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Abstract—The hybrid boundary element - finite element
method (BEM-FEM) has been developed for several decades and
has shown many advantages since air media has not to be meshed.
In this paper, a new BEM-FEM formulation is presented. It is
based on the modified magnetic vector potential A∗ as unknown
in active regions and on the reduced magnetic scalar potential ϕ
as unknown in the air media. The formulation and its numerical
validation is proposed in this paper.

Index Terms—eddy currents, quasi-static, finite element
method, boundary element method

I. INTRODUCTION

We address the problem of eddy-currents computation under
the quasi-static assumption. In the BEM-FEM approach, FEM
method is applied to the material domains and the BEM
method is applied to the free domain. In the litterature, FEM
equations are based on vector quantities such as the magnetic
field H, the electric field E or the magnetic potential A,
while BEM equations are mainly based on magnetic [1], [2],
[3] or electric [5] scalar quantities. BEM equations for the
free domains can also be based on the quantities E or H
like proposed in [4] and [6], These two last formulations are
suitable for solving multiply connected regions problems. In
the next section, we present a new BEM-FEM formulation
based on A∗ and ϕ. A key point of the formulation is that
it does not need a costly matrix inversion like it is often
encountered in the literacy.

II. A∗ − ϕ BEM-FEM HYBRID FORMULATION

Let us consider a simply connected region Ω bounded by
the a Γ, characterised by a permeability μ and a conductivity
σ. The excitation magnetic field is created by a coil located
outside Ω and denoted Hex. From Maxwell’s equations under
eddy current assumption and the relation E = −jωA∗, we
have equation for A∗ in the Ω region:

∇×∇×A∗ + jωμσA∗ = 0 (1)

Applying the Galerkin’s method to equation above with the
projection function being the edge shape functions w. After
some vector algebras, we get:

∫

Ω

(∇×w) · (∇×A∗)dΩ+

∫

Γ

w · (n× (∇×A∗))dΓ

+ jωμσ

∫

Ω

w ·A∗dΩ = 0 (2)

The magnetic field in the air can be expressed as:

Hair = Hex −∇ϕ (3)

Hair is a solenoidal field, so the magnetic scalar potential is
governed by the Laplace equation Δϕ = 0. Applying Green’s
identity, we have the following integral equation:

hϕ =

∫

Γ

(n · ∇ϕ)GdΓ−
∫

Γ

ϕ (n · ∇G) dΓ (4)

where h = 0.5 if the target point is a regular point of the
border Γ and G = 1

r is the Green’s function with r is
the distance between integration and observation point. The
boundary conditions of magnetic field allow us to link the
surface quantities A∗ and ϕ as follows:

n× (∇×A∗) = μ(n×Hex − n×∇ϕ) (5)

n · ∇ϕ = n ·Hex − 1

μ0
n · (∇× A∗) (6)

Let us replace (5), (6) in (2), (4) respectively and then perform
one more algebra to separate ϕ from the gradient operator:∫

Γ

w · (n×∇ϕ)dΓ =

∫

Γ

n · (∇×w)ϕdΓ (7)

Finally, a set of coupled integral equations is obtained:

−
∫

Γ

w · (n×Hex)dΓ =
1

μ

∫

Ω

(∇×w) · (∇×A∗)dΩ

+ jωσ

∫

Ω

w ·A∗dΩ−
∫

Γ

n · (∇×w)ϕdΓ (8)

∫

Γ

n ·HexGdΓ = hϕ+
1

μ0

∫

Γ

n · (∇×A∗)GdΓ

+

∫

Γ

ϕ(n · ∇G)dΓ (9)

III. NUMERICAL IMPLEMENTATION

The 0-degree interpolation functions are chosen for scalar
potential ϕ while the vector potential A∗ is interpolated by
using edge shape functions w:

A∗ =
∑
i

wiA
∗
i (10)



where A∗
i is the circulation of magnetic potential A∗ along

the edge ei:

A∗
i =

∫

ei

A∗ · dl (11)

Equation (8) is written in matrix form:

[M ] {A∗}+ [B] {ϕ} = {Q} (12)

The term n · (∇ × A∗) in (9) is the magnetic flux density,
denoted φ. Assuming that φ is uniform on each facet element
of the discretized surface Γ, it can be written as:

φ =
∑
i

Φi
1

si
(13)

where Φi is the magnetic flux flowing through the facet
element number i with the area si of border Γ. By applying
discretization according to the Galerkin’s approach, (9) is
written in matrix form as follows:

[T ] {Φ}+ [H] {ϕ} = [T ] {S} (14)

The matrices in (12), (14) are not detailed in this abstract. Let
us now establish a relationship between Φ and A∗. For the
facet number i, we have:

Φi =

∫

Γi

(∇×A∗) · ndΓ =

∮

Ci

A∗dl (15)

Equations (11) and (15) enable the written of a matrix relation
linking Φ to A∗.

{Φ} = [C] {A∗} (16)

where [C] is an incidence matrix that links the magnetic
flux on each mesh element to the edge unknown values A∗.
Equation (14) becomes:

[T ] [C] {A∗}+ [H] {ϕ} = [T ] {S} (17)

Our final equation system includes (12) and (17).

IV. VALIDATION

Exciting coil

Ferrite core

Fig. 1. The model proposed by IEEJ.

In order to validate the proposed formulation, the test case
proposed by IEE of Japan [4] is considered (Fig. 1). The
conductivity of both aluminum plates is 3.215E7(S/m). The
ferrite magnetic region has a relative permeability of 3000.
The excitation coil is fed by an alternating current 1000A,
50Hz. The mesh is composed of 27860 hexahedron for the
material regions. Another simulation was performed by pure
FEM method with an adapted mesh. A comparisons of current

density computed on two different lines on the border Γ by
our formulation and by FE method is shown in Fig. 2. The
Joule losses can be calculated from the current density in Ω
or from surface quantities A∗ and ϕ. The relative error with
respect to the result obtained by the FEM method is about
0.36%.
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Fig. 2. Comparisons of current density on border.

V. CONSCLUSIONS

In this paper, we have presented a new hybrid model
using the modified vector potential A∗ and the reduced scalar
potential ϕ. The results calculated by proposed formulation
through standard tests shown good agreement with the results
obtained by FEM method.
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