
HAL Id: hal-03823357
https://hal.science/hal-03823357v1

Submitted on 20 Oct 2022 (v1), last revised 4 Nov 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A drag-and-drop proof tactic
Pablo Donato, Pierre-Yves Strub, Benjamin Werner

To cite this version:
Pablo Donato, Pierre-Yves Strub, Benjamin Werner. A drag-and-drop proof tactic. CPP ’22: 11th
ACM SIGPLAN International Conference on Certified Programs and Proofs, Jan 2022, Philadelphia
PA USA, France. pp.197-209, �10.1145/3497775.3503692�. �hal-03823357v1�

https://hal.science/hal-03823357v1
https://hal.archives-ouvertes.fr

A Drag-and-Drop Proof Tactic

Pablo Donato
pablo.donato@polytechnique.edu

École polytechnique
LIX

France

Pierre-Yves Strub
pierre-yves.strub@polytechnique.edu

École polytechnique
LIX

France

Benjamin Werner
benjamin.werner@polytechnique.edu

École polytechnique
LIX

France

Abstract

We explore the features of a user interface where formal
proofs can be built through gestural actions. In particular,
we show how proof construction steps can be associated to
drag-and-drop actions.We argue that this can provide quick
and intuitive proof construction steps. This work builds on
theoretical tools coming fromdeep inference. It also resumes
and integrates some ideas of the former proof-by-pointing
project.

CCS Concepts: • Mathematics of computing → Mathe-

matical software; •Human-centeredcomputing→Graph-

ical user interfaces; Gestural input; • Theory of computa-

tion → Proof theory; Equational logic and rewriting; Con-
structive mathematics.

Keywords: logic, formal proofs, user interfaces, deep infer-
ence

ACM Reference Format:

Pablo Donato, Pierre-Yves Strub, and Benjamin Werner. 2022. A
Drag-and-Drop Proof Tactic. In Proceedings of the 11th ACM SIG-

PLAN International Conference on Certified Programs and Proofs (CPP

’22), January 17–18, 2022, Philadelphia, PA, USA. ACM, New York,
NY, USA, 13 pages. h�ps://doi.org/10.1145/3497775.3503692

1 Introduction

Most Interactive Theorem Provers allow the user to incre-
mentally construct formal proofs through an interaction loop.
One progresses through a sequence of states corresponding
to incomplete proofs. Each of these states is itself described
by a finite set of goals and the proof is completed once there
are no goals left. From the user’s point of view, a goal ap-
pears as a sequent, in the sense coined by Gentzen. In the
case of intuitionistic logic that is:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9182-5/22/01. . . $15.00
h�ps://doi.org/10.1145/3497775.3503692

• One particular proposition�which is to be proved; we
designate it as the goal’s conclusion,

• a set of propositions Γ corresponding to hypotheses.

On paper, this sequent is written Γ ⊢ �. The user performs
actions on one such goal at a time, and the actions transform
the goal, or rather replace the goal by a new set of goals.
When this set is empty, the goal is said to be solved.

The actions performed by the user can be more or less so-
phisticated. But, fundamentally, one finds elementary com-
mands which correspond roughly to the logical rules, gen-
erally of natural deduction. For instance, a goal Γ ⊢ � ∨ �

(resp. Γ ⊢ � ∧ �) can be turned into either a goal Γ ⊢ � or a
goal Γ ⊢ � (resp. into two goals Γ ⊢ � and Γ ⊢ �).
To sum up, during the proof construction process, a state

is a set of sequents. These goals/sequents are modified by
commands, which allow the user to navigate from the orig-
inal statement of the theorem to the state where there are
no goals left to be proved.
In the dominant paradigm, these commands are provided

by the user in text form; since Robin Milner and LCF [23],
they are called tactics. Proof files are literally proof-scripts;
that is the sequence of tactics typed-in by the user.
The present work is a form of continuation of the Proof-

by-Pointing (PbP) effort, initiated in the 1990’s byGilles Kahn,
Yves Bertot, Laurent Théry and their group [4]. Both works
share a main idea which is to replace the textual tactic com-
mands by gestural actions performed by the user on a graph-
ical user interface. In both cases, the items the user performs
actions on are the current goal’s conclusion and hypotheses.
What is new in our work is that we allow not only to click on
(subterms of) these items, but also to move them in order to
drag-and-drop (DnD) one item onto another. This enriches
the language of actions in, we argue, an intuitive way. We
should point out that what is proposed here is not meant to
replace but to complement the proof-by-pointing features.
We thus envision a general proof-by-action paradigm, which
includes both PbP and DnD features.
In this article, we focus on how drag-and-drop actions

implement proof construction operations corresponding to
the core logic; that is how they deal with logical connectives,
quantifiers and equality. We have started to implement this
in a prototype named Actema (for Active Mathematics) run-
ning through a web HTML5/JavaScript interface. This possi-
bility to experiment in practice, even though yet on a small

https://doi.org/10.1145/3497775.3503692
https://doi.org/10.1145/3497775.3503692

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Pablo Donato, Pierre-Yves Strub, and Benjamin Werner

scale, gave valuable feedback for crafting the way DnD ac-
tions are to be translated into proof construction steps in an
intuitive and practical way.
The rest of this article is organized as follows. Section

2 explains the motivations behind this work, and section 3
briefly outlines its logical setting. Section 4 describes the ba-
sic features of a graphical proof interface based on our prin-
ciples, and illustrates them with a famous syllogism from
Aristotle. Section 5 shows how it can integrate basic proof-
by-pointing capabilities. The next two sections explain, through
further examples, how the drag-and-drop paradigm works;
first for so-called rewrite actions involving equalities, then
for actions involving logical connectives and quantifiers. Sec-
tion 8 introduces the notions of context and polarity, in or-
der to prove the correctness of our system. Section 9 ex-
plains how DnD actions are specified by the user interac-
tively, through schemas called linkages. Section 10 describes
how linkages translate into logical steps, as well as some
properties of this translation. Section 11 studies a proof of
a small logical riddle in Actema, highlighting some benefits
of our approach compared to textual systems. We end with
a discussion on some related works in section 12, and then
conclude.

2 Motivations

Since this work is about changing the very way the user
interacts with an interactive theorem prover, we feel it is
important to make some disclaimers about the aims and the
scope of what is presented here.
From a development point of view, we are still at a very

preliminary stage. Building a real-size proof system integrat-
ing the ideas we present would require an important effort
and is still a long term goal. Some concepts however have
emerged, which, we hope allow to sketch some aspects of
the look-and-feel of such a system, and what some of its
advantages could be.
Also, at this stage, we focus on basic proof constructions

and on how the gestural approach can helpmake themmore
efficient and more intuitive. Some of the illustrative exam-
ples we give below could probably be dealt with using ad-
vanced proof search tactics, but we believe this does not
make them irrelevant. Rather than (sub)goals to be proved,
these examples should be seen as generic situations often
encountered in the course of a proof, which require small
and local transformations to the statements involved.
The idea of interactive theorem provers is that automa-

tion and user actions complement each other, and we here
focus on the latter for the time being. The question of inte-
grating drag-and-drop actions and powerful proof automa-
tion techniques is left for future work.

Finally, precisely because our approach is about giving
the user a smoother control of the proof construction pro-
cess, we see a possibility for our work to help making future
proof systems more suited for education.

3 Logical Setting

Any proof system must implement a given logical formal-
ism. What we describe here ought to be applied to a wide
range of formalisms, but in this article we focus on the core
of intuitionistic first-order logic with equality (FOL). This
allows us to consider sequents where hypotheses are un-
orderedwhich, in turn, simplifies the technical presentations.
We will thus write Γ,� ⊢ � for a sequent where � is among
the hypotheses.
We use and do not recall the usual definitions of terms and

propositions in first order logic. We assume a first order lan-
guage (function and predicate symbols) is given. Provability
is defined over sequents Γ ⊢ � by the usual logical rules of
natural deduction (NJ) and/or sequent calculus (LJ).
Equality is treated in a common way: = is a binary pred-

icate symbol written in the usual infix notation, together
with the reflexivity axiom ∀G.G = G and the Leibniz scheme,
stating that for any proposition � one has

∀G.∀~.G = ~ ∧ � ⇒ � [G \ ~] .

We will not consider, on paper, the details of variable re-
naming in substitutions, implicitly applying the so-called
Barendregt convention, that bound and free variables are
distinct and that a variable is bound at most once.
Extending this work to simple extensions of FOL, like

multi-sorted predicate calculus is straightforward (and ac-
tually done in the prototype). Some more interesting points
may show up when considering how to apply this work to
more complex formalisms like type theories. We will not ex-
plore these questions here.
Another interesting and promising question is how our

approach extends to classical logic(s), that ismulti-conclusion
classical sequents. In this text we only give a few hints on
this topic.

4 A First Example

4.1 Layout

One advantage of the proof-by-actions paradigm, is that it
allows a very lean visual layout of the proof state. There is
no need to name hypotheses. In the prototype we also dis-
pense with a text buffer, since proofs are solely built through
graphical actions.
Figure 1 shows the layout of the system using the ancient

example of Aristotle. A goal appears as a set of items whose
nature is defined by their respective colors1:

1We are well aware that, in later implementations, this color-based distinc-
tion ought to be complemented by some other visual distinction, at least

A Drag-and-Drop Proof Tactic CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

actions-tag

Figure 1. A partial screenshot showing a goal in the Actema prototype. The conclusion is red on the right, the two hypotheses blue on the
left. The grey dotted arrows have been added to show the two possible actions.

• A red item which is the proposition to be proved, that
is the conclusion,

• blue items, which are the local hypotheses.

The items are what the user can act upon: either by clicking
on them, or by moving them.

Finally, note that each goal is displayed on a tab.

4.2 Two Kinds of Actions

In this example, there are two possible actions.

• A first one is to bring together, by drag-and-drop, the
red conclusion Mort(Socr) with the succedant of the
first hypothesisMort(G). This will transform the goal
by changing the conclusion to Hum(Socr).

• A second possibility is to combine the two hypothe-
ses; more precisely to bring together the itemHum(Socr)

with the premise Hum(G) of the first hypothesis. This
will yield a new hypothesisMort(Socr).

The first case is what we call a backward step where the
conclusion is modified by using a hypothesis. The second
case is a forward step where two known facts are combined
to deduce a new fact, that is an additional blue item.
In both cases, the proof can then be finished invoking

the logical axiom rule. In practice this means bringing to-
gether the blue hypothesis Hum(Socr) (resp. the new blue
factMort(Socr)) with the red goal.

4.3 Modeling the Mechanism

A backward step involves a hypothesis, here ∀G.Hum(G) ⇒

Mort(G) and the conclusion, hereMort(Socr). Furthermore,
the action actually links together two subterms of each of
these items; this is written by squaring these subterms. The
symbol ⊢, used as an operator, is meant to describe the result
of the interaction. Internally, the behavior of this operator is
defined by a set of rewrite rules given in figures 3 and 4. Here
is the sequence of rewrites corresponding to the example2:

∀G.Hum(G) ⇒ Mort(G) ⊢ Mort(Socr)

⊲ Hum(Socr) ⇒ Mort(Socr) ⊢ Mort(Socr) L∀i

⊲ Hum(Socr) ∧ (Mort(Socr) ⊢ Mort(Socr)) L⇒2

⊲ Hum(Socr) ∧ ⊤ id

⊲ Hum(Socr) neur

Notice that:

for users with impaired color vision. But in the present description we stick
to the red/blue denomination, as it is conveniently concise.
2Note that ⊢ has lower precedence than all logical connectives.

• These elementary rewrites are not visible for the user.
What she/he sees is the final result of the action, that
is the last expression of the rewrite sequence.

• The definitions of the rewrite rules in figures 3 and 4
do not involve squared subterms. The information of
which subterms are squared is only used by the sys-
tem to decide which rules to apply in which order.

In general, the action solves the goal when the interaction
ends with the trivially true proposition ⊤. The base case be-
ing the action corresponding to the axiom/identity rule id:
� ⊢ � ⊲ ⊤.

A forward step, on the other hand, involves two (sub-
terms of two) hypotheses. The interaction operator between
two hypotheses is written ∗. In the example above, the detail
of the interaction is:

∀G.Hum(G) ⇒ Mort(G) ∗ Hum(Socr)

⊲ Hum(Socr) ⇒ Mort(Socr) ∗ Hum(Socr) F∀i

⊲ (Hum(Socr) ⊢ Hum(Socr)) ⇒ Mort(Socr) F⇒1

⊲ ⊤ ⇒ Mort(Socr) id

⊲ Mort(Socr) neul

The final result is the new hypothesis.
We come back to the study of the rewrite rules of ⊢ and ∗

further down.

5 Proof Steps through Clicks

Drag-and-drop actions involve two items. Some proof steps
involve only one item; they can be associated to the action
of clicking on this item. The general scheme is that clicking
on a connective or quantifier allows to “break” or destruct
this connective. The results of clicks are not very surprising,
but this feature is necessary to complement drag-and-drop
actions.

• Clicking on a blue conjunction � ∧ � transforms the
item into two separate blue items � and �.

• Clicking on a red conjunction�∧� splits the goal into
two subgoals, whose conclusions are respectively �

and �.
• Clicking on a blue disjunction � ∨ � splits the goal
into two subgoals of same conclusion, with � (resp.
�) added as a new hypothesis.

• Clicking on the left (resp. right)-hand subterm of a red
disjunction � ∨ � replaces this red conclusion by �

(resp. �).
• Clicking on a red implication � ⇒ � breaks it into a
new red conclusion � and a new blue hypothesis �.

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Pablo Donato, Pierre-Yves Strub, and Benjamin Werner

• Clicking on a red universal quantifier ∀G.� introduces
a new object G and the conclusion becomes �.

• Clicking on a blue existential ∃G.� introduces a new
object G together with a blue hypothesis �.

• Clicking on a red equality C = C solves the goal imme-
diately.

One can see that these actions correspond essentially to
the introduction rules of the head connective for the conclu-
sion, and the elimination rule for the hypotheses.
It is possible to associate some more complex effects to

click actions performed on locations deeper under connec-
tives. This is the essence of proof-by-pointing, and [4] pro-
vides ample description. Since we here focus on drag-and-
drop actions, we do not detail further more advanced PbP
features. However we stress that these features are essen-
tially compatible with what we describe in this work.

AddingNew Items. Often in the course of a proof, onewill
want to add new items: either a new conjecture (blue item),
or a new object (green item) that would be helpful to solve
the current goal. These can be done respectively with the
blue +hyp and the green +expr buttons, which appear in the
screenshot of figure 5. When clicked, they prompt the user
for the statement of the conjecture, or the name and expres-
sion defining the object. The +hyp button will also create a
new subgoal requiring to prove the conjecture within the
current context.
This mechanism and the syntax are for now very crude.

The design of possible smoother tools is an important issue
but left for future work3.

6 A Simple Example Involving Equality

In most interactive theorem provers, the most basic rewrite
tactic allows the use of equality hypotheses, that is known
equations of the form C = D, in order to replace some occur-
rences of C by D (or symmetrically, occurrences of D by C).
This substitution can be performed in the conclusion or in
hypotheses. Specifying the occurrences to be replaced with
textual commands can be quite tedious, since it involves ei-
ther dealing with some form of naming/numbering, or writ-
ingmanually patterns which duplicate parts of the structure
of terms.
In our setting we can provide this replacement operation

through drag-and-drop. The user points at the occurrence(s)
of C to be replaced, and then brings them to the correspond-
ing side of the equality.
Figure 2 shows a very elementary example which is prov-

ing 1 + 1 = 2 in the setting of Peano arithmetic. For any
number =, we write = ⊕ 1 to denote the application of the

3For instance [25] deals with a similar problem in the context of functional
programming.

successor function to =; closed terms are directly written in
decimal notation. The proof goes as follows4:

• We link the left-hand side G + ~⊕1 of the second ad-
dition axiom with 1 + 1 in the conclusion, which has
the effect of rewriting 1 + 1 into (1 + 0)⊕1:

∀G.∀~. G + ~⊕1 = (G + ~)⊕1 ⊢ 1 + 1 = 2
⊲ ∀~. 1 + ~⊕1 = (1 + ~)⊕1 ⊢ 1 + 1 = 2 L∀i

⊲ 1 + 0⊕1 = (1 + 0)⊕1 ⊢ 1 + 1 = 2 L∀i

≡ 1 + 1 = (1 + 0)⊕1 ⊢ 1 + 1 = 2
⊲ (1 + 0)⊕1 = 2 L=1

• We link the right-hand side G + 0 of the first addition
axiomwith 1+0 in the conclusion, which rewrites 1+0
into 1:

∀G.G = G + 0 ⊢ (1 + 0)⊕1 = 2
⊲ 1 = 1 + 0 ⊢ (1 + 0)⊕1 = 2 L∀i

⊲ 1⊕1 = 2 L=2

≡ 2 = 2

We end up with the conclusion 2 = 2, which is provable
by a simple click. Notice how the orientation of the two
rewritings is determined by which side of the equality is se-
lected. Also, in this case, the rewritings correspond to back-
ward proof steps, because the rewriting is performed in the
conclusion. Similar rules (F=1 and F=2) are used to perform
rewritings in hypotheses.

7 Drag-and-Dropping through

Connectives

We mentioned in section 5 that it is possible to destruct log-
ical connectives through click actions. In many cases how-
ever, this will not be necessary: because a drag-and-drop in-
volves subterms of the items involved, one can often directly
use (resp. act on) the part of the hypothesis (resp. conclu-
sion) which is of interest.

7.1 Conjunction and Disjunction

The conjunction is an easy to explain case. A hypothesis of
the form � ∧ � can be used directly both as evidence for �
and as evidence for �. This is modeled by the rules L∧1 and
L∧2 . A very simple action is thus:

� ∧ � ⊢ � ⊲ � ⊢ � L∧1

⊲ ⊤ id

On the other hand, considering a conjunctive goal � ∧

�, one can simplify or solve one of the branches by a DnD
action. This involves rules R∧1 and R∧2 . For instance:

� ⊢ � ∧ � ⊲ � ⊢ � ∧ � R∧1

⊲ ⊤ ∧ � id

⊲ � neul

4We use the symbol ≡ to denote syntactic equality of two expressions
modulo pretty-printing, e.g. decimal notation.

A Drag-and-Drop Proof Tactic CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

oneplusone

Figure 2. Proving 1 + 1 = 2 in Peano arithmetic.

Red disjunctions work similarly to conjunctive goals, ex-
cept that solving one branch will solve the entire goal. A
nice consequence of this, which is hard to simulate with
textual tactics, is that one can just simplify one branch of
a disjunction without comitting to it:

� ⊢ (� ∧ �) ∨� ⊲ (� ⊢ � ∧ �) ∨� R∨1

⊲ (� ∧ (� ⊢ �)) ∨� R∧2

⊲ (� ∧ ⊤) ∨� id

⊲ � ∨� neur

Disjunctive hypotheses also have a backward behavior
defined by the rules L∨1 and L∨2 , although in most cases one
will prefer the usual subgoal semantics associated with click
actions. More interesting is their forward behavior with the
rules F∨1 and F∨2 , in particular when they interact with
negated hypotheses. For instance:

� ∨ � ∗ ¬� ⊲ (� ∗ ¬�) ∨ � F∨1

⊲ ¬(� ⊢ �) ∨ � F⇒1

⊲ ¬⊤ ∨ � id

⊲ ⊥ ∨ � neul

⊲ � neul

We have noticed that on some examples, such actions
could provide a significant speed-up with respect to tradi-
tional textual command provers. We give a more concrete
example in section 11.
Notice thatwe used rules associatedwith implication, since

negation can be defined by ¬� , � ⇒ ⊥.

7.2 Implication

The implication connective is crucial, because it is notmono-
tone. More precisely, the roles of hypotheses and conclu-
sions are reversed on the left of an implication. We start
with some very basic examples for the various elementary
cases.
Using the right hand part of a hypothesis � ⇒ � turns a

conclusion � into �.

� ⇒ � ⊢ � ⊲ � ∧ (� ⊢ �) L⇒2

⊲ � ∧ ⊤ id

⊲ � neul

This can also be done under conjunctions and/or disjunc-
tions:

� ⇒ � ⊢ � ∧ (� ∨ �) ⊲∗ � ∧ (� ∨ �)

An interesting point is what happenswhen using implica-
tions with several premisses. The curried and uncurried ver-
sions of the implication will behave exactly the same way:

� ⇒ � ⇒ � ⊢ � ∨ � ⊲
∗ � ∨ (� ∧ �)

and:

� ∧ � ⇒ � ⊢ � ∨ � ⊲
∗ � ∨ (� ∧ �)

As we have seen in Aristotle’s example (section 4), blue
implications can also be used in forward steps, where an-
other hypothesis matches one of their premisses.
A first nice feature is the ability to strengthen a hypothe-

sis by providing evidence for any of its premises:

� ⇒ � ⇒ � ∗ � ⊲
∗ � ⇒ �

and again the same can be done for the uncurryfied version:

� ∧ � ⇒ � ∗ � ⊲
∗ � ⇒ �.

The two aspects of the implication can be combined:

� ⇒ � ⇒ � ∗ � ⇒ � ⊲
∗ � ⇒ � ⇒ �

or:

� ∧ � ⇒ � ∗ � ⇒ � ⊲
∗ � ∧ � ⇒ �.

Note that there is almost no difference in theway one uses
different versions of a hypothesis � ⇒ � ⇒ � , � ∧ � ⇒ � ,
but also � ⇒ � ⇒ � , in forward as well as in backward
steps5. This underlines, we hope, that our proposal makes
the proof construction process much less dependent on ar-
bitrary syntactical details, like the order of hypotheses or
whether they come in curryfied form or not.

Also, the rules for implication combined with the rules
for equality L=i or F=i naturally give access to conditional

rewriting; we detail this in combination with quantifiers in
the next section.
As for red implications, they also have a backward seman-

tics with the rules R⇒1 and R⇒2 , but most of the time one
will want to destruct them immediately by click. An excep-
tion could be if one wants to simplify some part of an im-
plicative, inductive goal before starting the induction.

5When viewed as types through the Curry-Howard isomorphism, � ⇒

� ⇒ � , � ∧ � ⇒ � , � ∧ � ⇒ � and � ⇒ � ⇒ � are isomorphic

types; and Roberto di Cosmo [10] has also precisely underlined that type
isomorphisms should help to free the programmer from arbitrary syntacti-
cal choices.

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Pablo Donato, Pierre-Yves Strub, and Benjamin Werner

7.3 Quantifiers

As the first example of this paper shows, the drag-and-drop
actions work through quantifiers and can trigger instantia-
tions of quantified variables. This is made possible by the
rules L∀i and F∀i, which allow the instantiation of a variable
universally quantified in a hypothesis.
Symmetrically, a variable quantified existentially in a con-

clusion can also be instantiated. For instance:

�(C) ⊢ ∃G.�(G) ⊲ �(C) ⊢ �(C) L∀i

⊲ ⊤ id

An interesting feature is the possibility to modify propo-
sitions under quantifiers. Consider the following possible
goal:

∀0.∃1.�(5 (0) + 6(1))

where �, 5 and 6 can be complex expressions. Suppose we
have a lemma allowing us to prove:

∀0.∃1.�(6(1) + 5 (0)).

Switching from one formulation to the other, involves one
use of the commutativity property ∀G.∀~.G + ~ = ~ + G . In
our setting, the equality can be used under quantifiers in
one single action:

∀G.∀~. G + ~ = ~ + G ⊢ ∀0.∃1.�(5 (0) + 6(1))

⊲
∗ ∀0.∃1.�(6(1) + 5 (0))

Note also that it is possible to instantiate only some of
the universally quantified variables in the items involved. In
general, a universally quantified variable can be instantiated
when the quantifier is in a negative position; for instance:

∀G.∀~. % (~) ⇒ '(G,~) ∗ % (0) ⊲
∗ ∀G.'(G, 0)

This last example illustrates how partial instantiation ab-
stracts away the order in which quantifiers are declared,
very much like the partial application presented in section
7.2.

Again, in some cases, only some existential quantifiers
may be instantiated following a linkage:

% (0) ⊢ ∃G.∃~. % (~) ∧ '(G,~) ⊲∗ ∃G.'(G, 0)

When using an existential assumption, one can either de-
struct it through a click, or use or transform it through a
DnD; for instance:

∃G. % (G) ∗ ∀~. % (~) ⇒ & (~) ⊲∗ ∃G.& (G)

7.4 Dependency between Variables

Some more advanced examples yield simultaneous instanti-
ations of existentially and universally quantified variables.
In such cases, the system needs to check some dependency

conditions. For instance, the following linkage is valid and
solves the goal through one action:

∃~.∀G.'(G, ~) ⊢ ∀G ′.∃~′. '(G ′,~′)

⊲ ∀~.(∀G.'(G, ~) ⊢ ∀G ′.∃~′. '(G ′,~′)) L∃s

⊲ ∀~.∀G ′.(∀G.'(G, ~) ⊢ ∃~′. '(G ′,~′)) R∀s

⊲ ∀~.∀G ′.(∀G.'(G, ~) ⊢ '(G ′,~)) R∃i

⊲ ∀~.∀G ′.('(G ′,~) ⊢ '(G ′,~)) L∀i

⊲ ∀~.∀G ′.⊤ id

⊲
∗ ⊤

But the contraposed situation is not provable; the system
will refuse the following linkage:

∀G.∃~.'(G, ~) ⊢ ∃~′.∀G ′. '(G ′, ~′)

Indeed, there is no reduction path starting from this linkage
ending with the id rule. This can be detected by the system
because the unification of '(G,~) and '(G ′, ~′) here results
in a cycle in the instantiations of variables6. The system thus
refuses this action.

7.5 Conditional Rewriting

The example given in section 6, although very simple, al-
ready combines the rules for equality and for quantifiers.
When also using implication, one obtains naturally some
form of conditional rewriting. To take another simple ex-
ample, suppose we have a hypothesis of the form:

∀G.G ≠ 0 ⇒ 5 (G) = 6(G)

We can use this hypothesis for replacing a subterm 5 (C)

by 6(C), which will generate a side-condition C ≠ 0:

∀G.G ≠ 0 ⇒ 5 (G) = 6(G) ⊢ �(5 (C))

⊲ C ≠ 0 ⇒ 5 (C) = 6(C) ⊢ �(5 (C)) L∀i

⊲ C ≠ 0 ∧ (5 (C) = 6(C) ⊢ �(5 (C))) L⇒2

⊲ C ≠ 0 ∧ �(6(C)) L=1

One could similarly do such a rewrite in a hypothesis. Fur-
thermore, the conditional rewrite can also be performed un-
der quantifiers; for instance:

∀G.G ≠ 0 ⇒ 5 (G) = 6(G) ⊢ ∃~.�(5 (~)) R∃s

⊲ ∃~.(∀G.G ≠ 0 ⇒ 5 (G) = 6(G) ⊢ �(5 (~))) L∀i

⊲ ∃~.(~ ≠ 0 ∧ (5 (~) = 6(~) ⊢ �(5 (~)))) L⇒2

⊲ ∃~.(~ ≠ 0 ∧�(6(C))) L=1

8 Correctness

All examples up to now followed the scheme for DnD ac-
tions sketched in section 4:

• Given a blue item� and a red item �, backward proof
steps produce a new conclusion � by applying a se-
quence of rewrite rules � ⊢ � ⊲∗ � .

6Also notice that this example requires to use full (first-order) unification,
not only matching.

A Drag-and-Drop Proof Tactic CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

• Given two blue items � and �, forward proof steps
produce a new hypothesis � by applying a sequence
of rewrite rules � ∗ � ⊲∗ � .

Thus for such actions to be logically correct, we have to
make sure that our rewrite system satisfies the following
property:

Property 1 (Correctness).

• If � ⊢ � ⊲∗ � , then �,� ⊢ � is provable.

• If � ∗ � ⊲∗ � , then �, � ⊢ � is provable.

We first need a few definitions to handle the fact that
rewrite rules apply at any depth inside formulas:

Definition 8.1 (Context). A context, written��, is a propo-
sition containing exactly one occurrence of a specific propo-
sitional variable � which is not used elsewhere.
Given another proposition �, we write �� for the propo-

sition obtained by replacing � in �� by �. Note that this
replacement is not a substitution because it allows variable
capture. For instance ∀G. % (G) is the proposition ∀G.% (G).

Definition 8.2 (Path). A path is a proposition where one
subformula has been selected. Formally, a path is a pair (��, �)
formed by one context and one proposition:

• �� is called the context of the path,
• � is called the selection of the path.

The path (��, �) can be viewed as the proposition �� .
For readability, we will generally also write�� for the path
(��, �).

Definition 8.3 (Inversions). Given a context ��, the num-
ber of inversions in ��, written inv(��), is the number of
subterms of �� which are of the form �� ⇒ � ; that is the
number of times the hole is on the left-hand side of an im-
plication.

For instance:

inv(� ∧ �) = 0

inv((� ∧ �) ⇒ �) = 1
inv((�⇒ �) ⇒ �) = 2

Definition 8.4 (Polarity of a context). Wewill write�+
� to

specify that a context is positive, meaning that inv(�+
�) is

even. Symmetrically,�−
�will be used for negative contexts,

meaning that inv(�−
�) is odd.

The following simple covariance and contravariance prop-
erty will be used extensively later on:

Property 2. If Γ, � ⊢ � is provable, then so are Γ,�+� ⊢

�+ � and Γ, �− � ⊢ �−� .

For each rule, interpreting ⊢ as⇒ and ∗ as ∧ in the right-
hand side is enough to show that the rule satisfies prop-
erty 1 locally. But for rewritings taking place at occurrences
deeper inside a proposition, we need to consider the polar-
ity of their context. Using the notation of definition 8.4, we
can state:

Lemma 8.5.

• If �+� ⊢ � ⊲ � then � ⊢ �+� ⇒ � is provable.

• If �−� ⊢ � ⊲ � then �−� ⇒ � ⊢ � is provable.

• If �+� ∗ � ⊲ � then �+� ∧ � ⊢ � is provable.

• If �−� ∗ � ⊲ � then � ⊢ �−� ∧ � is provable.

Remark 1. For some rules, like R⇒1 , the left-hand and right-

hand propositions are equivalent:

� ⇒ � ⇒ � ⇔ � ∧ � ⇒ �

Such rules are called invertible and their names are tagged by

∗. This point will be relevant in section 10.2.

Aneasy but important technical point is that rewrite rules
preserve the polarity of contexts around redexes, in the fol-
lowing precise sense:

Property3. If�� ⊢ � ⊲ � ′�′ ⊢ �′ (resp.�� ∗ � ⊲ � ′�′ ∗ �′)

then �� and � ′
� have the same polarity.

If �� ⊢ � ⊲ � ′�′ ∗ �′ (resp. �� ∗ � ⊲ � ′�′ ⊢ �′) then

�� and � ′
� have opposite polarities.

Combining lemma 8.5 and property 3, we obtain the cen-
tral correctness result about the rewrite rules:

Lemma 8.6.

• If �+� ⊢ � ⊲∗ � then � ⊢ �+� ⇒ � is provable.

• If �−� ⊢ � ⊲∗ � then �−� ⇒ � ⊢ � is provable.

• If �+� ∗ � ⊲∗ � then �+� ∧ � ⊢ � is provable.

• If �−� ∗ � ⊲∗ � then � ⊢ �−� ∧ � is provable.

We do not detail the proof here, but it relies crucially on
the covariance and contravariance property 2.
Finally, property 1 is obtained as the special case where

the rewriting starts in the (positive) empty context.

9 Linkages

In demonstrating correctness, we focused solely on the two
items involved in a DnD action. But every DnD action also
specifies the selection of a subterm in each item.We call link-
age the combined data of the two items together with the
selection, since the intent is to link the subterms to make
them interact in some way.

Remark 2. In this article we only consider linkages between

two subterms, but as noted in section 6, rewriting is an example

of action that can benefit from allowing multiple selections7 .

Each kind of DnD action is mapped in the system to a
specific form of linkage, which is designed to hold all the in-
formation necessary for the correct execution of the action.
In this way the system can automatically search for linkages
of a certain form, and propose to the user all well-defined
actions associated to these linkages.

7In fact, a restricted kind of multi-occurrence rewrite is already available
in the current prototype of Actema: one just needs to enter selection mode,
by either toggling the dedicated button, or holding down the shift key.

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Pablo Donato, Pierre-Yves Strub, and Benjamin Werner

Remark 3. In the future, one can imagine several DnD ac-

tions associated to a given linkage. In this case, the user could

be queried to choose the action to be performed (typically with

a pop-up menu). However with the actions considered in this

article, such ambiguities never arise.

On the “items axis”, we already distinguished between
backward and forward linkages, written respectively� ⊢ �

and� ∗ �. If the items are unspecified, we will write� @ �.
Using the “selection axis”, we can specify a further dis-

tinction that was informal up to now: that of logical action
and rewrite action.

• Logical linkages link two subformulas. Thus they have
the form �� @ ��′ .

• Rewrite linkages link one side of an equality with a
first-order term. Using liberally the notations fromdef-
initions 8.1 and 8.2, they thus have the form
� C = D @ � C ′ (or symmetrically �D = C @ � C ′).

In both cases, we impose the following condition:

Condition 1 (Unification). The linked subterms (� and �′

or C and C ′) must be unifiable with respect to the variables

quantified in their contexts ��, ��. We do not detail all the

constraints of this unification problem, but the essential idea

is that a variable is unifiable if and only if its quantifier is

instantiable. This in turn can be determined by the polarity of

the context surrounding the quantifier. One also needs to check

that the unifier does not create circular dependencies between

variables.

There are also additional restrictions on the polarities of
contexts. Assuming we work in a goal Γ ⊢ �:

Condition 2 (Polarity). The following conditions are neces-

sary for the linkage �� @ ��′ to be a logical linkage:

1. �� ∈ Γ,

2. � �′

{

≡ � if @ is ⊢

∈ Γ if @ is ∗

3. (inv(��), inv(��)) ∈

{

{(0, 0), (1, 1), (0, 2)} if @ is ⊢

{(0, 1), (1, 0)} if @ is ∗

Similarly, the following conditions are necessary for the link-

age � C = D @ � C ′ to be a rewrite linkage. Either � C = D ∈

Γ, then:

1. � C ′
{

≡ � if @ is ⊢

∈ Γ if @ is ∗
2. �� is positive

or � C = D ≡ � , then @ is ⊢ and:

1. � C ′ ∈ Γ

2. �� is negative

Remark 4. The main reason for limiting the number of in-

versions in a path to 2 is that we place ourselves in intuitionis-

tic logic. In classical logic, one could, for instance, imagine the

following behavior:

(� ⇒ �) ⇒ � ⊢ � ⊲
∗ � ⇒ �

But this would not be valid intuitionistically.

Definition 9.1 (Valid linkage). We say that a linkage L is
valid if it satisfies conditions 1 and 2.

One understands that for logical linkages, condition 2 guar-
antees that there is one positive and one negative occur-
rence among � and �′. For rewrite linkages, it guarantees
that the equality is in negative position.
One can also check that all the examples given up to here

were based on valid linkages.

10 Describing DnD Actions

We are now equipped to specify how logical and rewrite
linkages translate deterministically to the backward and for-
ward proof steps shown in all examples.

First some remarks can be made about the rewrite rules
of figure 3:

• The set of rewrite rules is obviously non-confluent.
• It is also terminating, because the number of connec-
tives or quantifiers under ∗ or ⊢ decreases8.

As for the rules of figure 4, they are both terminating and
confluent. Indeed they define a function that eliminates re-
dundant occurrences of the units ⊤ and ⊥.
Here is a high-level overview of the complete procedure

followed to generate a proof step:

1. Selection: the user selects two subterms in two items
of the current goal;

2. Linkage: this either gives rise to a logical linkage�� @ ��′

(resp. a rewrite linkage � C = D @ � C ′), or does not
correspond to a known form of linkage. In this case
the procedure stops here, and the system does not pro-
pose any action to the user;

3. Unification: the system tries to unify the selected
subterms � and�′ (resp. C and C ′), which either yields
a substitution f , or fails. In this case we stop like in
the previous step;

4. Linking: the system then chooses a rewriting start-
ing from the linkage. Thanks to theorem 10.2, this re-
writing always ends with a proposition of the form

� f (�) ⊢ f (�′) (resp. � f (C) = D @ �0 f (C
′));

5. Interaction: thus one can apply the id rule (resp. an
equality rule in {L=1, L=2, F=1, F=2});

6. Unit elimination: in the case of a logical action, this
creates an occurrence of ⊤, which is eliminated using
the rules of figure 4;

7. Goalmodification: the two previous steps produced
a formula�. In the case of a forward linkage, a hypoth-
esis � is added to the goal; in the case of a backward
linkage, the goal’s conclusion becomes�. In both cases,
the logical correctness is guaranteed by property 1.

8Except for the Fcomm rule which is just meant to make the ∗ connective
symmetric; formally, the only infinite reduction paths end with an infinite
iteration of Fcomm.

A Drag-and-Drop Proof Tactic CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

Backward

� ⊢ � ⊲ ⊤ id

C = D ⊢ � ⊲ � [C \D] L=1

D = C ⊢ � ⊲ � [C \D] L=2

(� ∧�) ⊢ � ⊲ � ⊢ � L∧1

(� ∧ �) ⊢ � ⊲ � ⊢ � L∧2

� ⊢ (� ∧�) ⊲ (� ⊢ �) ∧� R∧1

� ⊢ (� ∧ �) ⊲ � ∧ (� ⊢ �) R∧2

(� ∨�) ⊢ � ⊲ (� ⊢ �) ∧ (� ⇒ �) L∨1
∗

(� ∨ �) ⊢ � ⊲ (� ⇒ �) ∧ (� ⊢ �) L∨2
∗

� ⊢ (� ∨�) ⊲ (� ⊢ �) ∨� R∨1

� ⊢ (� ∨ �) ⊲ � ∨ (� ⊢ �) R∨2

(� ⇒ �) ⊢ � ⊲ � ∧ (� ⊢ �) L⇒2

� ⊢ (� ⇒ �) ⊲ (� ∗ �) ⇒ � R⇒1
∗

� ⊢ (� ⇒ �) ⊲ � ⇒ (� ⊢ �) R⇒2
∗

(∀G.�) ⊢ � ⊲ � [G \ C] ⊢ � L∀i

(∀G.�) ⊢ � ⊲ ∃G.(� ⊢ �) L∀s

� ⊢ (∀G.�) ⊲ ∀G.(� ⊢ �) R∀s∗

(∃G.�) ⊢ � ⊲ ∀G.(� ⊢ �) L∃s∗

� ⊢ (∃G.�) ⊲ � ⊢ � [G \ C] R∃i

� ⊢ (∃G.�) ⊲ ∃G.(� ⊢ �) R∃s

Forward

� ∗ (C = D) ⊲ � [C \ D] F=1

� ∗ (D = C) ⊲ � [C \ D] F=2

� ∗ (� ∧�) ⊲ � ∗ � F∧1

� ∗ (� ∧ �) ⊲ � ∗ � F∧2

� ∗ (� ∨�) ⊲ (� ∗ �) ∨� F∨1

� ∗ (� ∨ �) ⊲ � ∨ (� ∗ �) F∨2

� ∗ (� ⇒ �) ⊲ (� ⊢ �) ⇒ � F⇒1

� ∗ (� ⇒ �) ⊲ � ⇒ (� ∗ �) F⇒2

� ∗ (∀G.�) ⊲ � ∗ � [G \ C] F∀i

� ∗ (∀G.�) ⊲ ∀G.(� ∗ �) F∀s

� ∗ (∃G.�) ⊲ ∃G.(� ∗ �) F∃s∗

� ∗� ⊲ � ∗ � Fcomm

In the rules {L∀s, L∃s,R∀s,R∃s, F∀s, F∃s}, G is not free in �.

Figure 3. Linking rules

10.1 Productivity

An important property of the linking step 4 is that there
is always a rewriting sequence that brings together the se-
lected subterms, which ensures that we can proceed to the
interaction step 5.
Because the rewrite rules are terminating, the important

point is to show that one can always apply a rule until one
reaches an interaction rule on the linkage. In other words,
it is possible to find at least one rule which preserves condi-
tions 1 and 2 on linkages:

Lemma 10.1 (Valid Progress). If a linkage L is valid, then

either:

1. L ∈ {� ⊢ �, C = D ⊢ �C , D = C ⊢ �C , C = D ∗

�C , D = C ∗�C };

2. or L ⊲ � L ′ with L ′ valid.

The proof is not fundamentally difficult, but understand-
ably verbose. The two main points are:

• The rules involving a connective always preserve va-
lidity.

• When one can apply a rule involving a quantifier ∀G
(resp. ∃G), one checkswhether the substitution instan-
tiates G or not. In the first case one performs the in-
stantiation rule L∀i or F∀i (resp. R∃i); in the second
case the corresponding s rule.

Thenwe can state the following productivity theorem, which
is a direct consequence of the previous lemma and the fact
that the rewrite rules terminate:

Theorem 10.2 (Productivity). If L is a valid linkage, then

there is a sequence of reductions with one of the following

forms:

L ⊲∗ �+ � ⊢ �

L ⊲∗ � C = D @ �C L ⊲∗ �D = C @ �C

10.2 Choosing the Best Derivation

A last point to deal with is non-confluence and in particular
choosing between first simplifying the head connective on
the right or the left of ∗ or ⊢. For instance in � ∨� ⊢ � ∨ �

one can apply either L∨1 or R∨2 .
Interestingly, an answer is provided by focusing. It has

been noticed byAndreoli [3] that, in bottom-up proof search,
one should apply the invertible logical rules first. In our
framework, this translates into first applying the invertible
rewrite rules (the ones marked by a *). In the case of the ex-
ample above, this means performing L∨1 first, which leads
to the following behavior:

� ∨ � ⊢ � ∨ � ⊲∗ � ⇒ � ∨ �.

This is indeed the “right” choice, since applying R∨2 first
would lead to a dead-end:

� ∨ � ⊢ � ∨ � ⊲∗ � ∨ (� ⇒ �).

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Pablo Donato, Pierre-Yves Strub, and Benjamin Werner

Units

〈◦, †〉 ∈ {〈∧,⊤〉 , 〈∨,⊥〉 , 〈⇒,⊤〉} † ◦� ⊲ � neul

〈◦, †〉 ∈ {〈∧,⊤〉 , 〈∨,⊥〉} � ◦ † ⊲ � neur

〈◦, †〉 ∈ {〈∧,⊥〉 , 〈∨,⊤〉} † ◦� ⊲ † absl

〈◦, †〉 ∈ {〈∧,⊥〉 , 〈∨,⊤〉 , 〈⇒,⊤〉} � ◦ † ⊲ † absr

〈⋄, †〉 ∈ {〈∀,⊤〉 , 〈∃,⊥〉} ⋄G.† ⊲ † absq

⊥ ⇒ � ⊲ ⊤ efq

Figure 4. Unit elimination rules

When two invertible rules can be applied, the order is ir-
relevant. There are cases where two non-invertible rules can
be applied. The vast majority of them commute in terms of
provability, but not necessarily in the shape of the resulting
formula9. Therefore our specification still leaves room for
some choices. Currently, we have a heuristic prioritizing of
the rules that sticks to what is presented in examples. One
could also choose to leave the disambiguation to the user,
e.g. by looking at the orientation of drag-and-drops. This is
the solution chosen in [7] and [9].

11 A More Advanced Example

It is too early to perform a detailed case study comparing
our approach to interactive theorem proving with others –
tactic based, declarative, etc. . . This is due primarily to the
fact that our prototype is not mature enough; it cannot han-
dle lemmas and implements a limited formalism. However
some examples allow to get a glimpse of specificities and
possible advantages of proofs by actions.
One such example is a small logical riddle, which we bor-

row from a textual educational system, Edukera [27]. One
considers a population of people, with at least one element
ℎ, together with a single functionMother and one predicate
Rich. The aim is to show that the two following assumptions
are incompatible:

(1) ∀G.¬Rich(G) ∨ ¬Rich(Mother(Mother(G))),
(2) ∀G.¬Rich(G) ⇒ Rich(Mother(G)).

The original goal thus corresponds to the illustration of fig-
ure 5.
It is quite natural to approach this problem in a forward

manner, by starting from the hypotheses to establish new
facts. And a first point illustrated by this example is that
DnD actions allow to do this in a smooth and precise man-
ner. A possible first step is to bring ℎ to the first hypothesis,
to obtain a new fact:

(3) ¬Rich(ℎ) ∨ ¬Rich(Mother(Mother(ℎ))).

Double clicking on this new fact yields two cases:

9In fact the only ruleswhich do not give equivalent results when commuted
are the critical pairs F∨i / F⇒2 for 8 ∈ {1, 2}, as was noted independently
in [9].

(4) ¬Rich(ℎ),
(4’) ¬Rich(Mother(Mother(ℎ))).

Let us detail how one solves the second one.
By bringing ¬Rich(Mother(Mother(ℎ))) on the premise

of ∀G.¬Rich(G) ⇒ Rich(Mother(G)) one obtains

(6) Rich(Mother(Mother(Mother(ℎ)))).

The next step is a good example where the DnD is useful.
By bringing this new fact to the right-hand part of

(1) ∀G.¬Rich(G) ∨ ¬Rich(Mother(Mother(G)))

one immediately obtains a new fact

(7) ¬Rich(Mother(ℎ)).

In other proof systems, this last step requires a somewhat in-
tricate tactic line and/or writing down at least the statement
of the new fact.
One can then finish the case by combining (7) and (2)

which yields Rich(Mother(Mother(ℎ))), which contradicts
(4′). These two last steps each correspond to a simple DnD.
The other case, ¬Rich(ℎ), is quite similar.

Such a simple example is not sufficient to provide signifi-
cant metrics. Note however that once a user has understood
the proof, the riddle is routinely solved in less than a minute
in Actema, which seems out of reach for about any user in a
tactic based prover. At least as important is the fact that the
proof can be performed without typing any text, especially
no intermediate statement.

12 Related Work

Subformula Linking. Although the primary motivation is
very practical, it benefitted a lot from recent proof theory, es-
pecially Deep Inference. A key step was the discovery of the
work of Kaustuv Chaudhuri [7] who had noticed how for-
mula linking in deep inference could be used for proof con-
struction in linear logic. His calculus of structures was very
important for designing the rewrite rules which underly our
system. In more recent work [9] he also deals with intuition-
istic logic. Interestingly, some ideas like forward proof steps
or the use of colors appeared independently in his and our
work.

A Drag-and-Drop Proof Tactic CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

edukera

Figure 5. The beginning of an example due to Edukera.

A difference is that we give the possibility to link first-
order terms in addition to propositions, which is the basis
for rewrite actions. One can imagine to design new kind of
transformations in the future.

Window Inference. We have already mentioned Proof-by-
Pointing, which was part of the CtCoq and Pcoq efforts [2]
to design a graphical user interface for the Coq proof as-
sistant. Another contemporary line of work was the one
based on window inference, initially pioneered by P.J. Robin-
son and J. Staples. In [26], window inference is described as
a general proof-theoretical framework, which aims to acco-
modate for the pervasive use of equivalence transformations

throughout mathematics and computer science.
Window inference has been used both for general-purpose

logics like HOL [14], and in more specialized settings like
program refinement [15]. It naturally lends itself to inte-
gration in a graphical user interface ([19], [20]), where the
user can focus on a subexpression by clicking on it. One is
then presented with a new graphical window, holding the
selected expression as well as an extended set of hypothe-
ses exposing information inferrable from the context of the
expression. The user can pick from a list of valid transfor-
mations to be applied to the expression, before closing the
window. This propagates the transformations to the parent
window by replacing the old subexpression by the new one,
without modifying the surrounding context.

This process is quite reminiscent of the rewriting pro-
duced by our DnD actions. One key difference is that win-
dow inference rules can be applied stepwise, whilewe choose
to hide the sequence of rules that justifies a DnD. The win-
dow inference approach gives to the user a precise control of
the transformations to be performed and thus could inspire
interesting extensions of our work.

Tangible Functional Programming. Wenoticed an inter-
esting connectionwith the work of Conal Elliott on tangible
functional programming [11]. His concept of deep applica-

tion of _-terms seems related to the notion of subformula
linking, when viewing function and product types as im-
plications and conjunctions through the formulae-as-types
interpretation. He also devised a system of basic combina-
tors which are composed sequentially to compute the result
of a DnD, though it follows a more complex dynamic than
our rewrite rules. Even if the mapping between proofs and
programs is not exact in this case, it suggests a possible in-
teresting field of application for the Curry-Howard corre-
spondance, in the realm of graphical proving/programming
environments.

OtherGestural Proof Systems. There are other proof sys-
tems which include drag-and-drop features. Two of them
are the KeY Prover [1] and TAS [20]. TAS is a window in-
ference system tailored for program refinement, and uses
DnD actions between an expression and a transformation,
in order to apply the latter to the former. As for the KeY
Prover, its usage of DnD overlaps only a very small portion
of usecases that we hinted at in section 11, namely the in-
stantiation of quantifiers with objects.
We can also mention the recent work of Zhan et al. [29].

They share with us the vision of a proof assistant mainly
driven by gestural actions, which requires far less textual in-
puts from the user. However, they only consider point-and-
click actions, and rely on a text-heavy presentation at two
levels:

1. the proof state, which is a structured proof text in the
style of Isar [24];

2. the proof commands, which can only be performed
through choices in textual menus.

Explicit Proof Objects. Finally let us mention various re-
cent implementations proposing various ways to construct
proofs graphically: Building Blocks [17], the Incredible Proof
Machine [5], Logitext10 and Click & coLLecT [6]. But these
systems focus more on explicating the proof object than on
making its construction easier.

13 Conclusion and Perspectives

This work started as a very practical effort. Discovering and
understanding the links with more theoretically grounded
approaches, and especially deep inference, made us aware
that there may be more proof theoretical depth to this idea
than we first thought. But, most importantly, adapting the
logical rules and tools of deep inference to the practical ques-
tion we encountered, allowed us to structure our proposal
and to define the “right” behavior for the system. We were
able to extend the deep inference approach to the use of
equalities 6, which may be an originality of this work. It
seems imaginable to proceed similarly with other mathe-
matical relations.
More generally, we hope that our treatment of equality

can be the start for providing graphical or gestural tools to
perform algebraic transformations of expressions (be there
in the conclusion or in hypotheses). As mentioned above,
Window Inference could serve as an inspiration here. This
seems promising to us, since describing such a transforma-
tion is notoriously tedious when using textual commands.

10h�p://logitext.mit.edu/main

http://logitext.mit.edu/main

CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Pablo Donato, Pierre-Yves Strub, and Benjamin Werner

Even a small prototype allowed us to experiment on some
non-trivial examples and to make some first encouraging
experiences. In various cases, like the one described in sec-
tion 11, we have observed shorter or more straightforward
proofs than in textual provers. Another nice point is that
some syntactical details, like the name of proof tactics be-
come irrelevant in the gestural setting. More generally, we
feel that using such a system, one may indeed develop a
good intuition for the behavior of the logical items. But this
is obviously a user interface or user experience question
which is too early to quantify. Also, some novel questions
appear when implementing such a graphical system: what
are the good user interface choices, how to obtain a good
look-and-feel, what visual feedback the system should pro-
vide. . .

On the other hand, we should acknowledge that certain
styles of proofs, where a large number of subcases can be
immediately solved through the same short textual tactic
sequence, may be less well suited for the gestural approach
(the SSReflect [13] dialect for Coq is verywell suited for such
cases).
Among future lines of work, it will be interesting to ex-

plore how some automation fits into this framework. One
example is the point-and-shoot paradigm of [4]. But the DnD
feature could open up new possibilities, like having the sys-
tem perform some automated deduction to prove equiva-
lences or implications between the two squared formulas
(which would thus no longer be required to be strictly equal
or unifiable).
Another obvious and important point to be tackled next is

to provide a smooth way to invoke a library of lemmas in a
graphical proof.We believe this could raise some interesting
questions.
An also promising line of work is to extend our approach

to classical logic. A point being that the graphical setting
could smoothly handle multiple conclusions with less spu-
rious overhead than text commands.
An important difference with the days of the pioneering

work on proof-by-pointing is that developers can now rely
on powerful and standardized libraries, whichmake the con-
struction of user interfaces much faster and easier, giving
new room for experimentation and proposals. But bringing
everything together in simple commands remains a compli-
cated theoretical and development task.

Acknowledgments

We are grateful to Kaustuv Chaudhuri and Dale Miller for
stimulating discussions, and to Sébastien Najjar of theDioxy-
gen company for his work on the front-end of the Actema
prototype. Useful comments and references were provided
by anonymous referees.

References
[1] Wolfgang Ahrendt and Sarah Grebing. 2016. Using the KeY Prover.

In Deductive Software Verification – The KeY Book, Wolfgang Ahrendt,

Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt,
and Mattias Ulbrich (Eds.). Vol. 10001. Springer International Publish-
ing, Cham, 495–539. h�ps://doi.org/10.1007/978-3-319-49812-6_15

Series Title: Lecture Notes in Computer Science.
[2] AhmedAmerkad, Yves Bertot, Loïc Pottier, and Laurence Rideau. 2001.

Mathematics and Proof Presentation in Pcoq. Technical Report RR-4313.
INRIA. h�ps://hal.inria.fr/inria-00072274

[3] Jean-Marc Andreoli. 1992. Logic Programming with Focusing Proofs
in Linear Logic. Journal of Logic and Computation 2, 3 (1992), 297–347.
h�ps://academic.oup.com/logcom/article-lookup/doi/10.1093/logcom/2.3.297

[4] Yves Bertot, Gilles Kahn, and Laurent Théry. 1994. Proof by point-
ing. In Theoretical Aspects of Computer Software, Masami Hagiya and
John C. Mitchell (Eds.). Vol. 789. Springer Berlin Heidelberg, 141–160.
h�ps://doi.org/10.1007/3-540-57887-0_94 Series Title: Lecture Notes
in Computer Science.

[5] Joachim Breitner. 2016. Visual Theorem Proving with the Incredi-
ble Proof Machine. In Interactive Theorem Proving, Jasmin Christian
Blanchette and Stephan Merz (Eds.). Vol. 9807. Springer International
Publishing, 123–139. h�ps://doi.org/10.1007/978-3-319-43144-4_8

Series Title: Lecture Notes in Computer Science.
[6] Etienne Callies and Olivier Laurent. 2021. Click and coLLecT An In-

teractive Linear Logic Prover. In 5th International Workshop on Trends

in Linear Logic and Applications (TLLA 2021). Rome (virtual), Italy.
h�ps://hal-lirmm.ccsd.cnrs.fr/lirmm-03271501

[7] Kaustuv Chaudhuri. 2013. Subformula Linking as an Interaction
Method. In Interactive Theorem Proving, Sandrine Blazy, Christine
Paulin-Mohring, and David Pichardie (Eds.). Vol. 7998. Springer Berlin
Heidelberg, 386–401. h�ps://doi.org/10.1007/978-3-642-39634-2_28

Series Title: Lecture Notes in Computer Science.
[8] Kaustuv Chaudhuri. 2020. Interactive Proof Building with Direct Ma-

nipulation for Linear Logic (and Cousins). (2020). Invited Talk at the
Linearity & TLLA workshop.

[9] Kaustuv Chaudhuri. 2021. Subformula Linking for Intuitionistic Logic
with Application to Type Theory. In Automated Deduction - CADE

28 - 28th International Conference on Automated Deduction, Virtual

Event, July 12-15, 2021, Proceedings (Lecture Notes in Computer Science,

Vol. 12699), André Platzer and Geoff Sutcliffe (Eds.). Springer, 200–216.
h�ps://doi.org/10.1007/978-3-030-79876-5_12

[10] Roberto Di Cosmo. 1995. Isomorphisms of types: from _-

calculus to information retrieval and language design. Birkhauser.
h�p://www.ens.fr/users/dicosmo/Publications/ISObook.html ISBN-
0-8176-3763-X.

[11] Conal M. Elliott. 2007. Tangible Functional Programming. In
Proceedings of the 12th ACM SIGPLAN International Conference

on Functional Programming (Freiburg, Germany) (ICFP ’07). As-
sociation for Computing Machinery, New York, NY, USA, 59–70.
h�ps://doi.org/10.1145/1291151.1291163

[12] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50,
1 (1987), 1 – 101. h�ps://doi.org/10.1016/0304-3975(87)90045-4

[13] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. 2016. A Small

Scale Reflection Extension for the Coq system. Research Report RR-6455.
Inria Saclay Ile de France. h�ps://hal.inria.fr/inria-00258384

[14] J. Grundy. 1991. Window Inference In The HOL System. In 1991 In-

ternational Workshop on the HOL Theorem Proving System and Its Ap-

plications. 177–189. h�ps://doi.org/10.1109/HOL.1991.596285

[15] Jim Grundy. 1992. A Window Inference Tool for Refinement. In 5th

Refinement Workshop, Cliff B. Jones, Roger C. Shaw, and Tim Denvir
(Eds.). Springer London, London, 230–254.

[16] Alessio Guglielmi. 1999. A Calculus of Order and Inter-

action. Technical Report. Technische Universität Dresden.
h�ps://www.researchgate.net/publication/2807151_A_Calculus_of_Order_and_Interaction

[17] Sorin Lerner, Stephen R. Foster, and William G. Griswold. 2015. Poly-
morphic Blocks: Formalism-Inspired UI for Structured Connectors. In

https://doi.org/10.1007/978-3-319-49812-6_15
https://hal.inria.fr/inria-00072274
https://academic.oup.com/logcom/article-lookup/doi/10.1093/logcom/2.3.297
https://doi.org/10.1007/3-540-57887-0_94
https://doi.org/10.1007/978-3-319-43144-4_8
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271501
https://doi.org/10.1007/978-3-642-39634-2_28
https://doi.org/10.1007/978-3-030-79876-5_12
http://www.ens.fr/users/dicosmo/Publications/ISObook.html
https://doi.org/10.1145/1291151.1291163
https://doi.org/10.1016/0304-3975(87)90045-4
https://hal.inria.fr/inria-00258384
https://doi.org/10.1109/HOL.1991.596285
https://www.researchgate.net/publication/2807151_A_Calculus_of_Order_and_Interaction

A Drag-and-Drop Proof Tactic CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

Proceedings of the 33rd Annual ACM Conference on Human Factors in

Computing Systems, CHI 2015, Seoul, Republic of Korea, April 18-23,

2015, Bo Begole, Jinwoo Kim, Kori Inkpen, and Woontack Woo (Eds.).
ACM, 3063–3072. h�ps://doi.org/10.1145/2702123.2702302

[18] Chuck Liang and Dale Miller. 2009. Focusing and polarization in lin-
ear, intuitionistic, and classical logics. Theoretical Computer Science

410, 46 (2009), 4747–4768. h�ps://doi.org/10.1016/j.tcs.2009.07.041

[19] Thomas Långbacka, Rimvydas Rukšėnas, and Joakim von Wright.
1995. TkWinHOL: A tool for Window Inference in HOL. In
Higher Order Logic Theorem Proving and Its Applications (Lecture

Notes in Computer Science), E. Thomas Schubert, Philip J. Windley,
and James Alves-Foss (Eds.). Springer, Berlin, Heidelberg, 245–260.
h�ps://doi.org/10.1007/3-540-60275-5_69

[20] Christoph Lüth and Burkhart Wolff. 2000. TAS — A Generic Window
Inference System. In Theorem Proving in Higher Order Logics, Gerhard
Goos, Juris Hartmanis, Jan van Leeuwen, Mark Aagaard, and John
Harrison (Eds.). Vol. 1869. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 406–423. h�ps://doi.org/10.1007/3-540-44659-1_25 Series Title:
Lecture Notes in Computer Science.

[21] Alberto Martelli and Ugo Montanari. 1982. An Efficient Unification
Algorithm. ACMTrans. Program. Lang. Syst. 4, 2 (April 1982), 258–282.
h�ps://doi.org/10.1145/357162.357169

[22] Dale A. Miller. 1987. A compact representation of proofs. Studia Log-
ica 46 (1987), 347–370.

[23] Robin Milner. 1984. The use of machines to assist in rigor-
ous proof. Philosophical Transactions of the Royal Society

of London. Series A, Mathematical and Physical Sciences 312,
1522 (1984), 411–422. h�ps://doi.org/10.1098/rsta.1984.0067

arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1984.0067
[24] Tobias Nipkow. 2002. Structured Proofs in Isar/HOL. In Types

for Proofs and Programs, Second International Workshop, TYPES

2002, Berg en Dal, The Netherlands, April 24-28, 2002, Selected

Papers (Lecture Notes in Computer Science, Vol. 2646), Her-
man Geuvers and Freek Wiedijk (Eds.). Springer, 259–278.
h�ps://doi.org/10.1007/3-540-39185-1_15

[25] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins,
and Ravi Chugh. 2021. Filling typed holes with live GUIs. In Pro-

ceedings of the 42nd ACM SIGPLAN International Conference on Pro-

gramming Language Design and Implementation (PLDI 2021). Asso-
ciation for Computing Machinery, New York, NY, USA, 511–525.
h�ps://doi.org/10.1145/3453483.3454059

[26] Peter J. Robinson and John Staples. 1993. Formalizing a Hi-
erarchical Structure of Practical Mathematical Reasoning.
Journal of Logic and Computation 3, 1 (Feb. 1993), 47–61.
h�ps://doi.org/10.1093/logcom/3.1.47

[27] Benoit Rognier and Guillaume Duhamel. 2016. Présentation de la
plateforme edukera. In Vingt-septièmes Journées Francophones des

Langages Applicatifs (JFLA 2016).
[28] Lutz Straßburger. 2019. The problem of proof identity, and

why computer scientists should care about Hilbert’s 24th prob-
lem. Philosophical Transactions of the Royal Society A: Mathemat-

ical, Physical and Engineering Sciences 377, 2140 (2019), 20180038.
h�ps://doi.org/10.1098/rsta.2018.0038

[29] Bohua Zhan, Zhenyan Ji, Wenfan Zhou, Chaozhu Xiang, Jie Hou, and
Wenhui Sun. 2019. Design of point-and-click user interfaces for proof

assistants.

https://doi.org/10.1145/2702123.2702302
https://doi.org/10.1016/j.tcs.2009.07.041
https://doi.org/10.1007/3-540-60275-5_69
https://doi.org/10.1007/3-540-44659-1_25
https://doi.org/10.1145/357162.357169
https://doi.org/10.1098/rsta.1984.0067
https://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1984.0067
https://doi.org/10.1007/3-540-39185-1_15
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1093/logcom/3.1.47
https://doi.org/10.1098/rsta.2018.0038

	Abstract
	1 Introduction
	2 Motivations
	3 Logical Setting
	4 A First Example
	4.1 Layout
	4.2 Two Kinds of Actions
	4.3 Modeling the Mechanism

	5 Proof Steps through Clicks
	6 A Simple Example Involving Equality
	7 Drag-and-Dropping through Connectives
	7.1 Conjunction and Disjunction
	7.2 Implication
	7.3 Quantifiers
	7.4 Dependency between Variables
	7.5 Conditional Rewriting

	8 Correctness
	9 Linkages
	10 Describing DnD Actions
	10.1 Productivity
	10.2 Choosing the Best Derivation

	11 A More Advanced Example
	12 Related Work
	13 Conclusion and Perspectives
	References

