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Abstract—In defense-related remote sensing appli-
cations, such as vehicle detection on satellite imagery,
supervised learning requires a huge number of la-
beled examples to reach operational performances.
Such data are challenging to obtain as it requires
military experts, and some observables are intrinsi-
cally rare. This limited labeling capability, as well
as the large number of unlabeled images available
due to the growing number of sensors, make object
detection on remote sensing imagery highly relevant
for self-supervised learning. We study in-domain self-
supervised representation learning for object detection
on very high resolution optical satellite imagery, that
is yet poorly explored. For the first time to our
knowledge, we study the problem of label efficiency
on this task. We use the large land use classification
dataset Functional Map of the World to pretrain
representations with an extension of the Momentum
Contrast framework. We then investigate this model’s
transferability on a real-world task of fine-grained
vehicle detection and classification on Preligens pro-
prietary data, which is designed to be representative
of an operational use case of strategic site surveillance.
We show that our in-domain self-supervised learning
model is competitive with ImageNet pretraining, and
outperforms it in the low-label regime.

Index Terms—deep learning, computer vision, re-
mote sensing, self-supervised learning, object detec-
tion, land use classification, label-efficient learning

I. INTRODUCTION

Very high resolution (VHR) satellite imagery is
one of the key data from which geospatial intel-
ligence can be gathered. It is an essential tool to
detect and identify a wide range of objects, on very
large areas and on a very frequent basis. Recently,
we have seen the multiplication of available sensors,
which has led to a large increase in the volume
of data available. This makes it very challenging
for human analysts to exploit these data without re-
sorting to automatic solutions. Deep learning tech-
niques today have been highly effective to perform
such tasks. However, training those models requires
very large labeled datasets. Annotating objects of
interest in VHR images can prove to be very
costly, being both difficult and time-consuming, and
requiring fine domain expertise. In specific contexts
such as in geospatial intelligence, the targets can



be intrinsically rare, difficult to localize and to
identify accurately. This makes the acquisition of
thousands of examples impractical, as is typically
required for classic supervised deep learning meth-
ods to generalize. Consequently, a major challenge
is the development of label-efficient approaches, i.e.
models that are able to learn with few annotated
examples.

To reduce the number of training samples for
difficult vision tasks such as object detection, trans-
fer learning of pretrained neural networks is used
extensively. The idea is to reuse a network trained
upstream on a large, diverse source dataset. Ima-
geNet [18] has become the de facto standard for
pretraining: due to its large-scale and genericity,
ImageNet-pretrained models show to be adaptable
beyond their source domain, including remote sens-
ing imagery [16]. Nonetheless, the domain gap be-
tween ImageNet and remote sensing domains brings
questions about the limitations of this transfer when
there are very few samples on the task at hand,
e.g. the detection of rare observables from satellite
images. To fit the distributions of downstream tasks
with maximum efficiency, one would ideally use
generic in-domain representations, obtained by pre-
training on large amounts of remote sensing data.
This is infeasible in the remote sensing domain due
to the difficulty of curating and labeling these data
at the scale of ImageNet. However, imaging satel-
lites provide an ever-growing amount of unlabeled
data, which makes it highly relevant for learning
visual representations in an unsupervised way.

Self-supervised learning (SSL) has recently
emerged as an effective paradigm for learning repre-
sentations on unlabeled data. It uses unlabeled data
as a supervision signal, by solving a pretext task on
these input data, in order to learn semantic represen-
tations. A model trained in a self-supervised fashion
can then be transferred using the same methods as
a network pretrained on a downstream supervised
task. In the last two years, SSL has shown impres-
sive results that closed the gap or even outperformed
supervised learning for multiple benchmarks [2],
[3], [7], [8]. Recently, SSL has been applied in the
remote sensing domain to exploit readily-available
unlabeled data, and was shown to reduce or even

close the gap with transfer from ImageNet [1], [15],
[25]. Nonetheless, the capacity of these methods to
generalize from few labels was not been explored on
the important problem of object detection in VHR
satellite images.

In this paper, we explore in-domain self-
supervised representation learning for the task of
object detection on VHR optical satellite imagery.
We use the large land use classification dataset
Functional Map of the World (fMoW) [5] to pretrain
representations using the unsupervised framework
of MoCo [8]. We then investigate the transferability
on a difficult real-world task of fine-grained vehicle
detection on proprietary data, which is designed
to be representative of an operational use case of
strategic site surveillance. Our contributions are:

• We apply a method based on MoCo with
temporal positives [1] to learn self-supervised
representations of remote sensing images, that
we improve using (i) additional augmentations
for rotational invariance; (ii) a fixed loss func-
tion that removes the false temporal negatives
in the learning process.

• We investigate the benefit of in-domain self-
supervised pretraining as a function of the
annotation effort, using different budgets of
annotated instances for detecting vehicles.

• We show that our method is better than or
at least competitive with supervised ImageNet
pretraining, despite using no upstream labels
and 3× less upstream data.

Furthermore, our in-domain SSL model is more
label-efficient than ImageNet: when using very
limited annotations budgets ('20 images totalling
'12k observables), we outperform ImageNet pre-
training by 4 points AP on vehicle detection and
0.5 point mAP on joint detection and classification.

II. RELATED WORK

A. Self supervised representation learning

SSL methods use unlabeled data to learn repre-
sentations that are transferable to downstream tasks
(e.g. image classification or object detection) for
which annotated data samples are insufficient. In
recent years, these methods have been successfully
applied to computer vision with impressive results



that closed the gap or even outperformed supervised
representation learning on ImageNet, on multiple
benchmarks including classification, segmentation,
and object detection [2], [3], [7], [8]. They com-
monly rely on a pretraining phase, where a neural
network, a representation encoder, is trained to
solve a pretext task, for which generating labels
does not require any effort or human involvement.
Solving the pretext task is done only for the true
purpose of learning good data representations that
allow for efficient training on a downstream task of
genuine interest.

B. Contrastive learning

Contrastive learning has recently become the
most competitive unsupervised representation learn-
ing framework, with approaches such as MoCo [8],
SimCLR [3], and SwAV [2]. Contrastive methods
work by attracting embeddings of pairs of samples
known to be semantically similar (positive pairs)
while simultaneously repelling pairs of unlike sam-
ples (negative pairs). The most common way to de-
fine similarity is to use the instance discrimination
pretext task [6], [23], in which positives are gen-
erated as random data augmentations on the same
image, and negatives are simply generated from
different images. Thanks to this pretext task, the
encoder learns similar representations for several
views of the same object instance in an image and
distant representations for different instances. Mo-
mentum Contrast (MoCo) [8] is a strong contrastive
method that implements a dynamic dictionary with
a queue and a moving-averaged encoder, which
enables building a large and consistent dictionary
on-the-fly (see section III-A for more details). In
this paper, we adopt a recent geography-aware
rework of this approach made by [1].

C. Representation learning in remote sensing

Building on that success in computer vision,
SSL has recently been applied to remote sensing
and was shown to reduce or even close the gap
with transfer from ImageNet. [11] first made use
of contrastive learning for remote sensing repre-
sentation learning and [12] also apply a spatial
augmentation criteria on top of MoCo [8]. These

works exploit relevant prior knowledge about the
remote sensing domain: the assumption that images
that are geographically close should be semanti-
cally more similar than distant images. Another
way of making the learning procedure geography-
aware is to exploit the image time series that one
can get from a given geographic area thanks to
the frequent revisit of satellites. This approach is
adopted by [1], that use spatially aligned images
over time to construct temporal positive pairs. With
their geography-aware representations learned on
the fMoW dataset [5], they improve significantly
on classification, segmentation and object detection
downstream tasks. However, they do not study label
efficiency. In this paper, we apply this method,
called MoCoTP, to an operational use-case. We
study the label efficiency and bring small extensions
to this model, that further improve its performance.
In the same vein, [15] present a pipeline for self-
supervised pretraining on uncurated remote sensing
data and propose a method that learns representa-
tions that are simultaneously variant and invariant
to temporal changes. They outperform significantly
ImageNet pretraining on classification from few
labels on medium resolution images (10m). One
can also exploit the multi-spectral and multi-sensor
nature of remote-sensing. [19] split multispectral
images into two different subsets of channels and
use them as augmented (positive) views. [20] ex-
tend this to multiple sensors, taking subsets of the
combination of all bands. Regarding the domain
of pretraining data in remote sensing, [16] show
that the relatedness of the pretraining distribution
to the downstream task can improve performances
in low-labeled settings. However, they only study
supervised pretraining and classification tasks, and
show that transfer performance is very dependent
on the labeling and data curation quality in the
pretraining dataset. Therefore this leaves unresolved
the problem of obtaining generic representations
with less dependence on labels and this is where
SSL can help.

III. METHOD

In this section, we detail our approach to explore
the applicability of SSL to vehicle detection and
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Fig. 1. Schematic outline of our method. The top block
represents the pretraining phase. The bottom block represents
the pretrained weights that are injected into the downstream task
model.

classification on optical satellite imagery. The over-
all procedure is described in Fig. 1. We first pretrain
a ResNet-50 backbone on the fMoW dataset [5] in
an unsupervised way with a recent SSL method,
MoCoTP [1]. See section III-A for details on the
approach and section IV-A2 for implementation
details.

We use the weights of this pretrained backbone
on two downstream tasks: (i) fMoW image recog-
nition task: we inject the weights in a classifier,
and perform linear probing and finetuning. See
section IV-A for more details. (ii) Vehicle detection
and classification on Preligens proprietary data: we
inject the weights in a RetinaNet detector [14], and
finetune the entire model. See section IV-B2 for
implementation details.

A. Self-supervised learning with MoCo and Tempo-
ral Positives

We employ the MoCo [8] framework for con-
trastive SSL. The base method we use is from the
improved variant MoCo-V2 [4]. MoCo learns to
match an input query q to a key k+ (representing the
encoded views of the same sample) among a set of
negative keys k−, using the instance discrimination
pretext task [23]. It uses a deep encoder (e.g. a
ResNet [9]) to map input image queries and keys
to a vector representation space. Negative keys are
extracted with a moving average network (momen-
tum encoder) to maintain consistent representations
during training, and are drawn from a memory

queue. We refer readers to [8] for details on this.
MoCo uses the popular choice of InfoNCE [17] for
the contrastive loss:

L(q, k+) = − log
e(q·k

+/τ)

e(q·k+/τ) +
∑
k− e

(q·k−/τ) (1)

where τ is a temperature scaling parameter.
On top of MoCo, we adopt the extension to

temporal views proposed in [1], MoCo with Tem-
poral Positives (MoCoTP). It extends the instance
discrimination pretext task to use spatially aligned
images from different times as positives. Maximiz-
ing similarity between temporal views can provide
richer semantic information that extracts persistent
scene features over time. The same random aug-
mentations as in MoCo-V2 are also applied on the
temporal samples.

Improvements to MoCoTP. Compared to Mo-
CoTP, we further add two modifications to the
framework of [1] to improve it: (i) In addition to
the geometric and color perturbations of MoCo-
V2, we apply random horizontal flips and rotations
by multiples of 90°. Since the data augmentation
scheme plays a leading role in contrastive learning
[21], we aim to learn representations more suited
to overhead images thanks to rotational invariance.
(ii) [1] introduces temporal positives as a drop-
in replacement for q and k+ in (1). However,
this can introduce false negatives. Indeed, at each
iteration of training, it may happen that the set of
negatives k− contains temporal views for samples
of the current mini-batch of queries. Such false
negatives will cause an incorrect repulsion between
the embeddings of similar samples. To what extent
this is detrimental to the learned representations
depends on the probability of sampling temporal
pairs in the training set, as well as on the size of
the queue. To avoid the false negatives to interfere
with the learning objective, we simply mask out the
logits q · k− in the InfoNCE loss in (1) for every
k− that happens to be a temporal view of q.

After being trained on the pretext task for a given
number of iterations, the query encoder is extracted
and can be transferred to downstream tasks.



B. Transfer to dowstream task

Following the MoCoTP pretraining on fMoW, we
transfer the obtained weights on two downstream
tasks: fMoW image recognition task and a real-
world use-case, vehicle detection and classifica-
tion on Preligens proprietary data. We refer to the
downstream training initialized with SSL weights
learned on the fMoW dataset as fMoW-MoCoTP
init. For each downstream task, we compare fMoW-
MoCoTP init with two baselines:

• IN-sup init: the backbone has been pretrained
on ImageNet in a supervised way;

• Random init: the backbone is initialized ran-
domly (i.e. no pretraining).

IV. EXPERIMENTAL SETUP

A. Pretraining and evaluation on fMoW

1) Dataset: For the sake of learning semantic
representations in remote sensing, we adopt the
fMoW dataset [5], following [1]. fMoW is a pub-
lic dataset of VHR imagery from Maxar Earth
observation satellites, is large-scale with 363,571
training images, and covers 207 countries. It pro-
vides images from same locations over time. We
apply the self-supervised MoCoTP method for pre-
training on fMoW using these available temporal
views. fMoW also includes ground-truths labels for
functional land use classification with 62 diverse
categories with a long-tailed distribution. We do not
use those labels for self-supervised pretraining, but
use them downstream to evaluate representations
learned directly for the classification of the images
seen during pretraining. Following [5] and [1], we
use the fMoW-RGB products for our experiments,
which provides 3-bands imagery at 0.5m ground
resolution. Preprocessing is applied identically to
[5] to resize input images to 224×224 pixels.

Ensuing the pretraining stage, the model is eval-
uated on the land use classification task with the
two protocols of linear probing (training a linear
classifier on top of frozen features from the pre-
trained encoder) or finetuning (updating all param-
eters of the network). To study the label efficiency
of the learned representations, supervised evalua-
tion is performed on 1%, 10%, and 100% of the
labeled training data. For 1% and 10% labels, we

subsample by preserving the base class distribution.
The evaluation metric is the F1-score averaged over
classes. Testing is performed on the validation set
for comparison with [1], which consists of 53,041
images.

2) Implementation details: In all our experi-
ments, we use MoCoTP with ResNet-50 for the
query and key encoders. Self-supervised pretraining
is performed with the following hyperparameters:
learning rate of 3e-2 with a cosine schedule, batch
size of 256, dictionary queue size of 65536, tem-
perature scaling of 0.2, SGD optimizer with a
momentum of 0.9, weight decay of 1e-4. Pretraining
is performed for 200 epochs. For linear probing, we
use a learning rate of 1, no weight decay, and only
random resized cropping for the augmentations. For
finetuning, we use a learning rate of 3e-4 for ResNet
weights and 1 for the final classification layer,
weight decay of 1e-4, and the same augmentations
used for pretraining. We compare self-supervised
pretraining against Random init and IN-sup init,
under the different label regimes. Models are trained
with cross-entropy loss and evaluated on epoch with
the highest top-1 accuracy on the validation set.

B. Transfer to vehicle instance detection

1) Dataset: We describe here the Preligens pro-
prietary datasets used for the transfer to object
detection. We call "S" our base dataset. It consists
of 204 Maxar WorldView-3 satellite images at 0.3m
resolution, and approximately 120k vehicles.

To study the label efficiency, we subsample this
base dataset S into smaller datasets, "XS" and
"XXS", targeting respectively 50% and 10% of the
observables present in S. We ensure that XXS is
included in XS, so that our datasets follow a "Ma-
triochka" structure which simulates the incremental
nature of annotation efforts. The sampling strategy
is such that the class distribution is satisfactorily
preserved. To perform variance experiments on our
results, we perform the sampling thrice and get
three different variants of the XS and XXS datasets.
We proceed similarly for the S training set by
selecting other satellite images that match the class
distribution of the initial S dataset.



We keep the same validation and testing sets
throughout the experiments, and make sure that
the geographical sites of the images are distinct
between train and test splits. The training and
validation raster images are divided into tiles of
512x512 pixels with an overlap of 128 pixels. Pos-
itive tiles (i.e. tiles containing at least one instance)
are all kept, but only some negative tiles are kept
randomly, to focus training efforts on positive tiles
while keeping a fair amount of negative tiles.

Ground truth labels are non-oriented bounding
boxes of target observables with their class la-
bel. Our classification problem is composed of
8 vehicle categories: civilian, military, armored,
launcher, ground support equipment (GSE), elec-
tronics, heavy equipment (HE), and lifting equip-
ment (LE). The datasets statistics are reported in
Table I.

2) Implementation details: The detection
model. The object detection model used is a
RetinaNet [14] with a ResNet-50 backbone. The
RetinaNet employs a ResNet-FPN [13] architecture.
The backbone is initialized with the pretrained
weights learned on fMoW with MoCoTP, and
the specific layers of the RetinaNet are initialized
randomly. We finetune the RetinaNet model
end-to-end, and use the focal loss objective for the
classification [14].

Hyperparameters. We selected a learning rate
of 1e-4, an Adam optimizer and a batch size of 8.
We used traditional rotations and flips, as well as
CLAHE as data augmentations. Once the valida-
tion loss is converged, the epoch selected for the
evaluation of the model is the one achieving the
best F1-score calculated on the validation set, with
a fixed detection score threshold of 0.15.

Evaluation. The F1-score is computed from
the precision-recall curves obtained by varying the
detection threshold from 0.15 to 0.9. In the fol-
lowing, we refer to the results on the task of
vehicle detection (regardless of the class) as level-
1 results, and on the task of joint detection and
classification as level-2 results. The IoU threshold
matching the predictions with the ground truths
is set to 0.0, which is operationally relevant for
observable counting purposes. In addition to the F1-

score, we also compute the level-1 average precision
(AP) and level-2 mean average precision (mAP)
which are commonly used metrics to evaluate de-
tection models. Level-1 AP measures the area under
the precision-recall curve of level-1 detection, and
level-2 mAP is the average of the per class APs.

V. RESULTS

A. fMoW classification

Table II shows the results of linear probing and
finetuning on the 62-class land use classification
task of fMoW. With 100% labels, we see that
our improved reproduction of MoCoTP increases
performance by 4.36 pts compared to [1] in linear
probing and 1.62 pts in finetuning. This shows
that the use of the rotation augmentations and the
correction of false negatives in the loss function is
helpful, especially for linear probing, which closes
the gap with finetuning completely. As a note,
the sole additional augmentations also improve
the baselines Random init and IN-sup init of [1]
by 1.29 pts and 0.68 pts respectively. Moreover,
MoCoTP shows impressive label-efficiency: in the
semi-supervised settings of 1% and 10% labels,
we see that it gives respectively 96% and 87% of
the performance of the network trained with 100%
labels, and surpassing IN-sup init by large margins.
These results indicate that MoCoTP is very efficient
at learning semantic features from the upstream
dataset. Therefore, this is encouraging in order to
transfer to a downstream operational task where
labeled data are scarce.

B. Transfer to vehicle detection

Label efficiency. Table III and Fig. 2 show
the results on vehicle detection. The F1-score with
fMoW-MoCoTP init is always higher than with
IN-sup init or Random init. fMoW-MoCoTP init
achieves an F1-score of 65.1% with only 12k ob-
servables on dataset XXS. On dataset XS, with 50%
less examples than on dataset S, fMoW-MoCoTP
init is only 3.8 pts below the score obtained on
dataset S. Moreover, the smaller the dataset, the
larger the gap between fMoW-MoCoTP init and
IN-sup init or Random init: on dataset S, fMoW-
MoCoTP init’s F1-score is 5.20 pts better than



TABLE I
DATA STATISTICS FOR VEHICLE TRAINING, VALIDATION AND TESTING SETS. FOR EACH OF THE XXS, XS AND S TRAINING

SETS, THE REPORTED NUMBERS ARE THE MEAN NUMBER OF OBSERVABLES BETWEEN THE DIFFERENT SAMPLED SETS.

Dataset Images Pos. tiles Neg. tiles Vehicles Civilian Military Armored GSE Launcher Electronics HE LE

XXS 19 597 113 11,833 6,668 3,215 1,516 154 158 64 33 23
XS 108 3,152 599 58,189 32,937 14,719 8,466 571 732 385 237 139
S 204 6,438 1,231 115,617 66,504 29,332 16,148 820 1364 698 432 319

Val 63 2,526 4,178 53,204 31,339 11,919 8,464 607 412 270 130 101
Test 88 – – 32,550 19,923 7,542 3,872 361 334 237 184 97

TABLE II
RESULTS ON FMOW CLASSIFICATION (F1-SCORE IN %). FOR 1% AND 10% LABELS, THE VALUES ARE ’MEAN (SD)’ ACROSS 3
REPLICATES WITH VARYING TRAINING SAMPLES. * DENOTE OUR IMPROVED REPRODUCTIONS AS DETAILED IN SECTION III-A

1% labels 10% labels 100% labels
Frozen Finetune Frozen Finetune Frozen Finetune

Random init [1] – – – – – 64.71
IN-sup init [1] – – – – – 64.72
fMoW-MoCoTP init [1] – – – – 64.53 67.34

Random init * – 19.29 (1.65) – 51.87 (0.5) – 65.39
IN-sup init * 32.41 (0.17) 39.43 (1.53) 43.86 (0.07) 57.32 (0.07) 50.25 66.01
fMoW-MoCoTP init * 60.05 (0.11) 60.0 (0.43) 66.15 (0.11) 66.35 (0.75) 68.89 68.96

TABLE III
RESULTS OF EACH METHOD ON EACH DATASET FOR VEHICLE DETECTION (%). THE VALUES ARE ’MEAN (SD)’ ACROSS 3

REPLICATES WITH VARYING TRAINING SAMPLES.

Metric F1 AP mAP

Training set XXS XS S XXS XS S XXS XS S

Random init 26.0 (1.9) 55.1 (2.2) 74.7 (1.4) 12.3 (1.9) 46.9 (2.4) 75.3 (3.4) 2.2 (0.3) 8.4 (0.6) 16.3 (0.5)
IN-sup init 61.4 (0.5) 75.1 (0.8) 79.5 (0.6) 56.1 (0.9) 75.6 (0.5) 80.9 (0.9) 9.3 (0.4) 14.9 (0.6) 19.7 (1.1)
fMoW-MoCoTP init 65.1 (0.8) 76.1 (0.4) 79.9 (0.3) 60.1 (1.6) 77.3 (0.1) 81.6 (0.5) 9.7 (0.2) 14.4 (0.4) 19.3 (1.0)

Random init on average, and also 0.40 pts better
than IN-sup init, whereas on the XXS dataset,
fMoW-MoCoTP init’s F1-score is 39 pts better than
Random init, and 3.7 pts better than IN-sup init.
These results show that self-supervised in-domain
pretraining can be competitive with supervised pre-
training on ImageNet, and even give better results
in low-label regimes.

Dominant vs. rare classes. Table IV shows
the AP in level-2. fMoW-MoCoTP init achieves
significantly higher results than Random init on
these six classes. fMoW-MoCoTP init achieves
higher AP than IN-sup init on the three dominant
classes (Civilian, Military and Armored), that cover
∼96.5% of the vehicles in our datasets. However,

IN-sup init outperforms fMoW-MoCoTP init on
the Launcher, Electronics and Heavy Equipment
classes. These are very rare classes that cover
∼2.2% of the vehicles in our datasets. Since mAP
gives equal importance to all classes, this translates
into much closer values for mAP scores than level-
1 AP scores between fMoW-MoCoTP init and
IN-sup init methods, as one can see in Fig. 2.
This might suggest that fMoW-MoCoTP init is
lazier and mainly focuses on the dominant classes.
The fMoW dataset used for pretraining contains a
long-tailed distribution of semantic categories. One
could hypothesize that this leads to representations
being more skewed towards over-represented vi-
sual concepts than ImageNet, as the latter contains



TABLE IV
AP PER CLASS (%). RESULTS ON GSE AND LE ARE OMITTED BECAUSE THEY ARE CLOSE TO ZERO DUE TO THE POOR NUMBER

OF EXAMPLES IN THE DATASETS. THE VALUES ARE ’MEAN (SD)’ ACROSS 3 REPLICATES WITH VARYING TRAINING SAMPLES.

Dominant classes Civilian Military Armored

Training set XXS XS S XXS XS S XXS XS S

Random init 14.4 (1.8) 48.1 (1.2) 75.4 (4.5) 3.1 (1.5) 14.8 (0.6) 29.1 (3.2) 0.0 (0.0) 3.9 (3.5) 14.9 (7.7)
IN-sup init 54.2 (1.0) 75.4 (0.8) 81.9 (0.7) 17.2 (3.8) 25.0 (2.1) 32.8 (1.9) 0.8 (0.4) 5.7 (0.8) 21.4 (11.4)
fMoW-MoCoTP init 59.9 (1.0) 79.5 (0.8) 83.6 (1.1) 17.9 (0.9) 25.0 (1.4) 35.4 (3.0) 0.2 (0.1) 6.5 (1.6) 22.4 (11.3)

Rare classes Launcher Electronics HE

Training set XXS XS S XXS XS S XXS XS S

Random init 0.0 (0.0) 0.4 (0.3) 6.0 (2.8) 0.0 (0.0) 0.0 (0.0) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
IN-sup init 0.3 (0.2) 9.4 (2.4) 18.8 (4.7) 0.0 (0.0) 1.5 (0.8) 5.0 (0.2) 0.0 (0.0) 0.3 (0.5) 1.1 (1.0)
fMoW-MoCoTP init 0.1 (0.1) 4.1 (1.1) 13.0 (5.7) 0.0 (0.0) 0.4 (0.4) 1.6 (0.4) 0.0 (0.0) 0.0 (0.0) 0.0 (0.1)
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Fig. 2. Graphic view of the results of Table III

Fig. 3. Example of cherry-picked predictions. In this particular
case, the models have been finetuned on the dataset S.

a balanced set of categories, and that such bias
may also negatively impact the transfer to under-
represented classes downstream. However, further
work is needed to provide ground for this hypoth-
esis.

VI. CONCLUSION

In this work, we explored the added value of
in-domain SSL for a real-world defense-related
remote sensing application: vehicle detection and
classification on VHR optical satellite imagery.
Considering this downstream task, we compared
in-domain pretraining on the fMoW dataset with
the traditional supervised ImageNet pretraining. We
showed that self-supervised pretraining on fMoW
is either competitive with or better than supervised
ImageNet pretraining, despite using no upstream
labels and 3× less upstream data. To study label
efficiency, experiments were performed for different
downstream dataset sizes, thereby mimicking differ-
ent annotation budgets. We showed that in-domain
SSL pretraining leads to better label efficiency than
supervised pretraining on ImageNet. This result is
particularly suitable for defense industry use cases,
where labeling data is challenging.

Further work could include additional studies
such as increasing the amount of in-domain pre-
training data, using a vehicle dataset that is more
balanced in terms of classes (or deprived of its dom-
inant classes), extending the range of sizes for the
downstream dataset, and experimenting other SSL
methods, including methods designed specifically
for dense downstream tasks like detection such as
[10], [22], [24].
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