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Abstract 11 

Conversation represents a considerable amount of the daily language usage and plays an 12 

important role in language acquisition. In conversation, listeners simultaneously process 13 

their interlocutor’s turn and prepare their own next turn. As such the turn-taking dynamics 14 

heavily relies on prediction. In other words, listeners avail prior knowledge to constrain both 15 

speech perception and production. Here we explored the relation between prediction and 16 

comprehension while watching two interlocutors having a conversation. We capitalize on 17 

gaze switch as a proxy of predictive behaviour to class dialogue turns as more or less well 18 

predicted and explore how this affects dialogue comprehension. Moreover, we study the 19 

extent to which speech degradation, by increasing the global uncertainty of the context, 20 

affects the relation between predictions, brain correlates of prediction errors (N400) and 21 
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global comprehension. Results show that 1) listeners direct gaze to the current speaker, in 22 

particular in challenging conditions, 2) gaze behaviour possibly affects the semantic 23 

processing of the upcoming turn (N400), 3) participants with a more efficient gaze predictive 24 

behaviour better solve semantic uncertainties at the turn onset, in particular in the most 25 

challenging listening condition. Our findings contribute to a better understanding of the 26 

relation between predictions, neural predictions errors and speech comprehension under 27 

challenging conditions.  28 
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Introduction 39 

Speech perception is not the result of a real-time decoding of audio-visual information. It is a 40 

dynamic process of an anticipatory nature building on 1) the use of the linguistic and extra-41 

linguistic context to generate hypotheses about the upcoming signal, i.e. we make 42 

predictions about what we are likely to hear and 2) a comparison of our predictions against 43 

what is actually perceived. Thus, when we listen to a conversation between two people, we 44 

anticipate, for example, the words that the speakers will produce according to the linguistic 45 

context that precedes their utterances. The more we know about this context, the fewer 46 

prediction errors we make and the faster and more accurate our understanding of their 47 

conversation. According to predictive coding theory (Clark, 2013), predictions would indeed 48 

be a default brain mode of operation for processing sensory information (Friston, 2005). To 49 

optimize speech perception, the brain would pre-activate representations of the expected 50 

speech input (Molinaro et al., 2016) at a phonological, lexical, semantic or even syntactic 51 

level (Pickering & Gambi, 2018). With increasingly accurate predictions, the brain would only 52 

need to compute the difference between sensory input and prediction, thereby decreasing 53 

the cost of perceptual processing and speeding up the understanding of the spoken 54 

message. A well-known fact in the comprehension literature is that the amount of 55 

contextual information, i.e. the increase in the precision of prediction, positively influences 56 

the speed of word recognition (Tyler & Wessels, 1983). This has been thoroughly studied 57 

using event-related potentials, by observing changes in the amplitude of a negative 58 

component. Indeed, words with low cloze probability engender a prediction error that is 59 

visible in an increase of the N400 amplitude. By contrast the N400 amplitude is reduced 60 

when perceiving speech in highly predictive contexts (see for a review Kutas & Federmeier 61 

2011).  However, until now, no study had shown a direct link between contextual predictions 62 
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and the integration of these predictions in the semantic comprehension process in a 63 

conversational context. This is due to the fact that, while prediction errors engender 64 

observable brain responses (e.g., N400 or Mismtach Negativity), this is not the case of 65 

predictions. Recently, Grisoni and colleagues (Grisoni et al., 2021) described an 66 

electrophysiological index of predictions called the "Semantic Prediction Potential", and 67 

showed, by measuring the N400 brain response during the perception of more or less 68 

contextually constrained sentences, the direct effect of predictions (SPP) on the processing 69 

of prediction errors (N400).  70 

Another possibility to infer the ongoing predictions is to use behavioural measures. In the 71 

case of language, several studies have used for instance eye movements during reading 72 

(Rayner, 1978; Staub, 2015). Similarly, in speech perception, some authors relied on the 73 

implicit anticipatory gaze behaviour when listening to different people having a conversation 74 

(Casillas & Frank, 2017; Keitel et al., 2013). More precisely, listeners anticipate the end of the 75 

turn of the current speaker and switch gaze to the following speaker, before the actual onset 76 

of the new turn. This predictive behaviour is particularly important considering that the 77 

silence separating speech turns of conversing speakers only lasts a few hundred milliseconds 78 

(Levinson, 2016; Stivers et al., 2009). In considering turn-taking in conversation, predictions 79 

build on several linguistic cues such as prosody (Roberts et al., 2015), lexical-semantic cues 80 

(De Ruiter et al., 2006), syntactic structures (Selting, 1996) or pragmatic cues (Beňuš et al., 81 

2011). When listening to a dialogue (as a third person), a similar behaviour possibly takes 82 

place via the generation of internal models, allowing a listener to anticipate in a precise 83 

temporal window the speakers’ turn-taking.  84 
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The aim of the current study is to explore the links between predictions at the turn level, 85 

measured by gaze switch, and both local and global semantic processing when listening to a 86 

dialogue, as indexed by N400 to turn onset and comprehension score, respectively. 87 

Importantly we are interested in studying how these relations evolve when adding 88 

uncertainty to the context by degrading the input signal. Indeed, degrading the acoustic 89 

signal or adding noise or competing speakers, adds uncertainty and challenges speech 90 

comprehension (Mattys et al., 2012; Peelle, 2018). To this aim, we asked participants to 91 

watch videos of two people having a conversation manipulating different levels of speech 92 

degradation. We measured eye movements to estimate predictive gaze behaviour and used 93 

this measure to class turns as well predicted (early gaze switch) or poorly predicted (late 94 

gaze switch). We also measured EEG and used the N400 as a marker of prediction error at 95 

the turn onset and studied the extent to which this response is influenced by gaze 96 

behaviour. Finally, all participants responded to several open questions at the end of each 97 

dialogue, allowing estimating a global comprehension measure. Most importantly, we 98 

explored the relation between these different variables as a function of speech degradation 99 

and increasing uncertainty. We hypothesized that poorly predicted turns (late gaze switch) 100 

would engender a larger N400 response compared to well anticipated turns (early gaze 101 

switch). Importantly, this effect may change as a function of speech degradation and should 102 

be reduced at high speech degradation levels when uncertainty is highest. We also 103 

hypothesized that, if predictions are fully implicit and based on the understanding of the 104 

dialogue, then gaze switches should behave similarly to comprehension score and decrease 105 

from normal to moderately degraded and even more for highly degraded speech.  106 

 107 
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Materials and Methods 108 

We report how we determined our sample size, all data exclusions, all inclusion/exclusion 109 

criteria, whether inclusion/exclusion criteria were established prior to data analysis, all 110 

manipulations, and all measures in the study. No part of the study procedures or analyses 111 

was preregistered prior to the research being conducted. 112 

 113 

Participants 114 

Forty-eight participants (27 females) were tested after being informed of the procedure of 115 

the study, which was approved by the Sud Méditerranée Ethics Committee (ID RCB: 2015-116 

A01490-49). In absence of a known effect size, the sample size was chosen as rather large 117 

with respect to N400 studies (Šoškić et al., 2021). Inclusion and exclusion criteria: 118 

Participants were between 18 and 62 years old (mean = 32, SD = 6 years). They were native 119 

French speakers. The had normal or corrected to normal vision and normal hearing. years); 120 

they had no history of speech disorder or neurological disease based on self-report. Prior the 121 

experiment, the hearing thresholds were controlled using a 5dB-step custom screening 122 

hearing test made in Python 3.7.9 (Expyriment version 0.10.0). Data from nine participants 123 

were excluded because of noisy EEG recordings (high impedances or excessive 124 

eye/movement artifacts) or track loss for long temporal windows in the eye-tracking dataset, 125 

resulting in 39 participants in the final dataset. 126 

Stimuli 127 

We presented 6 audiovisual stimuli of ~4.5 minutes each, showing a man and a woman 128 

having a conversation. The themes of the conversations differed and were joyful to maintain 129 

attention during the whole duration of the dialogue. Dialogues contained on average 59 130 
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turns (min = 46; max = 66; see details in table 1). Turns lasted on average 3.75s (SD = 2.75) 131 

and global speech rate was approximately 5Hz. 60% of these turns were 132 

questions/responses adjacency pairs (min = 56 %; max = 66%) in order to elicit predictive 133 

behaviours as suggested in Casillas & Frank, 2017 (Casillas & Frank, 2017). We used Final Cut 134 

Pro X to set the gap duration at speakers’ turn to 500ms in order to have homogeneous turn 135 

conditions, allow anticipatory gaze behaviour (cf. Foulsham et al. 2010; Casillas and Frank 136 

2017) and obtain equivalent EEG baseline for turn onset analyses. 137 

For the clarity of the evoked potentials, each turn onset began with a plosive consonant 138 

(although we avoided bilabial to avoid visual cues preceding the plosion). In the stimuli 139 

recording session, all dialogues were written and displayed on a desk in front of the speakers 140 

during video shooting. Dialogues were all read by the same male and female speaker and 141 

videos were recorded in an anechoic room. To avoid body movement when reading the 142 

dialogues, the speakers sat on a chair and their head was maintained still by a hard hat fixed 143 

to the chair. Each speaker wore sunglasses to hide eye movements and a wig to hide the 144 

hard hat (Figure 1A left). Furthermore, in order to discard spurious visual cues, the non-145 

speaking speaker was “frozen” via video editing whenever a head or lip movement occurred 146 

before the turn. This happened in approximately ~20% of the turns. In order to avoid sharp 147 

jumps in the images of the upcoming speaker such freezing took advantage of fading and 148 

morphing technics (mMorphCut plug-in ; FINAL CUT pro X). 149 

In other words, turns could not be anticipated on the basis of visual information of the next 150 

speaker right before the turn. Thus, anticipatory gaze behaviour cannot be interpreted in 151 

response to visual cues but as auditory predictive behaviour only. We also created 12 open 152 

questions for each dialogue (e.g. “why was Tom walking in the wood?”) (see table 2 for more 153 
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examples for one dialogue). These questions were recorded using an auditory only format, 154 

by a female speaker different from the one in the dialogues.  155 

Speech recordings of the six dialogues were degraded using a noise vocoding approach 156 

(Shannon et al. 1995; custom Matlab script). This allows to parametrically vary the spectral 157 

detail, with increasing numbers of channels associated with increasing perceptual clarity 158 

(Figure 1A right). The procedure allowed creating a highly degraded condition in which we 159 

kept only frequency bands from 120Hz to 237Hz, 405Hz to 538Hz and 919Hz to 1028Hz  (i.e. 160 

3 frequency bands left with 5 ERB scales) and a moderately degraded condition  in which we 161 

removed all frequency bands except from 120Hz to 237Hz,  from 674Hz to 805Hz, from 162 

2025Hz to 2112Hz and 5208Hz to 5236Hz (so 4 frequency bands left with 8 ERB scales). The 163 

overall RMS amplitude of the audio files was adjusted to be the same across all dialogues in 164 

the three conditions (normal, moderately degraded, highly degraded). We also run a pilot 165 

test to ensure that comprehension varied as a function of speech degradation and that, in 166 

the most challenging condition, participants could still understand part of the conversation. 167 

More precisely, 6 native French participants listened to audio excerpts of the dialogues and 168 

repeated all words they could recognize. The excerpts were degraded in a parametric 169 

manner in the number of channels, the bandwidth and the low frequency cut-off. The 170 

parameters were chosen in such a way to yield a condition of moderate difficulty 171 

(comprehension level between 30 and 50%) and another condition of great difficulty 172 

(comprehension level between 10 and 30%). 173 

  174 
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  175 

Figure 1. Schematic illustration of the task and analyses. A. On the left, snapshot of the video illustrating the 176 

fixation points of the participant and the gaze switch. On the right, the three different speech conditions with 177 

normal, moderately degraded and highly degraded speech (using a vocoding approach). B. Schematic 178 

illustration of the turns in the dialogue, the controlled gap between turns (500ms) and the gaze switch window 179 

of analysis. C. On the left, gaze behaviour of a single participant showing the gaze switch for every turn of a 180 

single dialogue in the normal speech condition with respect to turn onset (zero). On the right, the gaze switch 181 

distribution for a single participant in the three different degradation conditions. A median split is used to class 182 

turns as being more or less well anticipated. 183 
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Procedure  184 

Participants were equipped with a 64 preamplified Ag–AgCl electrodes (International 10/10 185 

system site, BrainAmp system). The ground electrode was placed at AFz, the reference 186 

electrode at FCz, and the EEG signal sampling rate recording was 1000 Hz. Participants were 187 

comfortably seated in a Faraday sound-proof booth in front of a computer screen (24’’) with 188 

a resolution of 1920 x 1080px and a refresh rate of 100Hz), at a distance of approximately 70 189 

cm. A Gazepoint GP3 eye-tracker (sampling rate: 60 Hz; accuracy: 0.5-1° of visual angle) was 190 

installed at the bottom of the screen on a tripod to record the participant’s gaze positions. 191 

OpenSesame software (Mathôt et al., 2012) installed on a Dell laptop (Precision T1700) 192 

launched the eye-tracker recording through the PyGaze package (Dalmaijer et al., 2014) and 193 

the audio-visual stimulation. The videos were displayed on full screen resolution, and the 194 

sound was delivered through a 2040 YAMAHA amplifier and two NS 1020 Studio YAMAHA 195 

loudspeakers located on both sides of the screen. Before each video presentation, the 196 

participant’s eyes were calibrated using the PyGaze’s standard 12-points calibration 197 

procedure. 198 

The experimenter asked participants to attentively follow the dialogues and informed them 199 

that, after each dialogue, they should answer 12 questions on the dialogue content. These 200 

questions allowed us to ascertain participants’ attention and assess the level of 201 

comprehension. Each participant saw 2 dialogues in each of the three experimental 202 

conditions (normal speech, moderately degraded speech, highly degraded speech). The level 203 

of degradation of each dialogue and the order of the dialogues were counterbalanced across 204 

participants (each dialogue was presented at a different degradation level - normal, 205 

moderately degraded, highly degraded - to different participants).    206 

 207 
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Stimuli, eye-tracking and EEG data synchronization  208 

A custom-made sync box based on an Arduino micro-controller ensured the synchronization 209 

between the EEG data and the acoustic stimulation that was embedded in the video file. The 210 

stereo sound goes from the stimulation PC to the sync box (audio cable). There, the stereo is 211 

split and the first channel containing the speech signals of the dialogues goes directly to the 212 

loudspeakers. The second channel signal goes through the micro-controller. This channel 213 

contains an audio trigger indicating the beginning and the end of each dialogue. The Arduino 214 

detects the audio trigger and sends an adapted signal to the EEG system. To ensure a precise 215 

synchronization of the eye-tracking on the acoustic stimulation and the EEG data, we used 216 

saccadic movements. More precisely, saccades can be easily detected in the eye-tracking 217 

data, but they are also clearly visible in the EEG signal, especially using Independant 218 

Component Analysis decomposition (Makeig et al., 1996). Thus, for each dialogue, we 219 

detected gaze switch for every turn in both the eye-tracking and EEG data (see 220 

supplementary material 1). Then, we computed for each subject and dialogue the median 221 

delay between the two signals across all turns and used it to temporally realign the eye-222 

tracking to EEG (median delay across participants = 23ms; median sd across participants = 223 

12ms). This procedure ensured a good time-alignment of the three types of data (video, eye-224 

tracking and EEG). 225 

Data Analysis 226 

Eye-tracking  227 

In this study we used the gaze switch from one speaker to the other as a proxy of 228 

anticipatory behaviour with respect to the upcoming turn onset (see Figure 1A left and B). 229 

However, in contrast with previous studies (Casillas & Frank, 2017) that were mostly 230 

interested in anticipatory gaze shift, we were also interested in somewhat late gaze shifts. 231 
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We assumed that adult participants need approximately 200ms to plan an eye movement 232 

(Kamide et al., 2003). Thus, we considered a temporal window around the turn allowing to 233 

keep both anticipatory and non-anticipatory gaze switch, resulting in a -1/+1s window 234 

around the turn onset (Figure 1B). Note, nonetheless that, as expected, most shifts occurred 235 

in the inter-turn gap, that is before the turn onset (Foulsham et al., 2010; Keitel et al. 2013; 236 

Casillas and Frank 2017, see Figure 2B). 237 

Moreover, we also applied three supplementary criteria to filter spurious gaze switches. 238 

First, gaze before and after the switch should fall within an area of interest (AOIs), defined as 239 

stationary rectangle surrounding each face (see Figure 1A left). Second, gaze switch should 240 

be preceded by at least 100ms fixation on the current speaker. Third, it should be followed 241 

by at least 150ms fixation to the next speaker. Concerning the possible back and forth gaze 242 

behaviour preceding turn (4.5% in our data), we kept only the first gaze switch.  243 

In short, we computed a gaze switch latency, that is relative to the upcoming turn onset 244 

time. A positive indicates thus a gaze switch following the turn onset, while a negative value 245 

indicates a gaze switch before the turn onset (Figure 1C left). Then, we used a median split 246 

to class turns as early or late, separately for each subject and condition (Figure 1C right). 247 

EEG 248 

Signal processing was done using EEGLAB (Delorme & Makeig, 2004) and custom scripts 249 

written in MATLAB. We high-pass filtered (0.5Hz) continuous data and rejected major 250 

artifacts (> 300 μV). For every participant, we systematically used Independent Component 251 

Analysis to remove eye blinks and saccadic movements and, when needed, muscular activity. 252 

We then low-pass filtered (45Hz) and segmented continuous data into epochs of 900ms 253 

starting at 100ms prior to turn onset. We zero-mean normalized epochs to the baseline ([–254 
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100, 0]ms) and re-referenced to the algebraic average of all electrodes. Finally, we averaged 255 

epochs according to the three conditions, also separating epochs according to the latency of 256 

the gaze shift corresponding to each turn (early or late, see above). 257 

Statistical analysis  258 

We computed all statistical analysis using R (Team, 2021) and the lme4 package (Bates et al., 259 

2015). We evaluated participants’ comprehension scores (1 point attributed to each good 260 

answer; range 0 - 12) as a function of speech degradation by fitting linear models on the 261 

mean of correct responses for each condition (2 dialogues by condition) and each subject. 262 

Similarly, we modelled the mean of gaze switch latencies for each dialogue as a function of 263 

speech degradation by fitting linear model on latency data. We then used a general linear 264 

model (glm) in modelling the time spent gazing at the current speaker (ratio of the total 265 

fixation time). All theses models were tested against the null model before being 266 

interpreted.  We computed a linear mixed model with interaction to explain comprehension 267 

score according to gaze switch latencies and speech degradation, with subject as random 268 

effect (comprehension ~ gaze switch latency * speech degradation + 1|subject). This model 269 

was compared 1) to the null model, 2) to the model with only gaze switch latencies as 270 

predictor and 3) to the additive model (gaze switch latencies and speech degradation as 271 

independent predictors). Statistical significance of the fixed effects was assessed by model 272 

comparison using the Akaike Information Criterion, thus arbitrating between complexity and 273 

explanatory power of the models.  Normality and homoscedasticity of the residuals of all the 274 

models were systematically visually inspected. Reported p values are Satterthwhaite 275 

approximations obtained with the lmerTest package (Kuznetsova et al., 2017). 276 
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The statistical significance of the differences between conditions for the ERP data was 277 

evaluated by a cluster-based random permutation approach for the full set of 64 electrodes 278 

(2-tailed test with 500 permutations over the whole time range of the ERP epoch, i.e. 279 

between -100 and 800ms). This statistical approach handles the multiple-comparisons 280 

problem. More precisely, the approach controls for the Type-1 error rate in multiple testing 281 

across channels and time points by identifying clusters of significant differences between 282 

conditions in the time and space dimensions (Maris & Oostenveld, 2007). Finally, in order to 283 

assess the relation between gaze switch and ERPs, we used simple linear models with the 284 

amplitude difference between late and early trials in the N400 window explained as a 285 

function of the interaction between gaze switch latencies and speech degradation (N400 286 

effect ~ gaze switch latency * speech degradation). As for the other analyses, this model was 287 

compared to the additive model.  288 

 289 

 Results 290 

As expected, the comprehension score decreases as a function of increasing speech 291 

degradation (β = -2.551, SE = 0.22, t = -11.55, p < 0.001, Figure 2A). Compared to the normal 292 

condition, both the highly degraded and degraded speech conditions altered the 293 

comprehension score (β = -1.23, SE = 0.42, t = -2.929 p = 0.004 ; β = -5.102, SE = 0.42, t = -294 

12.145, p < 0.001, respectively). 295 

It is important to note that participants’ score are well above zero and this is also the case in 296 

the highly degraded condition (range: 1-10, median 5.5). Considering that the score is based 297 

on response to open questions, it is extremely unlikely that a single correct answer is given 298 
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by chance. As such, these results show that participants of the current experiment can partly 299 

understand the dialogues even in the most difficult condition of speech perception. 300 

When turning to eye-movements, participants gaze data are available on average for 87% of 301 

the total duration of the dialogues (range: [82-90]). The loss of data is possibly due to a gaze 302 

off the screen and/or to a temporary loss of the eye from the tracker. From these available 303 

data, it appears that participants gazed at the current speaker most of the time during video 304 

playback (93%; range: [87-97]).  Compared to the normal condition, time spent on current 305 

speaker is greater in the degraded (β = 0.580, SE = 0.073, t = 7.881, p < 0.001) and highly 306 

degraded conditions (β = 0.616, SE = 0.074, t = 8.317, p < 0.001). Importantly, not only 307 

participants gazed most of the time at the current speaker, but when considering gaze 308 

switch towards the current speaker, these took place most often in a -1/+1sec window 309 

around the turn onset (mean 80 %, range: [0.56-0.96]), the rest being gaze switches far away 310 

from the turn or missing data.   311 
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 312 

Figure 2. Behavioural results and correlations. A. Effect of speech degradation level on comprehension. Dots 313 

represent the average comprehension score for each participant in each condition. B. Effect of speech 314 

degradation level on gaze switch latency. Latency at zero milliseconds corresponds to the onset of the turn. 315 

Dots represent the average latency for each participant in each condition. C. Scatter plots and linear regression 316 

between comprehension scores and gaze switch latency in the three different conditions. D. Scatter plots and 317 

linear regression between N400 effect size (late minus early, in the 300-550ms latency window) and gaze 318 

switch latency in the three different conditions. 319 

Normalizing by time unit this gives a number of gaze switch per second of 0.47 during the 320 

turn window and 0.08 during the rest of the dialogue (that is switches from one AOI to the 321 
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other that were performed outside the -1/+1s window around the turn, see supplementary 322 

material 2). Overall, these results clearly show that gaze and gaze switches are not randomly 323 

distributed across the dialogues. On the contrary, gaze behaviour to current speakers 324 

demonstrates that participants are tracking turns during the videos, as previously reported 325 

(Casillas & Frank, 2017). When moving to gaze switch latencies, one can see that these are 326 

influenced by speech degradation (β = 43.382, SE = 9.52, t = 4.553, p < 0.001, see Figure 2B). 327 

This is due to longer latencies to turns with highly degraded speech compared to normal and 328 

degraded speech (always p < 0.001) while there are no latency differences between 329 

degraded and normal conditions (p > 0.1). Moreover, latencies globally move from negative 330 

values in the normal condition to positive values in the highly degraded condition. Because 331 

latencies are estimated with respect to turn onset, this means that while in the normal 332 

condition participants realize the gaze switch before the turn, switches mostly take place 333 

after the turn onset in the highly degraded condition.  334 

When looking at the relation between comprehension scores and gaze latency, this changes 335 

as a function of speech degradation (β = - 5.740, SE = 0.001, t = -3.936, p < 0.001). More 336 

precisely, in the highly degraded condition shorter gaze switch latencies to turn onsets are 337 

associated to good comprehension scores (β = - 0.008, SE = 0.003, t = -2.989, p < 0.01). This 338 

effect was not significant in the moderately degraded nor in  normal conditions (p > 0.5, 339 

Figure 2C). This model with gaze switch latencies and speech degradation as  interaction 340 

factors was the best compared to the additive model (AIC =  1038.5 and 1043.6 respectively ;  341 

p < 0.01 and p < 0.001).  342 

The classification of turns on the basis of the latency of gaze switches (late vs early) shows a 343 

clear negative component for turns with late switches evolving between 350 and 700ms 344 
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post-stimulus onset over a fronto-central region (Figure 3B). This effect is visible in the three 345 

different levels of speech degradation (p < 0.05, FDR corrected). However, this effect seems 346 

to differ across the three levels of speech degradation (Figure 3A) insofar as the clusters 347 

start at different latencies. Because it is not appropriate to make an inferential claim on the 348 

time extension of the cluster (Sassenhagen et al., 2019), we run a further analysis using a 349 

jackknife approach in five subsequent 50ms latency windows from 150 to 400ms. This 350 

approach is considered appropriate to make inferences on the latency of an ERP effect 351 

(Miller et al., 1998). Results show that differences between early and late turns are 352 

significant starting 200ms post turn onset in the normal condition, 150ms in the moderately 353 

degraded condition and 300ms in the highly degraded condition (p < 0.05, FDR corrected). 354 

Finally, when looking at the relation between the ERP effect (late vs early gaze switches) in 355 

the 300-550ms window and the global gaze switch latency of participants, we find a 356 

significant interaction between gaze switch latencies and speech degradation levels (F = 357 

7.135, p = 0.001). More precisely, one can notice, that, in the highly degraded condition, 358 

participants with overall shorter gaze switch latencies to turn onsets show a larger effect (β = 359 

0.007, SE = 0.001, t = 3.753, p < 0.001). A similar but not significant trend is also visible in the 360 

moderately degraded (β = 0.003, SE = 0.001, t = 1.912, p = 0.058) but not in the normal 361 
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conditions (β = 0.000, SE = 0.001, t = 0.204, p = 0.838, Figure 2D). 362 

 363 

Figure 3. A. event-related potentials (ERPs) in a fronto-central region of interest time-locked to the turn onset 364 

for early and late gaze switch latencies. Shaded areas indicate the standard error of the mean. The black line 365 

below the ERPs indicates the FDR corrected significant difference between early and late conditions. B.  366 

Cluster-based statistical analyses on all electrodes showing the main effect of gaze behaviour (early vs late). 367 

The topography illustrates the difference between late and early turns across all levels of degradation. The red 368 

dots represent electrodes with significant differences (cluster corrected). 369 

Discussion 370 

In the present experiment, participants watched a series of videos showing two interlocutors 371 

having a conversation. We parametrically degraded speech and measured eye-movements, 372 

EEG and dialogue comprehension to gather a deeper understanding of the mechanisms 373 

underlying speech comprehension under challenging conditions. We build on the fact that 374 
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participants switch gaze at the current speaker and use this measure as a proxy of prediction 375 

to class dialogue turns as more or less well predicted and study ERPs accordingly. Results 376 

show that 1) Participants switch gaze towards the current speaker in a limited temporal 377 

window around the turn. 2) Speech degradation reduces the anticipatory gaze behaviour. 3) 378 

Globally, participants with a low comprehension score tend to have a later gaze behaviour 379 

when speech is strongly degraded. 4) ERPs to turn onsets vary as a function of the latency of 380 

the gaze switch. 5) Finally, participants with overall shorter switch gaze latencies show a 381 

better comprehension score and a stronger anticipatory effect in their neural responses; this 382 

relation between behavioural and neural variables is significant only in the most challenging 383 

(degraded) condition. We discuss these findings with respect to the relation between 384 

predictions, neural predictions errors and speech comprehension under challenging 385 

conditions. Of course, these findings are limited by the constraints inherent to the present 386 

experiment, wherein predictions are possible purposely on the basis of auditory cues only 387 

because we controlled all extralinguistic visual cues (e.g. lip preparatory movement) that 388 

undoubtedly play an important role in conversation. 389 

Our study replicates previous findings (Casillas & Frank, 2017; Foulsham et al., 2010; Keitel et 390 

al., 2013), showing that gaze switch takes place in a precise temporal window centered 391 

before turn onset. Considering the short period between turns and the time needed to 392 

prepare and realize a saccade, gaze switch, in this context, can be interpreted as anticipatory 393 

behaviour (Keitel & Daum, 2015). The new result, in this respect, is that gaze switch 394 

behaviour is affected by the more or less challenging speech comprehension, here obtained 395 

by spectrally degrading speech signal. The reduction of anticipatory gaze behaviour in 396 

presence of stronger speech degradation seems to indicate that increasing the cost of 397 

speech processing has a detrimental effect on the prediction of the upcoming turn. This is in 398 
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line with results on hearing-impaired individuals showing a delay (greater effort) in 399 

processing sentences with more or less contextual cues, compared to normal-hearing (Winn, 400 

2016). 401 

Importantly, our results show a relation between comprehension score and turn anticipatory 402 

behaviour, under challenging conditions. This result is not trivial. Indeed, the comprehension 403 

score reflects the global understanding of the whole dialogues, because it corresponds to 404 

questions that were asked at the end of each dialogue. By contrast, gaze switch and EEG 405 

dynamics reflect anticipatory behaviour at precise temporal windows surrounding 406 

conversational turns. This means, that, under challenging conditions, participants that are 407 

able to understand can take advantage of an anticipatory gaze behaviour. Alternatively, 408 

participants with an anticipatory gaze behaviour are better able to understand. While the 409 

present design does not allow for a causal interpretation between gaze behaviour and global 410 

understanding of the dialogues, we will see that ERP results play here a very important role. 411 

However, before discussing this point one has to interpret the ERP components, in particular 412 

the negative component peaking around 400ms. 413 

First, one may raise the possibility that residual gaze-related artefact may still be present in 414 

the EEG, even following ICA procedures (see methods). However, 1) the systematic 415 

difference in latency between late and early switches was on average 480ms, while we do 416 

not observe such a delay in ERPs to early and late turns; 2) while highly degraded speech 417 

induces overall later gaze switches, the N400 peak in this condition has the same latency as 418 

in the other conditions (in Figure 3A the N400 peak is always 400ms). Thus, overall, one can 419 

consider that differences in ERPs are due to cognitive processes and not to residual 420 

physiological artefacts due to eye movements. 421 
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The first and most likely interpretation of the larger negativity to both degraded turns and 422 

late turns is in terms of an N400 like component. Indeed, the amplitude of the N400 is 423 

strongly affected by expectations: the more a target word is unexpected within a sentence 424 

context, the larger the N400 amplitude (Kutas & Federmeier, 2011; Kutas & Hillyard, 1984).  425 

While the N400 topography we report is more anterior compared to the classic centro-426 

parietal distribution, this may be due to the audiovisual modality (Kelly et al., 2004) or to the 427 

presence of complex scenes (Kutas & Federmeier, 2011) inducing a topography more frontal 428 

than for written words. Importantly, the N400 has been proposed to be a proxy of prediction 429 

errors (Bornkessel-Schlesewsky & Schlesewsky, 2019; Rabovsky & McRae, 2014), that play a 430 

key role within the predictive coding framework (Friston, 2010; Schultz & Dickinson, 2000). 431 

As stated above, in order to assess the relevance of predictive coding theories with respect 432 

to speech comprehension, it is necessary to have access to both prediction and prediction 433 

error indicators. Our results, as well as previous studies, seem quite clear in showing that 434 

gaze switch behaviour can be considered as a proxy of predictions. Previous research using 435 

an electrophysiological marker of prediction (the semantic prediction potential, SPP) showed 436 

that smaller SPP amplitude (weak predictions) result in a large N400 (Grisoni et al., 2021). 437 

Similarly, our results show that turns preceded by a late gaze switch, indicating poor 438 

predictions, give rise to a larger N400 like complex compared to turns preceded by an early 439 

gaze switch. An interesting advantage of the current design is that the target words (here 440 

turn onsets) do not need to differ in content or in context in order to engender a N400. This 441 

is different for instance, from previous studies manipulating the semantic and temporal turn 442 

relation to induce an N400 effect (Bögels et al., 2015). In other words, in the current study, 443 

the word and the context eliciting or not the N400 are strictly identical and we take 444 

advantage of the natural variability in the accuracy of participants’ predictions across turns. 445 
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The interpretation in terms of N400 also fits quite well with the literature on weaker 446 

expectancies under degraded speech. Previous work showed that adverse listening 447 

conditions narrow the expectancies about the upcoming speech. This is visible in a reduced 448 

N400 effect in response to incongruent or less likely words under acoustic degradation 449 

(Aydelott et al., 2006; Obleser & Kotz, 2011; Strauß et al., 2013). The present findings show a 450 

somewhat similar result, with an N400 effect that is significant in a later latency window in 451 

the most challenging condition (strong speech degradation) compared to the two other 452 

conditions. While the typical N400 effect concerns the amplitude of the negative wave, 453 

several works reported later N400 latencies in context presenting more difficult semantic 454 

access (Deacon et al., 1995; Moreno & Kutas, 2005). Interestingly, the temporal window 455 

analysis shows that traces to early and late turns diverge first in the degraded condition, 456 

then in the normal and last in the highly degraded conditions. It thus seems as if the 457 

advantage of an early gaze switch was integrated faster in moderately challenging 458 

conditions. There, the benefit of an anticipatory gaze behaviour and temporally precise 459 

(local) predictions may be maximal compared to the two other conditions wherein 460 

uncertainty may either be too low (normal speech) or too high (highly degraded speech). 461 

However, while the N400 latency is earliest in the degraded condition (Figure 3A), the N400 462 

amplitude best correlates with turn anticipatory behaviour in the highly degraded condition 463 

(Figure 2D). In considering this inconsistency one should keep in mind that 1) the N400 464 

effect, in terms of amplitude, is also significant in the highly degraded condition; 2) while the 465 

correlation between N400 amplitude and average gaze behaviour does not reach the 466 

significance threshold (p = .06), the trend of the correlation is similar across the two 467 

degraded conditions.  468 
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Importantly, Figure 2C and 2D clearly show that there is a similar relation between gaze 469 

behaviour and the semantic access of dialogues. Differently from global comprehension 470 

score, the N400 amplitude does not reflect a global understanding of the conversation, but it 471 

is a rather local measure, as it is the case with gaze switch behaviour. Moreover, the two 472 

measures are serially ordered in time, with gaze switch taking place earlier ~400ms before 473 

the N400 peak. Thus, one can hypothesize that participants with an overall early gaze switch, 474 

by having a better prediction of the turn, have an easier lexical-semantic integration of the 475 

word starting the turn in the conversational context. This relation between gaze and both 476 

local (N400 effect) and global (comprehension scores) understanding is only shown under 477 

challenging conditions, wherein indeed participants can benefit of a predictive behaviour to 478 

improve their understanding of the dialogues. 479 

It seems appropriate here to evoke an alternative (although not necessarily the most likely) 480 

interpretation of the negative component in terms of a phonological mismatch negativity 481 

(pMMN). Several studies have addressed the timing of audio-visual integration. For instance, 482 

in McGurk illusion, the temporal window allowing modality fusion and allusion ranges 483 

between 30ms and 170ms of asynchrony (van Wassenhove et al., 2007). When looking at 484 

the electrophysiological response to the incongruent audio-visual stimulation, several 485 

authors report a pMMN (Colin et al., 2002; Eskelund et al., 2015; Stekelenburg & Vroomen, 486 

2012). The latency of this response is later than the classic MMN and is described 487 

approximately 500ms after the voice onset (Proverbio et al., 2018). In our study, the 488 

classification of turns as being accompanied by late or early gaze switch implies that the 489 

audio-visual relation of the stimuli differs in the two classes. For early gaze switch, the gaze 490 

is well anticipated and thus the audio-visual information is perceived simultaneously. By 491 

contrast, in turns with a late gaze switch, often occurring after the voice onset, the 492 
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audiovisual integration has a higher level of uncertainty. In other words, if a gaze switch 493 

takes place later than a turn onset, there may be an audiovisual mismatch because the 494 

participant is looking at the previous speaker while listening to the upcoming speaker’s 495 

voice. In this context, looking at the closed lips of the previous speaker and hearing the word 496 

pronounced by the following speaker, may engender a phonological audiovisual MMN. 497 

We would like to end the discussion with a consideration on the implicit and explicit role of 498 

predictions. It is known that the influences of the visual system on auditory perception can 499 

be so strong as to override under certain conditions the original input of the auditory system 500 

(Mcgurk & Macdonald, 1976). More commonly, viewing the lips provides relevant 501 

complementary information and can augment and improve auditory capabilities (Calvert et 502 

al., 1997; Drijvers & Özyürek, 2017; Grant & Seitz, 2000; Sumby & Pollack, 1954). In this 503 

context, it is interesting to note that, compared to the normal condition, the moderately 504 

degraded condition yields a poorer comprehension but similar  gaze switch latencies and an 505 

earlier N400 effect. These preserved latencies, in a context of poorer comprehension that 506 

should rather induce poorer predictions, may be mediated by an active compensatory 507 

strategy, explicitly making greater use of visual cues to improve predictive processes 508 

(Sohoglu & Davis, 2016). Such a compensatory strategy may not hold when speech is highly 509 

degraded, yielding to slower gaze switches due to a poor understanding of the semantic and 510 

syntactic context.  The respective role of implicit and explicit predictions and their link to 511 

conversation strategies (Hadley et al., 2021) will require further work addressing this specific 512 

question. Another interesting aspect that will require further work is the inter-relation 513 

between local predictions (gaze), local semantic processing (N400) and global 514 

comprehension (here assessed via specific questions on the dialogues). While on one side 515 

gaze switches temporally precede auditory and semantic processing of the upcoming turn, 516 
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this anticipatory behaviour can only build on the global comprehension of the dialogue, that, 517 

in turn, depends on the integration of local semantic processing. 518 

To conclude, this study confirms that gaze switch can be used as a proxy of predictions in a 519 

conversational context. It shows that these predictions are related to  the lexico-semantic 520 

processing of the turn start, as estimated by a neural marker of prediction error. It also 521 

shows that predictions are less accurate in more challenging listening conditions, but that 522 

they are also most useful in that specific context to make sense of the upcoming turn and, 523 

more generally, are a good indicator of global dialogue comprehension.  524 
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Supplementary material 713 

Dialogue’s number 

Dialogue’s length 

(seconds) 
Number of turns 

Number of 

questions/response 

pairs 

1 269 60 40 

2 247 46 26 

3 185 62 36 

4 258 60 38 

5 253 66 40 

6 248 62 36 

 714 

Table 1. Dialogues’s details. 715 

 716 

Est-ce que Damien veut attraper une bête avec sa cage ? 

Does Damien want to catch an animal with his cage? 

Cette cage est faite pour qui ? 

Who is this cage for? 

Comment Damien arrive à rentrer dans sa cage ? 

How does Damien get into his cage? 

Dans quoi peut rentrer le génie d’Aladin ? 

What can Aladdin's genie fit into? 
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Pourquoi Damien veut se cacher dans une cage ? 

Why does Damien want to hide in a cage? 

Comment se déplace l’étrange fée ? 

How does the strange fairy move? 

Qui porte un grand chapeau ? 

Who is wearing a big hat? 

Pourquoi la sorcière veut attraper Damien ? 

Why does the witch want to catch Damien? 

Camille va chercher qui pour aider Damien à se débarrasser de la méchante sorcière ? 

Who will Camille look for to help Damien get rid of the wicked witch? 

Dans cette histoire, où habite Harry Potter ? 

In this story, where does Harry Potter live? 

Pourquoi Camille pense qu’une bête s’est échappée ? 

Why does Camille think an animal has escaped? 

Est-ce que Harry Potter aime les vilaines sorcières ? 

Does Harry Potter like bad witches? 

 717 

Table 2. Exemple of questions for one dialogue. 718 

 719 
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 720 

Supplementary material 1. Example of eye-tracking and EEG synchronization for one dialogue. A. Overlapping 721 

of ICA-EEG data and Eye-tracking data. B. Zoom in for one trial (one turn); latency at zero milliseconds 722 

corresponds to the onset of this turn. C. Dashed red line represents the mean of delays between Eye-tracking 723 

and EEG data for the same subject in the same dialogue as in A. 724 
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Supplementary material 2. Number of gaze switch per second in and out of the turn window.  

 

 


