

drop actions, we do not detail further more advanced PbP

features. However we stress that these features are essen-

tially compatible with what we describe in this work.

Adding New Items. Often in the course of a proof, one

will want to add new items: either a new conjecture (blue

item), or a new object (green item) that would be helpful to

solve the current goal. These can be done respectively with

the blue +hyp and the green +expr buttons, which appear

in the screenshot of figure 5. When clicked, they prompt

the user for the statement of the conjecture, or the name

and expression defining the object. The +hyp button will

also create a new subgoal requiring to prove the conjecture

within the current context.

This mechanism and the syntax are for now very crude.

The design of possible smoother tools is an important issue

but left for future work
3
.

3
For instance [25] deals with a similar problem in the context of functional

programming.

6 A Simple Example Involving Equality
In most interactive theorem provers, the most basic rewrite
tactic allows the use of equality hypotheses, that is known

equations of the form 𝑡 = 𝑢, in order to replace some oc-

currences of 𝑡 by 𝑢 (or symmetrically, occurrences of 𝑢 by

𝑡). This substitution can be performed in the conclusion or

in hypotheses. Specifying the occurrences to be replaced

with textual commands can be quite tedious, since it in-

volves either dealing with some form of naming/numbering,

or writing manually patterns which duplicate parts of the

structure of terms.

In our setting we can provide this replacement operation

through drag-and-drop. The user points at the occurrence(s)

of 𝑡 to be replaced, and then brings them to the corresponding

side of the equality.

Figure 2 shows a very elementary example which is prov-

ing 1 + 1 = 2 in the setting of Peano arithmetic. For any

number 𝑛, we write 𝑛⊕1 to denote the application of the

successor function to 𝑛; closed terms are directly written in

decimal notation. The proof goes as follows
4
:

• We link the left-hand side 𝑥+𝑦⊕1 of the second addition
axiomwith 1+1 in the conclusion, which has the effect
of rewriting 1 + 1 into (1 + 0)⊕1:

∀𝑥 .∀𝑦. 𝑥 + 𝑦⊕1 = (𝑥 + 𝑦)⊕1 ⊢ 1 + 1 = 2

▷ ∀𝑦. 1 + 𝑦⊕1 = (1 + 𝑦)⊕1 ⊢ 1 + 1 = 2 L∀i
▷ 1 + 0⊕1 = (1 + 0)⊕1 ⊢ 1 + 1 = 2 L∀i
≡ 1 + 1 = (1 + 0)⊕1 ⊢ 1 + 1 = 2

▷ (1 + 0)⊕1 = 2 L=1

• We link the right-hand side 𝑥 + 0 of the first addition

axiom with 1+0 in the conclusion, which rewrites 1+0
into 1:

∀𝑥 .𝑥 = 𝑥 + 0 ⊢ (1 + 0)⊕1 = 2

▷ 1 = 1 + 0 ⊢ (1 + 0)⊕1 = 2 L∀i
▷ 1⊕1 = 2 L=2

≡ 2 = 2

We end up with the conclusion 2 = 2, which is provable

by a simple click. Notice how the orientation of the two

rewritings is determined by which side of the equality is

selected. Also, in this case, the rewritings correspond to

backward proof steps, because the rewriting is performed

in the conclusion. Similar rules (F=1 and F=2) are used to

perform rewritings in hypotheses.

7 Drag-and-Dropping through Connectives
We mentioned in section 5 that it is possible to destruct

logical connectives through click actions. In many cases

however, this will not be necessary: because a drag-and-

drop involves subterms of the items involved, one can often

4
We use the symbol ≡ to denote syntactic equality of two expressions

modulo pretty-printing, e.g. decimal notation.

A Drag-and-Drop Proof Tactic CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

Figure 2. Proving 1 + 1 = 2 in Peano arithmetic.

directly use (resp. act on) the part of the hypothesis (resp.

conclusion) which is of interest.

7.1 Conjunction and Disjunction
The conjunction is an easy to explain case. A hypothesis of

the form 𝐴 ∧ 𝐵 can be used directly both as evidence for 𝐴

and as evidence for 𝐵. This is modeled by the rules L∧1 and

L∧2 . A very simple action is thus:

𝐴 ∧ 𝐵 ⊢ 𝐴 ▷ 𝐴 ⊢ 𝐴 L∧1

▷ ⊤ id

On the other hand, considering a conjunctive goal 𝐴 ∧ 𝐵,

one can simplify or solve one of the branches by a DnD

action. This involves rules R∧1 and R∧2 . For instance:

𝐴 ⊢ 𝐴 ∧ 𝐵 ▷ 𝐴 ⊢ 𝐴 ∧ 𝐵 R∧1

▷ ⊤ ∧ 𝐵 id
▷ 𝐵 neul

Red disjunctions work similarly to conjunctive goals, ex-

cept that solving one branch will solve the entire goal. A

nice consequence of this, which is hard to simulate with

textual tactics, is that one can just simplify one branch of a

disjunction without comitting to it:

𝐴 ⊢ (𝐵 ∧ 𝐴) ∨𝐶 ▷ (𝐴 ⊢ 𝐵 ∧ 𝐴) ∨𝐶 R∨1

▷ (𝐵 ∧ (𝐴 ⊢ 𝐴)) ∨𝐶 R∧2

▷ (𝐵 ∧ ⊤) ∨𝐶 id
▷ 𝐵 ∨𝐶 neur

Disjunctive hypotheses also have a backward behavior

defined by the rules L∨1 and L∨2 , although in most cases

one will prefer the usual subgoal semantics associated with

click actions. More interesting is their forward behavior with

the rules F∨1 and F∨2 , in particular when they interact with

negated hypotheses. For instance:

𝐴 ∨ 𝐵 ∗ ¬𝐴 ▷ (𝐴 ∗ ¬𝐴) ∨ 𝐵 F∨1

▷ ¬(𝐴 ⊢ 𝐴) ∨ 𝐵 F⇒1

▷ ¬⊤ ∨ 𝐵 id
▷ ⊥ ∨ 𝐵 neul
▷ 𝐵 neul

We have noticed that on some examples, such actions

could provide a significant speed-up with respect to tradi-

tional textual command provers. We give a more concrete

example in section 11.

Notice that we used rules associated with implication,

since negation can be defined by ¬𝐴 ≜ 𝐴 ⇒ ⊥.

7.2 Implication
The implication connective is crucial, because it is not mono-

tone. More precisely, the roles of hypotheses and conclusions

are reversed on the left of an implication. We start with some

very basic examples for the various elementary cases.

Using the right hand part of a hypothesis 𝐴 ⇒ 𝐵 turns a

conclusion 𝐵 into 𝐴.

𝐴 ⇒ 𝐵 ⊢ 𝐵 ▷ 𝐴 ∧ (𝐵 ⊢ 𝐵) L⇒2

▷ 𝐴 ∧ ⊤ id
▷ 𝐴 neul

This can also be done under conjunctions and/or disjunc-

tions:

𝐴 ⇒ 𝐵 ⊢ 𝐶 ∧ (𝐷 ∨ 𝐵) ▷∗ 𝐶 ∧ (𝐷 ∨𝐴)
An interesting point is what happens when using impli-

cations with several premisses. The curried and uncurried

versions of the implication will behave exactly the same way:

𝐴 ⇒ 𝐵 ⇒ 𝐶 ⊢ 𝐷 ∨ 𝐶 ▷∗ 𝐷 ∨ (𝐴 ∧ 𝐵)
and:

𝐴 ∧ 𝐵 ⇒ 𝐶 ⊢ 𝐷 ∨ 𝐶 ▷∗ 𝐷 ∨ (𝐴 ∧ 𝐵)
As we have seen in Aristotle’s example (section 4), blue

implications can also be used in forward steps, where another

hypothesis matches one of their premisses.

A first nice feature is the ability to strengthen a hypothesis

by providing evidence for any of its premises:

𝐵 ⇒ 𝐴 ⇒ 𝐶 ∗ 𝐴 ▷∗ 𝐵 ⇒ 𝐶

and again the same can be done for the uncurryfied version:

𝐵 ∧ 𝐴 ⇒ 𝐶 ∗ 𝐴 ▷∗ 𝐵 ⇒ 𝐶.

The two aspects of the implication can be combined:

𝐵 ⇒ 𝐴 ⇒ 𝐶 ∗ 𝐷 ⇒ 𝐴 ▷∗ 𝐵 ⇒ 𝐷 ⇒ 𝐶

or:

𝐵 ∧ 𝐴 ⇒ 𝐶 ∗ 𝐷 ⇒ 𝐴 ▷∗ 𝐵 ∧ 𝐷 ⇒ 𝐶.

Note that there is almost no difference in the way one uses

different versions of a hypothesis 𝐴 ⇒ 𝐵 ⇒ 𝐶 , 𝐴 ∧ 𝐵 ⇒ 𝐶 ,

but also 𝐵 ⇒ 𝐴 ⇒ 𝐶 , in forward as well as in backward

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Pablo Donato, Pierre-Yves Strub, and Benjamin Werner

steps
5
. This underlines, we hope, that our proposal makes the

proof construction process much less dependent on arbitrary

syntactical details, like the order of hypotheses or whether

they come in curryfied form or not.

Also, the rules for implication combined with the rules

for equality L=i or F=i naturally give access to conditional
rewriting; we detail this in combination with quantifiers in

the next section.

As for red implications, they also have a backward se-

mantics with the rules R⇒1 and R⇒2 , but most of the time

one will want to destruct them immediately by click. An

exception could be if one wants to simplify some part of an

implicative, inductive goal before starting the induction.

7.3 Quantifiers
As the first example of this paper shows, the drag-and-drop

actions work through quantifiers and can trigger instanti-

ations of quantified variables. This is made possible by the

rules L∀i and F∀i, which allow the instantiation of a variable

universally quantified in a hypothesis.

Symmetrically, a variable quantified existentially in a con-

clusion can also be instantiated. For instance:

𝐴(𝑡) ⊢ ∃𝑥 .𝐴(𝑥) ▷ 𝐴(𝑡) ⊢ 𝐴(𝑡) L∀i
▷ ⊤ id

An interesting feature is the possibility to modify propo-

sitions under quantifiers. Consider the following possible

goal:

∀𝑎.∃𝑏.𝐴(𝑓 (𝑎) + 𝑔(𝑏))
where 𝐴, 𝑓 and 𝑔 can be complex expressions. Suppose we

have a lemma allowing us to prove:

∀𝑎.∃𝑏.𝐴(𝑔(𝑏) + 𝑓 (𝑎)) .
Switching from one formulation to the other, involves one

use of the commutativity property ∀𝑥 .∀𝑦.𝑥 + 𝑦 = 𝑦 + 𝑥 . In

our setting, the equality can be used under quantifiers in one

single action:

∀𝑥 .∀𝑦. 𝑥 + 𝑦 = 𝑦 + 𝑥 ⊢ ∀𝑎.∃𝑏.𝐴(𝑓 (𝑎) + 𝑔(𝑏))
▷∗ ∀𝑎.∃𝑏.𝐴(𝑔(𝑏) + 𝑓 (𝑎))

Note also that it is possible to instantiate only some of

the universally quantified variables in the items involved. In

general, a universally quantified variable can be instantiated

when the quantifier is in a negative position; for instance:

∀𝑥 .∀𝑦. 𝑃 (𝑦) ⇒ 𝑅(𝑥,𝑦) ∗ 𝑃 (𝑎) ▷∗ ∀𝑥 .𝑅(𝑥, 𝑎)
This last example illustrates how partial instantiation ab-

stracts away the order in which quantifiers are declared,

very much like the partial application presented in section

7.2.

5
When viewed as types through the Curry-Howard isomorphism, 𝐴 ⇒
𝐵 ⇒ 𝐶 ,𝐴∧𝐵 ⇒ 𝐶 , 𝐵 ∧𝐴 ⇒ 𝐶 and 𝐵 ⇒ 𝐴 ⇒ 𝐶 are isomorphic types; and
Roberto di Cosmo [10] has also precisely underlined that type isomorphisms

should help to free the programmer from arbitrary syntactical choices.

Again, in some cases, only some existential quantifiers

may be instantiated following a linkage:

𝑃 (𝑎) ⊢ ∃𝑥 .∃𝑦. 𝑃 (𝑦) ∧ 𝑅(𝑥,𝑦) ▷∗ ∃𝑥 .𝑅(𝑥, 𝑎)

When using an existential assumption, one can either

destruct it through a click, or use or transform it through a

DnD; for instance:

∃𝑥 . 𝑃 (𝑥) ∗ ∀𝑦. 𝑃 (𝑦) ⇒ 𝑄 (𝑦) ▷∗ ∃𝑥 .𝑄 (𝑥)

7.4 Dependency between Variables
Some more advanced examples yield simultaneous instanti-

ations of existentially and universally quantified variables.

In such cases, the system needs to check some dependency

conditions. For instance, the following linkage is valid and

solves the goal through one action:

∃𝑦.∀𝑥 . 𝑅(𝑥,𝑦) ⊢ ∀𝑥 ′.∃𝑦 ′. 𝑅(𝑥 ′, 𝑦 ′)
▷ ∀𝑦.(∀𝑥 . 𝑅(𝑥,𝑦) ⊢ ∀𝑥 ′.∃𝑦 ′. 𝑅(𝑥 ′, 𝑦 ′)) L∃s
▷ ∀𝑦.∀𝑥 ′.(∀𝑥 . 𝑅(𝑥,𝑦) ⊢ ∃𝑦 ′. 𝑅(𝑥 ′, 𝑦 ′)) R∀s
▷ ∀𝑦.∀𝑥 ′.(∀𝑥 . 𝑅(𝑥,𝑦) ⊢ 𝑅(𝑥 ′, 𝑦)) R∃i
▷ ∀𝑦.∀𝑥 ′.(𝑅(𝑥 ′, 𝑦) ⊢ 𝑅(𝑥 ′, 𝑦)) L∀i
▷ ∀𝑦.∀𝑥 ′.⊤ id
▷∗ ⊤

But the contraposed situation is not provable; the system

will refuse the following linkage:

∀𝑥 .∃𝑦.𝑅(𝑥,𝑦) ⊢ ∃𝑦 ′.∀𝑥 ′. 𝑅(𝑥 ′, 𝑦 ′)

Indeed, there is no reduction path starting from this linkage

ending with the id rule. This can be detected by the system

because the unification of 𝑅(𝑥,𝑦) and 𝑅(𝑥 ′, 𝑦 ′) here results
in a cycle in the instantiations of variables

6
. The system thus

refuses this action.

7.5 Conditional Rewriting
The example given in section 6, although very simple, al-

ready combines the rules for equality and for quantifiers.

When also using implication, one obtains naturally some

form of conditional rewriting. To take another simple exam-

ple, suppose we have a hypothesis of the form:

∀𝑥 .𝑥 ≠ 0 ⇒ 𝑓 (𝑥) = 𝑔(𝑥)

We can use this hypothesis for replacing a subterm 𝑓 (𝑡)
by 𝑔(𝑡), which will generate a side-condition 𝑡 ≠ 0:

∀𝑥 .𝑥 ≠ 0 ⇒ 𝑓 (𝑥) = 𝑔(𝑥) ⊢ 𝐴(𝑓 (𝑡))
▷ 𝑡 ≠ 0 ⇒ 𝑓 (𝑡) = 𝑔(𝑡) ⊢ 𝐴(𝑓 (𝑡)) L∀i
▷ 𝑡 ≠ 0 ∧ (𝑓 (𝑡) = 𝑔(𝑡) ⊢ 𝐴(𝑓 (𝑡))) L⇒2

▷ 𝑡 ≠ 0 ∧𝐴(𝑔(𝑡)) L=1

One could similarly do such a rewrite in a hypothesis.

Furthermore, the conditional rewrite can also be performed

6
Also notice that this example requires to use full (first-order) unification,

not only matching.

A Drag-and-Drop Proof Tactic CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

under quantifiers; for instance:

∀𝑥 .𝑥 ≠ 0 ⇒ 𝑓 (𝑥) = 𝑔(𝑥) ⊢ ∃𝑦.𝐴(𝑓 (𝑦)) R∃s
▷ ∃𝑦.(∀𝑥 .𝑥 ≠ 0 ⇒ 𝑓 (𝑥) = 𝑔(𝑥) ⊢ 𝐴(𝑓 (𝑦))) L∀i
▷ ∃𝑦.(𝑦 ≠ 0 ∧ (𝑓 (𝑦) = 𝑔(𝑦) ⊢ 𝐴(𝑓 (𝑦)))) L⇒2

▷ ∃𝑦.(𝑦 ≠ 0 ∧𝐴(𝑔(𝑡))) L=1

8 Correctness
All examples up to now followed the scheme for DnD actions

sketched in section 4:

• Given a blue item 𝐴 and a red item 𝐵, backward proof

steps produce a new conclusion 𝐶 by applying a se-

quence of rewrite rules 𝐴 ⊢ 𝐵 ▷∗ 𝐶 .

• Given two blue items 𝐴 and 𝐵, forward proof steps

produce a new hypothesis 𝐶 by applying a sequence

of rewrite rules 𝐴 ∗ 𝐵 ▷∗ 𝐶 .

Thus for such actions to be logically correct, we have to

make sure that our rewrite system satisfies the following

property:

Property 1 (Correctness).
• If 𝐴 ⊢ 𝐵 ▷∗ 𝐶 , then 𝐴,𝐶 ⊢ 𝐵 is provable.
• If 𝐴 ∗ 𝐵 ▷∗ 𝐶 , then 𝐴, 𝐵 ⊢ 𝐶 is provable.

We first need a few definitions to handle the fact that

rewrite rules apply at any depth inside formulas:

Definition 8.1 (Context). A context, written𝐴□, is a propo-
sition containing exactly one occurrence of a specific propo-

sitional variable □ which is not used elsewhere.

Given another proposition 𝐵, we write 𝐴𝐵 for the propo-

sition obtained by replacing □ in 𝐴□ by 𝐵. Note that this

replacement is not a substitution because it allows variable

capture. For instance ∀𝑥 . 𝑃 (𝑥) is the proposition ∀𝑥 .𝑃 (𝑥).

Definition 8.2 (Path). A path is a proposition where one

subformula has been selected. Formally, a path is a pair

(𝐴□, 𝐵) formed by one context and one proposition:

• 𝐴□ is called the context of the path,
• 𝐵 is called the selection of the path.

The path (𝐴□, 𝐵) can be viewed as the proposition 𝐴𝐵 .

For readability, we will generally also write 𝐴𝐵 for the path

(𝐴□, 𝐵).

Definition 8.3 (Inversions). Given a context 𝐴□, the num-

ber of inversions in 𝐴□, written inv(𝐴□), is the number of

subterms of 𝐴□ which are of the form 𝐶□ ⇒ 𝐷 ; that is

the number of times the hole is on the left-hand side of an

implication.

For instance:

inv(𝐷 ∧ □) = 0

inv((𝐷 ∧ □) ⇒ 𝐸) = 1

inv((□⇒ 𝐶) ⇒ 𝐷) = 2

Definition 8.4 (Polarity of a context). We will write 𝐴+□ to

specify that a context is positive, meaning that inv(𝐴+□) is
even. Symmetrically, 𝐴−□ will be used for negative contexts,
meaning that inv(𝐴−□) is odd.

The following simple covariance and contravariance prop-

erty will be used extensively later on:

Property 2. If Γ, 𝐴 ⊢ 𝐵 is provable, then so are Γ,𝐶+𝐴 ⊢
𝐶+ 𝐵 and Γ, 𝐷− 𝐵 ⊢ 𝐷−𝐴 .

For each rule, interpreting ⊢ as ⇒ and ∗ as ∧ in the right-

hand side is enough to show that the rule satisfies property 1

locally. But for rewritings taking place at occurrences deeper

inside a proposition, we need to consider the polarity of their

context. Using the notation of definition 8.4, we can state:

Lemma 8.5.
• If 𝐶+𝐴 ⊢ 𝐵 ▷ 𝐷 then 𝐷 ⊢ 𝐶+𝐴 ⇒ 𝐵 is provable.
• If 𝐶−𝐴 ⊢ 𝐵 ▷ 𝐷 then 𝐶−𝐴 ⇒ 𝐵 ⊢ 𝐷 is provable.
• If 𝐶+𝐴 ∗ 𝐵 ▷ 𝐷 then 𝐶+𝐴 ∧ 𝐵 ⊢ 𝐷 is provable.
• If 𝐶−𝐴 ∗ 𝐵 ▷ 𝐷 then 𝐷 ⊢ 𝐶−𝐴 ∧ 𝐵 is provable.

Remark 1. For some rules, like R⇒1 , the left-hand and right-
hand propositions are equivalent:

𝐴 ⇒ 𝐵 ⇒ 𝐶 ⇔ 𝐴 ∧ 𝐵 ⇒ 𝐴

Such rules are called invertible and their names are tagged by
∗. This point will be relevant in section 10.2.

An easy but important technical point is that rewrite rules

preserve the polarity of contexts around redexes, in the fol-

lowing precise sense:

Property 3. If 𝐶𝐴 ⊢ 𝐵 ▷ 𝐶 ′𝐴′ ⊢ 𝐵′ (resp. 𝐶𝐴 ∗ 𝐵 ▷ 𝐶 ′

𝐴′ ∗ 𝐵′) then 𝐶□ and 𝐶 ′□ have the same polarity.
If 𝐶𝐴 ⊢ 𝐵 ▷ 𝐶 ′𝐴′ ∗ 𝐵′ (resp. 𝐶𝐴 ∗ 𝐵 ▷ 𝐶 ′𝐴′ ⊢ 𝐵′) then

𝐶□ and 𝐶 ′□ have opposite polarities.

Combining lemma 8.5 and property 3, we obtain the cen-

tral correctness result about the rewrite rules:

Lemma 8.6.
• If 𝐶+𝐴 ⊢ 𝐵 ▷∗ 𝐷 then 𝐷 ⊢ 𝐶+𝐴 ⇒ 𝐵 is provable.
• If 𝐶−𝐴 ⊢ 𝐵 ▷∗ 𝐷 then 𝐶−𝐴 ⇒ 𝐵 ⊢ 𝐷 is provable.
• If 𝐶+𝐴 ∗ 𝐵 ▷∗ 𝐷 then 𝐶+𝐴 ∧ 𝐵 ⊢ 𝐷 is provable.
• If 𝐶−𝐴 ∗ 𝐵 ▷∗ 𝐷 then 𝐷 ⊢ 𝐶−𝐴 ∧ 𝐵 is provable.

We do not detail the proof here, but it relies crucially on

the covariance and contravariance property 2.

Finally, property 1 is obtained as the special case where

the rewriting starts in the (positive) empty context.

9 Linkages
In demonstrating correctness, we focused solely on the two

items involved in a DnD action. But every DnD action also

specifies the selection of a subterm in each item. We call

linkage the combined data of the two items together with

the selection, since the intent is to link the subterms to make

them interact in some way.

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Pablo Donato, Pierre-Yves Strub, and Benjamin Werner

Remark 2. In this article we only consider linkages between
two subterms, but as noted in section 6, rewriting is an example
of action that can benefit from allowing multiple selections7.

Each kind of DnD action is mapped in the system to a

specific form of linkage, which is designed to hold all the

information necessary for the correct execution of the action.

In this way the system can automatically search for linkages

of a certain form, and propose to the user all well-defined

actions associated to these linkages.

Remark 3. In the future, one can imagine several DnD actions
associated to a given linkage. In this case, the user could be
queried to choose the action to be performed (typically with
a pop-up menu). However with the actions considered in this
article, such ambiguities never arise.

On the “items axis”, we already distinguished between

backward and forward linkages, written respectively 𝐴 ⊢ 𝐵

and𝐴 ∗ 𝐵. If the items are unspecified, we will write𝐴 @ 𝐵.

Using the “selection axis”, we can specify a further distinc-

tion that was informal up to now: that of logical action and

rewrite action.

• Logical linkages link two subformulas. Thus they have

the form 𝐵𝐴 @ 𝐶𝐴′
.

• Rewrite linkages link one side of an equality with a

first-order term. Using liberally the notations from

definitions 8.1 and 8.2, they thus have the form

𝐵 𝑡 = 𝑢 @ 𝐶 𝑡 ′ (or symmetrically 𝐵𝑢 = 𝑡 @ 𝐶 𝑡 ′).

In both cases, we impose the following condition:

Condition 1 (Unification). The linked subterms (𝐴 and 𝐴′

or 𝑡 and 𝑡 ′) must be unifiable with respect to the variables
quantified in their contexts 𝐵□, 𝐶□. We do not detail all the
constraints of this unification problem, but the essential idea
is that a variable is unifiable if and only if its quantifier is
instantiable. This in turn can be determined by the polarity of
the context surrounding the quantifier. One also needs to check
that the unifier does not create circular dependencies between
variables.

There are also additional restrictions on the polarities of

contexts. Assuming we work in a goal Γ ⊢ 𝐶:

Condition 2 (Polarity). The following conditions are neces-
sary for the linkage 𝐵𝐴 @ 𝐷𝐴′ to be a logical linkage:

1. 𝐵𝐴 ∈ Γ,

2. 𝐷𝐴′
{≡ 𝐶 if @ is ⊢
∈ Γ if @ is ∗

3. (inv(𝐵□), inv(𝐷□)) ∈
{{(0, 0), (1, 1), (0, 2)} if @ is ⊢
{(0, 1), (1, 0)} if @ is ∗

7
In fact, a restricted kind of multi-occurrence rewrite is already available in

the current prototype of Actema: one just needs to enter selection mode, by
either toggling the dedicated button, or holding down the shift key.

Similarly, the following conditions are necessary for the link-
age 𝐵 𝑡 = 𝑢 @ 𝐷 𝑡 ′ to be a rewrite linkage. Either 𝐵 𝑡 = 𝑢 ∈
Γ, then:

1. 𝐷 𝑡 ′
{≡ 𝐶 if @ is ⊢
∈ Γ if @ is ∗

2. 𝐵□ is positive

or 𝐵 𝑡 = 𝑢 ≡ 𝐶 , then @ is ⊢ and:

1. 𝐷 𝑡 ′ ∈ Γ
2. 𝐵□ is negative

Remark 4. The main reason for limiting the number of inver-
sions in a path to 2 is that we place ourselves in intuitionistic
logic. In classical logic, one could, for instance, imagine the
following behavior:

(𝐴 ⇒ 𝐵) ⇒ 𝐶 ⊢ 𝐴 ▷∗ 𝐶 ⇒ 𝐴

But this would not be valid intuitionistically.

Definition 9.1 (Valid linkage). We say that a linkage L is

valid if it satisfies conditions 1 and 2.

One understands that for logical linkages, condition 2

guarantees that there is one positive and one negative occur-

rence among 𝐴 and 𝐴′
. For rewrite linkages, it guarantees

that the equality is in negative position.

One can also check that all the examples given up to here

were based on valid linkages.

10 Describing DnD Actions
We are now equipped to specify how logical and rewrite link-

ages translate deterministically to the backward and forward

proof steps shown in all examples.

First some remarks can be made about the rewrite rules

of figure 3:

• The set of rewrite rules is obviously non-confluent.

• It is also terminating, because the number of connec-

tives or quantifiers under ∗ or ⊢ decreases8.
As for the rules of figure 4, they are both terminating

and confluent. Indeed they define a function that eliminates

redundant occurrences of the units ⊤ and ⊥.
Here is a high-level overview of the complete procedure

followed to generate a proof step:

1. Selection: the user selects two subterms in two items

of the current goal;

2. Linkage: this either gives rise to a logical linkage

𝐵𝐴 @ 𝐶𝐴′
(resp. a rewrite linkage 𝐵 𝑡 = 𝑢 @ 𝐶 𝑡 ′),

or does not correspond to a known form of linkage.

In this case the procedure stops here, and the system

does not propose any action to the user;

8
Except for the Fcomm rule which is just meant to make the ∗ connective
symmetric; formally, the only infinite reduction paths end with an infinite

iteration of Fcomm.

A Drag-and-Drop Proof Tactic CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

3. Unification: the system tries to unify the selected

subterms 𝐴 and 𝐴′
(resp. 𝑡 and 𝑡 ′), which either yields

a substitution 𝜎 , or fails. In this case we stop like in

the previous step;

4. Linking: the system then chooses a rewriting start-

ing from the linkage. Thanks to theorem 10.2, this

rewriting always ends with a proposition of the form

𝐷 𝜎 (𝐴) ⊢ 𝜎 (𝐴′) (resp. 𝐷 𝜎 (𝑡) = 𝑢 @ 𝐶0 𝜎 (𝑡 ′));
5. Interaction: thus one can apply the id rule (resp. an

equality rule in {L=1, L=2, F=1, F=2});
6. Unit elimination: in the case of a logical action, this

creates an occurrence of ⊤, which is eliminated using

the rules of figure 4;

7. Goal modification: the two previous steps produced

a formula 𝐸. In the case of a forward linkage, a hypoth-

esis 𝐸 is added to the goal; in the case of a backward

linkage, the goal’s conclusion becomes 𝐸. In both cases,

the logical correctness is guaranteed by property 1.

10.1 Productivity
An important property of the linking step 4 is that there

is always a rewriting sequence that brings together the se-

lected subterms, which ensures that we can proceed to the

interaction step 5.

Because the rewrite rules are terminating, the important

point is to show that one can always apply a rule until one

reaches an interaction rule on the linkage. In other words, it

is possible to find at least one rule which preserves conditions

1 and 2 on linkages:

Lemma 10.1 (Valid Progress). If a linkage L is valid, then
either:

1. L ∈ {𝐴 ⊢ 𝐴, 𝑡 = 𝑢 ⊢ 𝐴𝑡 , 𝑢 = 𝑡 ⊢ 𝐴𝑡 , 𝑡 = 𝑢 ∗
𝐴𝑡 , 𝑢 = 𝑡 ∗𝐴𝑡 };

2. or L ▷ 𝐷 L ′ with L ′ valid.

The proof is not fundamentally difficult, but understand-

ably verbose. The two main points are:

• The rules involving a connective always preserve va-

lidity.

• When one can apply a rule involving a quantifier ∀𝑥
(resp. ∃𝑥), one checks whether the substitution instan-

tiates 𝑥 or not. In the first case one performs the in-

stantiation rule L∀i or F∀i (resp. R∃i); in the second

case the corresponding s rule.

Then we can state the following productivity theorem,

which is a direct consequence of the previous lemma and

the fact that the rewrite rules terminate:

Theorem 10.2 (Productivity). If L is a valid linkage, then
there is a sequence of reductions with one of the following

Backward

𝐴 ⊢ 𝐴 ▷ ⊤ id
𝑡 = 𝑢 ⊢ 𝐴 ▷ 𝐴 [𝑡 \ 𝑢] L=1

𝑢 = 𝑡 ⊢ 𝐴 ▷ 𝐴 [𝑡 \ 𝑢] L=2

(𝐵 ∧𝐶) ⊢ 𝐴 ▷ 𝐵 ⊢ 𝐴 L∧1

(𝐶 ∧ 𝐵) ⊢ 𝐴 ▷ 𝐵 ⊢ 𝐴 L∧2

𝐴 ⊢ (𝐵 ∧𝐶) ▷ (𝐴 ⊢ 𝐵) ∧𝐶 R∧1

𝐴 ⊢ (𝐶 ∧ 𝐵) ▷ 𝐶 ∧ (𝐴 ⊢ 𝐵) R∧2

(𝐵 ∨𝐶) ⊢ 𝐴 ▷ (𝐵 ⊢ 𝐴) ∧ (𝐶 ⇒ 𝐴) L∨1
∗

(𝐶 ∨ 𝐵) ⊢ 𝐴 ▷ (𝐶 ⇒ 𝐴) ∧ (𝐵 ⊢ 𝐴) L∨2
∗

𝐴 ⊢ (𝐵 ∨𝐶) ▷ (𝐴 ⊢ 𝐵) ∨𝐶 R∨1

𝐴 ⊢ (𝐶 ∨ 𝐵) ▷ 𝐶 ∨ (𝐴 ⊢ 𝐵) R∨2

(𝐶 ⇒ 𝐵) ⊢ 𝐴 ▷ 𝐶 ∧ (𝐵 ⊢ 𝐴) L⇒2

𝐴 ⊢ (𝐵 ⇒ 𝐶) ▷ (𝐴 ∗ 𝐵) ⇒ 𝐶 R⇒1
∗

𝐴 ⊢ (𝐶 ⇒ 𝐵) ▷ 𝐶 ⇒ (𝐴 ⊢ 𝐵) R⇒2
∗

(∀𝑥 .𝐵) ⊢ 𝐴 ▷ 𝐵 [𝑥 \ 𝑡] ⊢ 𝐴 L∀i
(∀𝑥 .𝐵) ⊢ 𝐴 ▷ ∃𝑥 .(𝐵 ⊢ 𝐴) L∀s
𝐴 ⊢ (∀𝑥 .𝐵) ▷ ∀𝑥 .(𝐴 ⊢ 𝐵) R∀s∗

(∃𝑥 .𝐵) ⊢ 𝐴 ▷ ∀𝑥 .(𝐵 ⊢ 𝐴) L∃s∗
𝐴 ⊢ (∃𝑥 .𝐵) ▷ 𝐴 ⊢ 𝐵 [𝑥 \ 𝑡] R∃i
𝐴 ⊢ (∃𝑥 .𝐵) ▷ ∃𝑥 .(𝐴 ⊢ 𝐵) R∃s

Forward

𝐴 ∗ (𝑡 = 𝑢) ▷ 𝐴 [𝑡 \ 𝑢] F=1

𝐴 ∗ (𝑢 = 𝑡) ▷ 𝐴 [𝑡 \ 𝑢] F=2

𝐴 ∗ (𝐵 ∧𝐶) ▷ 𝐴 ∗ 𝐵 F∧1

𝐴 ∗ (𝐶 ∧ 𝐵) ▷ 𝐴 ∗ 𝐵 F∧2

𝐴 ∗ (𝐵 ∨𝐶) ▷ (𝐴 ∗ 𝐵) ∨𝐶 F∨1

𝐴 ∗ (𝐶 ∨ 𝐵) ▷ 𝐶 ∨ (𝐴 ∗ 𝐵) F∨2

𝐴 ∗ (𝐵 ⇒ 𝐶) ▷ (𝐴 ⊢ 𝐵) ⇒ 𝐶 F⇒1

𝐴 ∗ (𝐶 ⇒ 𝐵) ▷ 𝐶 ⇒ (𝐴 ∗ 𝐵) F⇒2

𝐴 ∗ (∀𝑥 .𝐵) ▷ 𝐴 ∗ 𝐵 [𝑥 \ 𝑡] F∀i
𝐴 ∗ (∀𝑥 .𝐵) ▷ ∀𝑥 .(𝐴 ∗ 𝐵) F∀s

𝐴 ∗ (∃𝑥 .𝐵) ▷ ∃𝑥 .(𝐴 ∗ 𝐵) F∃s∗

𝐵 ∗𝐴 ▷ 𝐴 ∗ 𝐵 Fcomm

In the rules {L∀s, L∃s,R∀s,R∃s, F∀s, F∃s}, 𝑥 is not free in 𝐴.

Figure 3. Linking rules

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Pablo Donato, Pierre-Yves Strub, and Benjamin Werner

Units

⟨◦, †⟩ ∈ {⟨∧,⊤⟩ , ⟨∨,⊥⟩ , ⟨⇒,⊤⟩} † ◦𝐴 ▷ 𝐴 neul
⟨◦, †⟩ ∈ {⟨∧,⊤⟩ , ⟨∨,⊥⟩} 𝐴 ◦ † ▷ 𝐴 neur
⟨◦, †⟩ ∈ {⟨∧,⊥⟩ , ⟨∨,⊤⟩} † ◦𝐴 ▷ † absl
⟨◦, †⟩ ∈ {⟨∧,⊥⟩ , ⟨∨,⊤⟩ , ⟨⇒,⊤⟩} 𝐴 ◦ † ▷ † absr
⟨⋄, †⟩ ∈ {⟨∀,⊤⟩ , ⟨∃,⊥⟩} ⋄𝑥 .† ▷ † absq

⊥ ⇒ 𝐴 ▷ ⊤ efq

Figure 4. Unit elimination rules

forms:

L ▷∗ 𝐷+ 𝐴 ⊢ 𝐴

L ▷∗ 𝐷 𝑡 = 𝑢 @ 𝐴𝑡 L ▷∗ 𝐷𝑢 = 𝑡 @ 𝐴𝑡

10.2 Choosing the Best Derivation
A last point to deal with is non-confluence and in particular

choosing between first simplifying the head connective on

the right or the left of ∗ or ⊢. For instance in 𝐴 ∨ 𝐵 ⊢ 𝐵 ∨ 𝐴

one can apply either L∨1 or R∨2 .

Interestingly, an answer is provided by focusing. It has
been noticed by Andreoli [3] that, in bottom-up proof search,

one should apply the invertible logical rules first. In our

framework, this translates into first applying the invertible

rewrite rules (the ones marked by a *). In the case of the

example above, this means performing L∨1 first, which leads

to the following behavior:

𝐴 ∨ 𝐵 ⊢ 𝐵 ∨ 𝐴 ▷∗ 𝐵 ⇒ 𝐵 ∨𝐴.

This is indeed the “right” choice, since applying R∨2 first

would lead to a dead-end:

𝐴 ∨ 𝐵 ⊢ 𝐵 ∨ 𝐴 ▷∗ 𝐵 ∨ (𝐵 ⇒ 𝐴).
When two invertible rules can be applied, the order is

irrelevant. There are cases where two non-invertible rules

can be applied. The vast majority of them commute in terms

of provability, but not necessarily in the shape of the resulting

formula
9
. Therefore our specification still leaves room for

some choices. Currently, we have a heuristic prioritizing of

the rules that sticks to what is presented in examples. One

could also choose to leave the disambiguation to the user,

e.g. by looking at the orientation of drag-and-drops. This is

the solution chosen in [7] and [9].

11 A More Advanced Example
It is too early to perform a detailed case study comparing our

approach to interactive theorem proving with others – tactic

based, declarative, etc. . . This is due primarily to the fact

that our prototype is not mature enough; it cannot handle

9
In fact the only rules which do not give equivalent results when commuted

are the critical pairs F∨i / F⇒2 for 𝑖 ∈ {1, 2}, as was noted independently

in [9].

lemmas and implements a limited formalism. However some

examples allow to get a glimpse of specificities and possible

advantages of proofs by actions.

One such example is a small logical riddle, which we bor-

row from a textual educational system, Edukera [27]. One

considers a population of people, with at least one element

ℎ, together with a single function Mother and one predicate

Rich. The aim is to show that the two following assumptions

are incompatible:

(1) ∀𝑥 .¬Rich(𝑥) ∨ ¬Rich(Mother(Mother(𝑥))),
(2) ∀𝑥 .¬Rich(𝑥) ⇒ Rich(Mother(𝑥)) .

The original goal thus corresponds to the illustration of fig-

ure 5.

It is quite natural to approach this problem in a forward

manner, by starting from the hypotheses to establish new

facts. And a first point illustrated by this example is that DnD

actions allow to do this in a smooth and precise manner. A

possible first step is to bring ℎ to the first hypothesis, to

obtain a new fact:

(3) ¬Rich(ℎ) ∨ ¬Rich(Mother(Mother(ℎ))).

Double clicking on this new fact yields two cases:

(4) ¬Rich(ℎ),
(4’) ¬Rich(Mother(Mother(ℎ))).

Let us detail how one solves the second one.

By bringing ¬Rich(Mother(Mother(ℎ))) on the premise

of ∀𝑥 .¬Rich(𝑥) ⇒ Rich(Mother(𝑥)) one obtains

(6) Rich(Mother(Mother(Mother(ℎ)))).

The next step is a good example where the DnD is useful.

By bringing this new fact to the right-hand part of

(1) ∀𝑥 .¬Rich(𝑥) ∨ ¬Rich(Mother(Mother(𝑥)))

one immediately obtains a new fact

(7) ¬Rich(Mother(ℎ)).

In other proof systems, this last step requires a somewhat in-

tricate tactic line and/or writing down at least the statement

of the new fact.

One can then finish the case by combining (7) and (2)
which yields Rich(Mother(Mother(ℎ))), which contradicts

A Drag-and-Drop Proof Tactic CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

Figure 5. The beginning of an example due to Edukera.

(4′). These two last steps each correspond to a simple DnD.

The other case, ¬Rich(ℎ), is quite similar.

Such a simple example is not sufficient to provide signifi-

cant metrics. Note however that once a user has understood

the proof, the riddle is routinely solved in less than a minute

in Actema, which seems out of reach for about any user in a

tactic based prover. At least as important is the fact that the

proof can be performed without typing any text, especially

no intermediate statement.

12 Related Work
Subformula Linking. Although the primary motivation is

very practical, it benefitted a lot from recent proof theory,

especially Deep Inference. A key step was the discovery of

the work of Kaustuv Chaudhuri [7] who had noticed how

formula linking in deep inference could be used for proof

construction in linear logic. His calculus of structures was

very important for designing the rewrite rules which un-

derly our system. In more recent work [9] he also deals with

intuitionistic logic. Interestingly, some ideas like forward

proof steps or the use of colors appeared independently in

his and our work.

A difference is that we give the possibility to link first-

order terms in addition to propositions, which is the basis

for rewrite actions. One can imagine to design new kind of

transformations in the future.

Window Inference. We have already mentioned Proof-by-

Pointing, which was part of the CtCoq and Pcoq efforts [2] to

design a graphical user interface for the Coq proof assistant.

Another contemporary line of work was the one based on

window inference, initially pioneered by P.J. Robinson and J.

Staples. In [26], window inference is described as a general

proof-theoretical framework, which aims to accomodate for

the pervasive use of equivalence transformations throughout
mathematics and computer science.

Window inference has been used both for general-purpose

logics like HOL [14], and in more specialized settings like

program refinement [15]. It naturally lends itself to integra-

tion in a graphical user interface ([19], [20]), where the user

can focus on a subexpression by clicking on it. One is then

presented with a new graphical window, holding the selected

expression as well as an extended set of hypotheses exposing

information inferrable from the context of the expression.

The user can pick from a list of valid transformations to be

applied to the expression, before closing the window. This

propagates the transformations to the parent window by

replacing the old subexpression by the new one, without

modifying the surrounding context.

This process is quite reminiscent of the rewriting produced

by our DnD actions. One key difference is that window in-

ference rules can be applied stepwise, while we choose to

hide the sequence of rules that justifies a DnD. The window

inference approach gives to the user a precise control of

the transformations to be performed and thus could inspire

interesting extensions of our work.

Tangible Functional Programming. We noticed an inter-

esting connection with the work of Conal Elliott on tangible

functional programming [11]. His concept of deep application
of 𝜆-terms seems related to the notion of subformula linking,

when viewing function and product types as implications

and conjunctions through the formulae-as-types interpreta-

tion. He also devised a system of basic combinators which

are composed sequentially to compute the result of a DnD,

though it follows a more complex dynamic than our rewrite

rules. Even if the mapping between proofs and programs is

not exact in this case, it suggests a possible interesting field

of application for the Curry-Howard correspondance, in the

realm of graphical proving/programming environments.

Other Gestural Proof Systems. There are other proof sys-
tems which include drag-and-drop features. Two of them are

the KeY Prover [1] and TAS [20]. TAS is a window inference

system tailored for program refinement, and uses DnD ac-

tions between an expression and a transformation, in order

to apply the latter to the former. As for the KeY Prover, its

usage of DnD overlaps only a very small portion of usecases

that we hinted at in section 11, namely the instantiation of

quantifiers with objects.

We can also mention the recent work of Zhan et al. [29].

They share with us the vision of a proof assistant mainly

driven by gestural actions, which requires far less textual

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Pablo Donato, Pierre-Yves Strub, and Benjamin Werner

inputs from the user. However, they only consider point-and-

click actions, and rely on a text-heavy presentation at two

levels:

1. the proof state, which is a structured proof text in the

style of Isar [24];

2. the proof commands, which can only be performed

through choices in textual menus.

Explicit Proof Objects. Finally let us mention various re-

cent implementations proposing various ways to construct

proofs graphically: Building Blocks [17], the Incredible Proof

Machine [5], Logitext
10
and Click & coLLecT [6]. But these

systems focus more on explicating the proof object than on

making its construction easier.

13 Conclusion and Perspectives
This work started as a very practical effort. Discovering and

understanding the links with more theoretically grounded

approaches, and especially deep inference, made us aware

that there may be more proof theoretical depth to this idea

than we first thought. But, most importantly, adapting the

logical rules and tools of deep inference to the practical ques-

tion we encountered, allowed us to structure our proposal

and to define the “right” behavior for the system. We were

able to extend the deep inference approach to the use of

equalities 6, which may be an originality of this work. It

seems imaginable to proceed similarly with other mathemat-

ical relations.

More generally, we hope that our treatment of equality

can be the start for providing graphical or gestural tools to

perform algebraic transformations of expressions (be there in

the conclusion or in hypotheses). As mentioned above, Win-

dow Inference could serve as an inspiration here. This seems

promising to us, since describing such a transformation is

notoriously tedious when using textual commands.

Even a small prototype allowed us to experiment on some

non-trivial examples and to make some first encouraging

experiences. In various cases, like the one described in sec-

tion 11, we have observed shorter or more straightforward

proofs than in textual provers. Another nice point is that

some syntactical details, like the name of proof tactics be-

come irrelevant in the gestural setting. More generally, we

feel that using such a system, one may indeed develop a

good intuition for the behavior of the logical items. But this

is obviously a user interface or user experience question

which is too early to quantify. Also, some novel questions

appear when implementing such a graphical system: what

are the good user interface choices, how to obtain a good

look-and-feel, what visual feedback the system should pro-

vide. . .

On the other hand, we should acknowledge that certain

styles of proofs, where a large number of subcases can be

10http://logitext.mit.edu/main

immediately solved through the same short textual tactic

sequence, may be less well suited for the gestural approach

(the SSReflect [13] dialect for Coq is very well suited for such

cases).

Among future lines of work, it will be interesting to ex-

plore how some automation fits into this framework. One

example is the point-and-shoot paradigm of [4]. But the DnD

feature could open up new possibilities, like having the sys-

tem perform some automated deduction to prove equiva-

lences or implications between the two squared formulas

(which would thus no longer be required to be strictly equal

or unifiable).

Another obvious and important point to be tackled next is

to provide a smooth way to invoke a library of lemmas in a

graphical proof. We believe this could raise some interesting

questions.

An also promising line of work is to extend our approach

to classical logic. A point being that the graphical setting

could smoothly handle multiple conclusions with less spuri-

ous overhead than text commands.

An important difference with the days of the pioneering

work on proof-by-pointing is that developers can now rely

on powerful and standardized libraries, which make the con-

struction of user interfaces much faster and easier, giving

new room for experimentation and proposals. But bringing

everything together in simple commands remains a compli-

cated theoretical and development task.

Acknowledgments
We are grateful to Kaustuv Chaudhuri and Dale Miller for

stimulating discussions, and to Sébastien Najjar of the Dioxy-

gen company for his work on the front-end of the Actema

prototype. Useful comments and references were provided

by anonymous referees.

References
[1] Wolfgang Ahrendt and Sarah Grebing. 2016. Using the KeY Prover.

In Deductive Software Verification – The KeY Book, Wolfgang Ahrendt,

Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and

Mattias Ulbrich (Eds.). Vol. 10001. Springer International Publishing,

Cham, 495–539. https://doi.org/10.1007/978-3-319-49812-6_15 Series

Title: Lecture Notes in Computer Science.

[2] Ahmed Amerkad, Yves Bertot, Loïc Pottier, and Laurence Rideau. 2001.

Mathematics and Proof Presentation in Pcoq. Technical Report RR-4313.
INRIA. https://hal.inria.fr/inria-00072274

[3] Jean-Marc Andreoli. 1992. Logic Programming with Focusing Proofs

in Linear Logic. Journal of Logic and Computation 2, 3 (1992), 297–

347. https://academic.oup.com/logcom/article-lookup/doi/10.1093/
logcom/2.3.297

[4] Yves Bertot, Gilles Kahn, and Laurent Théry. 1994. Proof by pointing. In

Theoretical Aspects of Computer Software, Masami Hagiya and John C.

Mitchell (Eds.). Vol. 789. Springer Berlin Heidelberg, 141–160. https:
//doi.org/10.1007/3-540-57887-0_94 Series Title: Lecture Notes in

Computer Science.

[5] Joachim Breitner. 2016. Visual Theorem Proving with the Incredi-

ble Proof Machine. In Interactive Theorem Proving, Jasmin Christian

http://logitext.mit.edu/main
https://doi.org/10.1007/978-3-319-49812-6_15
https://hal.inria.fr/inria-00072274
https://academic.oup.com/logcom/article-lookup/doi/10.1093/logcom/2.3.297
https://academic.oup.com/logcom/article-lookup/doi/10.1093/logcom/2.3.297
https://doi.org/10.1007/3-540-57887-0_94
https://doi.org/10.1007/3-540-57887-0_94

A Drag-and-Drop Proof Tactic CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

Blanchette and Stephan Merz (Eds.). Vol. 9807. Springer International

Publishing, 123–139. https://doi.org/10.1007/978-3-319-43144-4_8
Series Title: Lecture Notes in Computer Science.

[6] Etienne Callies and Olivier Laurent. 2021. Click and coLLecT An

Interactive Linear Logic Prover. In 5th InternationalWorkshop on Trends
in Linear Logic and Applications (TLLA 2021). Rome (virtual), Italy.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271501
[7] Kaustuv Chaudhuri. 2013. Subformula Linking as an Interaction

Method. In Interactive Theorem Proving, Sandrine Blazy, Christine

Paulin-Mohring, and David Pichardie (Eds.). Vol. 7998. Springer Berlin

Heidelberg, 386–401. https://doi.org/10.1007/978-3-642-39634-2_28
Series Title: Lecture Notes in Computer Science.

[8] Kaustuv Chaudhuri. 2020. Interactive Proof Building with Direct

Manipulation for Linear Logic (and Cousins). (2020). Invited Talk at

the Linearity & TLLA workshop.

[9] Kaustuv Chaudhuri. 2021. Subformula Linking for Intuitionistic Logic

with Application to Type Theory. In Automated Deduction - CADE
28 - 28th International Conference on Automated Deduction, Virtual
Event, July 12-15, 2021, Proceedings (Lecture Notes in Computer Science,
Vol. 12699), André Platzer and Geoff Sutcliffe (Eds.). Springer, 200–216.

https://doi.org/10.1007/978-3-030-79876-5_12
[10] Roberto Di Cosmo. 1995. Isomorphisms of types: from 𝜆-calculus to

information retrieval and language design. Birkhauser. http://www.ens.
fr/users/dicosmo/Publications/ISObook.html ISBN-0-8176-3763-X.

[11] Conal M. Elliott. 2007. Tangible Functional Programming. In Proceed-
ings of the 12th ACM SIGPLAN International Conference on Functional
Programming (Freiburg, Germany) (ICFP ’07). Association for Comput-

ing Machinery, New York, NY, USA, 59–70. https://doi.org/10.1145/
1291151.1291163

[12] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50,
1 (1987), 1 – 101. https://doi.org/10.1016/0304-3975(87)90045-4

[13] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. 2016. A Small
Scale Reflection Extension for the Coq system. Research Report RR-6455.

Inria Saclay Ile de France. https://hal.inria.fr/inria-00258384
[14] J. Grundy. 1991. Window Inference In The HOL System. In 1991

International Workshop on the HOL Theorem Proving System and Its
Applications. 177–189. https://doi.org/10.1109/HOL.1991.596285

[15] Jim Grundy. 1992. A Window Inference Tool for Refinement. In 5th
Refinement Workshop, Cliff B. Jones, Roger C. Shaw, and Tim Denvir

(Eds.). Springer London, London, 230–254.

[16] Alessio Guglielmi. 1999. A Calculus of Order and Interaction. Technical
Report. Technische Universität Dresden. https://www.researchgate.
net/publication/2807151_A_Calculus_of_Order_and_Interaction

[17] Sorin Lerner, Stephen R. Foster, and William G. Griswold. 2015. Poly-

morphic Blocks: Formalism-Inspired UI for Structured Connectors.

In Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, CHI 2015, Seoul, Republic of Korea, April 18-23,
2015, Bo Begole, Jinwoo Kim, Kori Inkpen, and Woontack Woo (Eds.).

ACM, 3063–3072. https://doi.org/10.1145/2702123.2702302

[18] Chuck Liang and Dale Miller. 2009. Focusing and polarization in linear,

intuitionistic, and classical logics. Theoretical Computer Science 410,
46 (2009), 4747–4768. https://doi.org/10.1016/j.tcs.2009.07.041

[19] Thomas Långbacka, Rimvydas Rukšėnas, and Joakim vonWright. 1995.

TkWinHOL: A tool for Window Inference in HOL. In Higher Order
Logic Theorem Proving and Its Applications (Lecture Notes in Computer
Science), E. Thomas Schubert, Philip J. Windley, and James Alves-Foss

(Eds.). Springer, Berlin, Heidelberg, 245–260. https://doi.org/10.1007/
3-540-60275-5_69

[20] Christoph Lüth and Burkhart Wolff. 2000. TAS — A Generic Window

Inference System. In Theorem Proving in Higher Order Logics, Gerhard
Goos, Juris Hartmanis, Jan van Leeuwen, Mark Aagaard, and John

Harrison (Eds.). Vol. 1869. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 406–423. https://doi.org/10.1007/3-540-44659-1_25 Series Title:

Lecture Notes in Computer Science.

[21] Alberto Martelli and Ugo Montanari. 1982. An Efficient Unification

Algorithm. ACM Trans. Program. Lang. Syst. 4, 2 (April 1982), 258–282.
https://doi.org/10.1145/357162.357169

[22] Dale A. Miller. 1987. A compact representation of proofs. Studia Logica
46 (1987), 347–370.

[23] Robin Milner. 1984. The use of machines to assist in rigor-

ous proof. Philosophical Transactions of the Royal Society
of London. Series A, Mathematical and Physical Sciences 312,

1522 (1984), 411–422. https://doi.org/10.1098/rsta.1984.0067
arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1984.0067

[24] Tobias Nipkow. 2002. Structured Proofs in Isar/HOL. In Types for
Proofs and Programs, Second International Workshop, TYPES 2002, Berg
en Dal, The Netherlands, April 24-28, 2002, Selected Papers (Lecture Notes
in Computer Science, Vol. 2646), Herman Geuvers and Freek Wiedijk

(Eds.). Springer, 259–278. https://doi.org/10.1007/3-540-39185-1_15
[25] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins,

and Ravi Chugh. 2021. Filling typed holes with live GUIs. In Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation (PLDI 2021). Asso-
ciation for Computing Machinery, New York, NY, USA, 511–525.

https://doi.org/10.1145/3453483.3454059
[26] Peter J. Robinson and John Staples. 1993. Formalizing a Hierarchical

Structure of Practical Mathematical Reasoning. Journal of Logic and
Computation 3, 1 (Feb. 1993), 47–61. https://doi.org/10.1093/logcom/3.
1.47

[27] Benoit Rognier and Guillaume Duhamel. 2016. Présentation de la plate-

forme edukera. In Vingt-septièmes Journées Francophones des Langages
Applicatifs (JFLA 2016).

[28] Lutz Straßburger. 2019. The problem of proof identity, and why com-

puter scientists should care about Hilbert’s 24th problem. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences 377, 2140 (2019), 20180038. https://doi.org/10.1098/
rsta.2018.0038

[29] Bohua Zhan, Zhenyan Ji, Wenfan Zhou, Chaozhu Xiang, Jie Hou, and

Wenhui Sun. 2019. Design of point-and-click user interfaces for proof
assistants.

https://doi.org/10.1007/978-3-319-43144-4_8
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271501
https://doi.org/10.1007/978-3-642-39634-2_28
https://doi.org/10.1007/978-3-030-79876-5_12
http://www.ens.fr/users/dicosmo/Publications/ISObook.html
http://www.ens.fr/users/dicosmo/Publications/ISObook.html
https://doi.org/10.1145/1291151.1291163
https://doi.org/10.1145/1291151.1291163
https://doi.org/10.1016/0304-3975(87)90045-4
https://hal.inria.fr/inria-00258384
https://doi.org/10.1109/HOL.1991.596285
https://www.researchgate.net/publication/2807151_A_Calculus_of_Order_and_Interaction
https://www.researchgate.net/publication/2807151_A_Calculus_of_Order_and_Interaction
https://doi.org/10.1145/2702123.2702302
https://doi.org/10.1016/j.tcs.2009.07.041
https://doi.org/10.1007/3-540-60275-5_69
https://doi.org/10.1007/3-540-60275-5_69
https://doi.org/10.1007/3-540-44659-1_25
https://doi.org/10.1145/357162.357169
https://doi.org/10.1098/rsta.1984.0067
https://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1984.0067
https://doi.org/10.1007/3-540-39185-1_15
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1093/logcom/3.1.47
https://doi.org/10.1093/logcom/3.1.47
https://doi.org/10.1098/rsta.2018.0038
https://doi.org/10.1098/rsta.2018.0038

	Abstract
	1 Introduction
	2 Motivations
	3 Logical Setting
	4 A First Example
	4.1 Layout
	4.2 Two Kinds of Actions
	4.3 Modeling the Mechanism

	5 Proof Steps through Clicks
	6 A Simple Example Involving Equality
	7 Drag-and-Dropping through Connectives
	7.1 Conjunction and Disjunction
	7.2 Implication
	7.3 Quantifiers
	7.4 Dependency between Variables
	7.5 Conditional Rewriting

	8 Correctness
	9 Linkages
	10 Describing DnD Actions
	10.1 Productivity
	10.2 Choosing the Best Derivation

	11 A More Advanced Example
	12 Related Work
	13 Conclusion and Perspectives
	References

