Run-to-Tumble Variability Controls the Surface Residence Times of E. coli Bacteria
Résumé
Motile bacteria are known to accumulate at surfaces, eventually leading to changes in bacterial motility and biofilm formation. We use a novel two-color, three-dimensional Lagrangian tracking technique to follow simultaneously the body and the flagella of a wild-type Escherichia coli. We observe long surface residence times and surface escape corresponding mostly to immediately antecedent tumbling. A motility model accounting for a large behavioral variability in run-time duration reproduces all experimental findings and gives new insights into surface trapping efficiency.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|