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Abstract 23 

Patterns of protein intake are strong characteristics of diets, and protein sources have been linked to 24 

the environmental and nutrition/health impacts of diets. However, few studies have worked on protein 25 

profiles, and most of them have focused on specific diets like vegetarian or vegan diets. Furthermore, 26 

the description of the environmental impact of diets has often been limited to greenhouse gas 27 

emissions (GHGe) and land use. This paper analyzes the alignment of environmental pressures and 28 

nutritional impacts in a diversity of representative protein profiles of a western population. 29 

Using data from a representative survey in France (INCA3, n = 1,125), we identified protein profiles 30 

using hierarchical ascendant classification on protein intake (g) from main protein sources (refined 31 

grains, whole grains, dairy, eggs, ruminant meat, poultry, pork, processed meat, fish, fruits & 32 

vegetables, pulses). We assessed their diet quality using 6 dietary scores, including assessment of 33 

long-term risk for health, and associated 14 environmental pressure indicators using the Agribalyse 34 

database completed by the SHARP database for GHGe.  35 

Five protein profiles were identified according to the high contributions of ruminant meat, pork, 36 

poultry, fish, or, conversely, as low contribution from meat. The profile including the lowest protein 37 

from meat had the lowest impact on almost all environmental indicators and had the lowest long-term 38 

risk. Conversely, the profile with high protein from ruminant-based foods had the highest pressures on 39 

most environmental indicators, including GHGe. 40 

We found that the protein profile with low contribution from meat has great potential for human health 41 

and environment preservation. Shifting a large part of the population toward this profile could be an 42 

easy first step toward building a more sustainable diet. 43 

  44 
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List of abbreviation and acronyms 46 

ADEME: Agence de la transition écologique 47 

AHEI-2010: Alternative Healthy Eating Index 48 

CIQUAL: French Centre d’Information sur la Qualité des Aliments 49 

CTUe: Comparative Toxic Unit for ecosystems 50 

DHA: docosahexaenoic acid 51 

EPA: eicosapentaenoic acid 52 

GHGe: greenhouse gas emission 53 

INCA3: Third individual and national study on food consumption survey  54 

LAMD: Literature-Based Adherence Score to the Mediterranean Diet 55 

LCA: life cycle analyses 56 

LCI: life cycle inventory 57 

NMF: Non-negative Matrix Factorization 58 

PM: particulate matter PUFA: polyunsaturated fatty acids 59 

sPNNS-GS2: simplified Programme National Nutrition Santé Guideline Score 2 60 

  61 
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 62 

1 Introduction 63 

Chronic diseases strongly influenced by diets are leading causes of morbidity and mortality around the 64 

world (GBD 2013 Mortality and Causes of Death Collaborators, 2015). The food systems underlying 65 

these diets are responsible for a third of global greenhouse gas emissions (GHGe) (Crippa et al., 2021) 66 

and influence several other environmental indicators (Willett et al., 2019). More and more studies are 67 

showing the significant environmental pressures of meat and dairy food production compared to plant 68 

food production (González et al., 2011; Nijdam et al., 2012). For example, beef produces 7.1 g protein 69 

/kg CO2 eq compared to beans producing 246 g protein/kg CO2 eq (González et al., 2011). The same 70 

relationship was seen for land use with beef protein needing between 15 m². y
-1

 .kg
-1

 in industrial 71 

systems to 420 m². y
-1

 .kg
-1 

for extensive pastoral systems in contrast to pulses needing between 3 to 8 72 

m².y.kg
-1 

for the production of 1kg of protein (Nijdam et al., 2012). The amount of water used for 73 

protein production shows similar extremes of variation, with beef using 728 L/100 grams of protein, 74 

and peas and other pulses using around 200 L/100 grams of protein (Ritchie and Roser, 2020). 75 

Protein profiles largely define diets (De Gavelle et al., 2018; Marini et al., 2021), since protein food 76 

sources contribute other nutrients that tend to cluster together as a “protein package”, e.g. SFA and 77 

absorbed iron with red meat and fiber and PUFA with plant protein sources (Mariotti, 2019). They are 78 

also associated with other types of foods as part of dietary patterns (De Gavelle et al., 2018; 79 

de Gavelle et al., 2019; Mariotti, 2019). Protein profiles in diets are thus key to both environmental 80 

and health issues (Clarys et al., 2014; González-García et al., 2018; Seconda et al., 2018). 81 

Several diets have been modeled to improve the population’s health while concomitantly considering 82 

the environmental issues. These diets display drastic differences in protein profile compared to current 83 

westernized diets (Kramer et al., 2017; Seconda et al., 2021; Willett et al., 2019; Wilson et al., 2019). 84 

For example, the EAT-Lancet diet includes higher consumption of fruit, vegetable, and whole grains, 85 

and is very low in red and processed meat (Willett et al., 2019). This shift in plant and animal sources 86 

tend to reverse the plant-animal protein ratio compared to the one observed in modern diets. In the 87 

EPIC Oxford study, when compared to a high meat diet, a low meat diet (<50 g/day), was associated 88 
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with a lower carbon footprint by 920 kg CO2eq every year (Scarborough et al., 2014). Similarly, the 89 

association between the consumption of food group sources of protein and long-term health has been 90 

widely studied (Micha et al., 2017a; Turner and Lloyd, 2017). For example, red and processed meats 91 

have been associated with several non-communicable diseases like colorectal carcinoma, type 2 92 

diabetes, and cardiovascular disease (Boada et al., 2016; Micha et al., 2010). In contrast, plant protein 93 

intakes have been associated with long-term health benefits (Mariotti, 2019; Naghshi et al., 2020). 94 

Thus, compliance with dietary guidelines (Herforth et al., 2019), including those from France (Chaltiel 95 

et al., 2019), implies a shift of the dietary protein patterns to diets that include lowering meat 96 

consumption in some subgroups of the population in Western countries (Brunin et al., 2021; Dagevos, 97 

2021). Many healthy dietary patterns promoted via states official national guidelines include specific 98 

recommendations regarding protein sources (Canada, 2020; Chang and Koegel, 2017; ODPHP, 2021). 99 

However, contemporary data specifying the link between diet and its impact on both the health and 100 

environment is primarily based on single food groups rather than dietary profiles, and does not focus 101 

specifically on protein patterns. 102 

It is important to note that studies that intended to depict the sustainability of diet profiles rather than 103 

of isolated food groups have focused mostly on restrictive diets consumed by a minority, such as 104 

vegetarian or vegan diets, which were compared with the whole omnivore population (Chai et al., 105 

2019; Fresán and Sabaté, 2019; Rabès et al., 2020; Rosi et al., 2017). Still, no literature to date has 106 

studied the intermediate proteins profiles that represent most of the profiles seen in the population. 107 

Furthermore, while several criteria are used to estimate the nutritional or health value of diets, very 108 

few environmental indicators are reported. Indeed, most studies limit their indicators to GHGe and 109 

land occupation (Aleksandrowicz et al., 2016; Jones et al., 2016). Although these two indicators are 110 

important, often a markers of the whole environmental footprint (Kramer et al., 2017), they remain 111 

limited in depicting the environmental impact along several dimensions.  112 

In order to inform the future diet transition, it is essential to advance accurate knowledge on the 113 

relationship between dietary profiles as naturally occurring in the diversity of people diets, and 114 

environmental pressures, and nutritional/health quality. In the present study, we aimed to analyze the 115 
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potential alignment between environmental pressures and nutritional/health impacts of the main 116 

protein profiles identified in a French representative population. 117 

2 Methods 118 

 119 

2.1 Studied population and dietary data 120 

This study used data from the third individual and national study on food consumption survey 121 

(INCA3) performed in France between 2014 and 2015 (Dubuisson et al., 2019; French Agency for 122 

Food, Environmental and Occupational Health Safety (ANSES), 2017). 347 participants identified as 123 

under-reporters were excluded using the basal metabolic rate as estimated by the Henry equation 124 

(Henry, 2005), using the cut-off values recommended by Black (Black, 2000). Since nutrient 125 

requirements for older adults differ from younger ones, the 649 older adults (above 54 years old for 126 

women and 64 years old for men) were excluded. The final sample was composed of 1125 adults, 127 

including 564 men and 561 women. 128 

Data were collected by three non-consecutive 24h-dietary recalls (two during the week and one at the 129 

weekend) over a 3-week period. The nutrient content values of the food were extracted from the 2016 130 

database of the French Centre d’Information sur la Qualité des Aliments (CIQUAL) (ANSES, 2016). 131 

 132 

2.2 Diet quality assessment 133 

Six scores were used to compare the different impacts of the diet on health and nutritional status. 134 

Three of them evaluated the adherence to a specific diet or dietary recommendations were calculated. 135 

The Literature-Based Adherence Score to the Mediterranean Diet (LAMD) assesses adherence to the 136 

Mediterranean diet. The LAMD score includes three negative components (meat, dairy products, and 137 

alcohol) and six positive components (fruits, vegetables, legumes, grains, fish, and olive oil). The 138 

consumption of each food group is classified into three categories using cutoff points (Supplemental 139 
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Table 1)(Sofi et al., 2014). The Alternative Healthy Eating Index (AHEI-2010) is a modified Healthy 140 

Eating Index, assessing the adherence to Dietary Guidelines for Americans, improving target food 141 

choices and macronutrient sources associated with reduced chronic disease risk (Chiuve et al., 2012). 142 

Since information on trans fatty acids was not available, only ten parameters were considered, namely 143 

vegetables, fruit, whole grains, sugar-sweetened beverages and fruit juice, nuts and legumes, 144 

red/processed meat, long-chain (n-3) fatty acids (EPA + DHA), polyunsaturated fatty acids (PUFA), 145 

sodium, and alcohol. All AHEI-2010 components were scored from 0 (worst) to 10 (best), resulting in 146 

a total AHEI-2010 score ranging from 0 (non-adherence) to 100 (perfect adherence). The scoring 147 

criteria are described in Supplemental Table 2. The sPNNS-GS2 (simplified Programme National 148 

Nutrition Santé Guideline Score 2) assesses the adherence to the French Food-based Dietary 149 

Guidelines (Chaltiel et al., 2019). Components, scoring and weighting are shown in Supplemental 150 

Table 3. 151 

The PANDiet evaluates the probability of adequate nutrient intake. This score is a 100-point 152 

probabilistic score evaluating adequate overall nutrient intake. It combines an adequacy sub-score and 153 

a moderation sub-score. The adequacy sub-score is calculated as the average probability of adequacy 154 

of nutrients for which the usual intake should be above a reference value, multiplied by 100. For a 155 

given nutrient, the probability of adequacy was determined from either the Estimated Average 156 

Requirement or the Adequate Intake, and its variability. The moderation sub-score was calculated as 157 

the average of probabilities of inadequacy of six nutrients for which an upper bound reference value 158 

exists, together with penalty values. For the six nutrients, the probability of adequacy was calculated, 159 

using the upper bound of the acceptable macronutrient distribution range (De Gavelle et al., 2018). 160 

The SecDiet evaluates nutrient deficiency risk. This score is based on the intake of twelve critical 161 

nutrients for nutritional risk of overt deficiency (Salomé et al., 2021). For each nutrient, we calculated 162 

the probability of having sufficient-enough intake to avoid overt nutrient deficiency. We used the 163 

probability distribution of the standard normal distribution for nutrient requirements while taking into 164 

account the mean intake, the day-to-day intake variability, the inter-individual variability and the 165 

nutrient deficiency threshold. 166 
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The HiDiet was used to assess the diet impact on long-term mortality and morbidity (Perraud et al., 167 

2022). The HiDiet score is based on the principle of the Comparative Risk Assessment but applied to 168 

the risk of one individual and so is an individual version of the EpiDiet (Evaluate the Potential Impact 169 

of a Diet) (Dussiot et al., 2022; Kesse-Guyot et al., 2020). The conceptual basis and methodological 170 

foundation of the two models are the same which are laid out in the Comparative Risk Assessment 171 

framework. It allows for the evaluation of the potential impacts of dietary changes on the long-term 172 

morbidity and mortality caused by some diet-related diseases.  173 

In this study, we set up the HiDiet model with values reported in a series of validated international 174 

meta-analyses published by a European team (Bechthold et al., 2019; Schwingshackl et al., 2019, 175 

2018, 2017a, 2017b). As in our previous study (Dussiot et al., 2022), we selected 12 diet-related 176 

factors (including consumption of fruit, vegetables, nuts or seeds, whole grains, unprocessed red 177 

meats, processed meats, sugar-sweetened beverages, fish, dairy products, eggs, refined grains, and 178 

legumes) and 4 diet-related diseases (including coronary heart disease, stroke, type 2 diabetes, and 179 

colorectal cancer). 180 

The reference population considered was the French adult population (18 and 64 years old) in 2014, 181 

stratified into sub-populations by 5-year age-bands and sex. The population demographics and 182 

national disease-specific deaths were provided by the National Institute of Statistics and Economic 183 

Studies (INSEE, 2017), and by the Epidemiological Centre on Medical Causes of Death (CépiDc, 184 

2018), respectively. For each individual, two dietary scenarios were built. Here, the two scenarios that 185 

are compared are the baseline one, where the individual daily intakes (of each food and beverage 186 

group) is the average daily intake in the general population but keeping the individual characteristics 187 

(age, sex), and the counterfactual scenario is the present situation of the individual, i.e. its actual 188 

consumption. Using these two scenarios, it is possible to assess the positive or negative impact of a 189 

dietary change from the first one to the other. 190 

 191 

 192 
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2.3 Protein profile 193 

Protein foods were defined as foods having more than 10% of their energy as protein and providing at 194 

least 5g/d of protein in high consumers (i.e. at the 90th percentile of the INCA3) (De Gavelle et al., 195 

2018). Protein foods were then classified into twelve groups of protein sources (refined grains, whole 196 

grains, dairy, eggs, ruminant meat, poultry, pork, processed meat, fish, fruits – vegetables, pulses, and 197 

others) exhibiting differences in nutritional properties and according to classical dietary classification. 198 

Each individual daily intake of protein from a protein group was then calculated by summing the 199 

protein intake from the consumption of each food of that group. 200 

 201 

2.4 Agribalyse database and environmental database 202 

The Agribalyse database was used to assess environmental indicators of the diet. This database was 203 

developed by the Agence de la transition écologique (ADEME) using life cycle analyses (LCA) to 204 

assess the environmental pressure of foods eaten in France between 2005 and 2009 with a scope "from 205 

field to plate" (ADEME, 2020a). Agribalyse is a database reporting 14 environmental indicators 206 

(Supplemental Method 1): greenhouse gas emissions in carbon dioxide equivalent (kg CO2 eq); 207 

exposure ionizing radiation in equivalent of kilobecquerels of Uranium 235 (kg U235 eq); 208 

photochemical ozone (O3) formation in equivalent of kilograms of non-methane volatile organic 209 

compounds (kg NMVOC eq); ozone depletion in equivalent of kilograms of trichlorofluromethane 210 

(Freon-11); emission of particulate matter in change in mortality due to particulate matter emissions; 211 

acidification in equivalent of moles hydron (mol H+ eq); terrestrial eutrophication in equivalent of 212 

moles of nitrogen (mol N eq); freshwater eutrophication in equivalent of kilograms of phosphorus (kg 213 

P eq); marine eutrophication in equivalent of kilograms of nitrogen (kg N eq); freshwater ecotoxicity 214 

in Comparative Toxic Unit for ecosystems (CTUe) an indicator based on a model called USEtox; 215 

water use in cubic meters of water; land use in loss of soil organic matter content in kilograms of 216 

carbon deficit (kg C deficit); fossils resource use in MJ; and metals and minerals resource use in 217 

equivalent of kilograms of antimony (kg Sb eq). Agribalyse assessed the environmental pressures of 218 
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both single and multi-ingredients foods. Further description of the Agribalyse method is presented in 219 

Supplemental Method 1. 220 

Here the Agribalyse database was used to assess the food eaten as listed in INCA3 (n= 1761) 221 

(Supplemental Figure 1). Two different methods were used to complete the database resulting in 46 222 

missing data: one specifically for GHGe and a second one for the other environmental impacts in 223 

Agribalyse (the method is described in detail in Supplemental Figure 2 and Supplemental Figure 3). 224 

Data from the SHARP database were used to complete missing values for the GHGe indicator 225 

(Mertens et al., 2019). This database also includes data on land use but because the unit is different, 226 

we were unable to impute the data. Supplemental method 2 explains the process of merging the 227 

Agribalyse and SHARP database to the foods eaten in the population. 228 

2.5 Statistical analysis 229 

We performed a cluster analysis, using a data driven approach to group the INCA3 individual 230 

participants into separate protein profile. First, we used a Non-negative Matrix Factorization (NMF) 231 

on 11 main protein groups. The protein group composed of the varied other types of protein foods was 232 

not included to keep factors interpretability. NMF is a method for identifying independent factors 233 

adapted for non-negative data with excess zeros (Lee and Seung, 1999) and has already been used by 234 

our team to identify dietary profiles in another survey (De Gavelle et al., 2018). Specifically, the Ls-235 

nmf method (Wang et al., 2006) was used, and decomposition in six factors was conserved since it had 236 

the best R² value. Then we used hierarchical ascendant classification on the factors to identify protein 237 

profiles in the population. The number of clusters chosen was based on both the elbow and silhouette 238 

methods (Kaufman and Rousseeuw, 2005). The consumption of the 12 proteins groups between all 239 

profiles was compared using an ANOVA. The environmental indicators and diet quality scores of the 240 

protein profiles were compared using an ANCOVA adjusted for energy intake. Two by two 241 

comparison were made using Tuckey adjustment. Statistical analyses were performed using SAS 242 

software (version 9.4, SAS Institute Inc, Cary, NC, USA) and R version 4.0.3. 243 

 244 
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3 Results 245 

3.1 Food group consumption and environmental and nutritional indicators 246 

3.1.1 Consumption 247 

The hierarchical ascendant classification identified five distinct profiles (figure 1). The characteristics 248 

of the population and the different profiles are described in Table 1. Profile 1 (Low meat profile) 249 

represents consumers with a low protein intake from meat (9 g/day vs. 20.8 g/day in the total 250 

population), who also have a relatively higher intake of protein from dairy products (13.9 g/day vs. 9.8 251 

g/day in the total population). Supplemental Table 5 shows that the higher dairy protein intake mostly 252 

comes from the higher consumption of milk (88 g/day vs. 80 g/day in the total population) and cheese 253 

(54 g/day vs. 42 g/day in the total population). 254 

Profile 2 (Poultry profile) represents people with high intakes of protein from poultry (10.8 g/day vs. 255 

5.3 g/day in the total population), while profile 3 (Fish profile) represents individuals with the highest 256 

fish protein intake (9.6 g/day vs. 4.4 g/day in the total population). Profile 4 (Ruminant meat profile) 257 

represents individuals whose protein intake is largely contributed by ruminant meat proteins (12.4 258 

g/day vs. 6.1 g/day in the total population), and profile 5 (Pork profile) represents people with high 259 

intakes of protein from pork (9.6 g/day vs. 2.7 g/day in the total population).  260 

The consumption of 33 food groups in grams per day is also presented in Supplemental Table 5.  261 

3.1.2 Environmental indicators 262 

Figure 2 presents the environmental indicators for each protein profile (see Supplemental Table 6). 263 

The profile with high intake of protein from ruminant has the highest environmental pressure for 5 of 264 

the 14 indicators. Notably, this profile also has the highest GHGe (7.7 kg CO2 eq/day vs. 6.4 kg CO2 265 

eq/day in the total population). Compared to the total population, the land use, the emission of 266 

particulate matter, the acidification, and the terrestrial eutrophication are also at their highest for this 267 

profile, being 26%, 14%, 16%, and 19% higher, respectively. 268 
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The profile with high intake of protein from fish and the one with the highest pork protein intake have 269 

the next most elevated GHGe (6.6 kg CO2 eq/day and 6.4 kg CO2 eq/day). For the other indicators, 270 

these two profiles are different. The profile with high intake of protein from pork contributes the most 271 

to freshwater ecotoxicity (164 CTUe/day vs. 151 CTUe/day in the total population), marine 272 

eutrophication (26 kg N eq/day vs. 25 kg N eq/day in the total population), ionizing radiation (1.7 kg 273 

U235eq/day vs. 1.5 kg U235eq/day in the total population), energy use (67 MJ/day vs. 62 MJ/day in 274 

the total population), and metals and minerals use (10.3 kg Sb eq/day vs. 9.7 kg Sb eq/day in the total 275 

population). For profile with high intake of protein from fish, it contributes the most to ozone 276 

depletion (0.73 Freon-11/day vs. 0.59 Freon-11/day in the total population), photochemical ozone (20 277 

kg NMVOC/day vs. 17 kg NMVOC/day in the total population), freshwater eutrophication (1.15kg P 278 

eq/day vs. 1.03 kg P eq/day in the total population) and water use (7.1m3/day of water vs. 6.7 1m3/day 279 

of water in the total population). 280 

The profiles with the lowest environmental impacts are the poultry profile and the low meat profile. 281 

These profiles emit the smallest amount of GHGe with 5.6 kg CO2 eq/day for the high consumers of 282 

poultry protein and 4.6 for the low meat consumers. This last profile has the lowest impact for most 283 

environmental indicators (11 from the 14 indicators) and is the second-best profile for the three others. 284 

Supplemental Figures 3 to 16 show the variability of the environmental indicators for each food group, 285 

and Supplemental Table 7 describes each food group's contribution to every environmental indicator 286 

for each profile. 287 

3.1.3 Nutritional quality 288 

Figure 3 shows the nutritional and health scores of the different profiles. The profile with high fish 289 

consumers has the highest scores for the AHEI, the LAMD, and the second-best score for the 290 

PNNSGS2, the SecDiet, the PANDiet, and the HiDiet. The profile with the lowest meat protein 291 

consumption has the highest HiDiet score, and the one with the highest ruminant meat protein intake 292 

has the lowest HiDiet score (respectively +3% and -4% compared to the total population). The profile 293 

with the lowest meat protein consumption also has the lowest PANDiet (-3%) and a neutral SecDiet 294 

(0%) score. The value of the health scores are presented in Supplemental Table 8. 295 
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4 Discussion 296 

In this study, we have identified five distinct profiles based on protein consumption, which show the 297 

variety of protein consumption patterns. These patterns are easy to interpret, and display contrasting 298 

characteristics on both environmental and nutritional/health dimensions. 299 

 300 

4.1 Environmental differences between profiles 301 

The high ruminant meat protein consumption profile was one of the worst regarding health scores and 302 

environmental indicators. This is in line with the modeled diets and dietary guidelines featuring low 303 

red meat intake (Kesse-Guyot et al., 2020; Willett et al., 2019). Although ruminant meat is well known 304 

for its high environmental pressures from GHGe and land use (Clark et al., 2018; Poore and Nemecek, 305 

2018), our study has shown that actual protein intake from meat is also associated with other 306 

environmental pressures. The particulate matter (PM) production is significantly higher in the diet of 307 

people with high intake of protein from ruminant meat. This is in part ascribed to ruminant meat with 308 

a high production of PM coming from manure (Garcia et al., 2013). It could be argued that this is not 309 

an important issue given the small percentage of particulate matter coming from agriculture compared 310 

to other sources like transport (Cambra-López et al., 2010). However, this percentage is growing, with 311 

PM emissions from agriculture being estimated at about 25% of total emissions in the Netherlands 312 

(Cambra-López et al., 2010). The Global Burden of Disease estimated that air pollution is responsible 313 

for about 1.2% of premature deaths and 0.5% of lost life years (Cohen et al., 2005). It is considered as 314 

the ninth larger risk factor contributing to deaths in the United States (The US Burden of Disease 315 

Collaborators, 2018). Acidification causing soil degradation (Goulding, 2016) and acid rain are other 316 

environmental impact of animal production. The dominant sources of acidification in agriculture come 317 

from ammonia emissions released used for feed production and manure production. With a higher feed 318 

conversion ratio and an important manure production, ruminants thus have a higher acidification 319 

power per meat produced (Röös et al., 2013). 320 
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The low meat profile had the smallest environmental pressure. This is in line with the literature as 321 

most publications pointed out that meat, especially from ruminant and to a lesser extent from 322 

monogastric, has by far the most significant environmental impact, specifically for GHGe (Poore and 323 

Nemecek, 2018). Indeed, low GHGe in this profile should be ascribed to the very low consumption of 324 

ruminant meat. This is similar with other studies showing plant-based diets having lower GHGe 325 

compare to omnivorous diet (Rabès et al., 2020). Note that dairy intake was relatively high for this 326 

profile – in fact the highest of the 5 profiles – which may be considered a practical conflict between 327 

the production of ruminant meat and the production of milk. This is because of the co-production 328 

factor; in France, if the bovine dairy protein intake is above 0.43 times the bovine meat protein intake, 329 

there is an excess meat production (Barré et al., 2018). In the case of the low meat consumer profile, 330 

the bovine dairy protein consumption exceeded this number. However, this issue only occurred in the 331 

hypothetical situation where the entire population follows this diet, with no meat exportation or dairy 332 

importation. Moreover, changes in the dairy systems, like a change in the life span of dairy cows, 333 

could potentially strongly modify this factor. 334 

It is also important to note that a high share of red meat consumed comes from dairy cows in France 335 

(Assmann, 2020). Thus, the allocation of the environmental pressure using biophysics systems in the 336 

life cycle inventory (LCI) is considered. The literature showed different types of allocations 337 

underlying different choices. These choices came from 4 criteria: compliance with recommendations, 338 

stability in time and space, and practical aspects (Wilfart et al., 2021). Agribalyse allocation for dairy 339 

and ruminant meat is based on the metabolic energy required to produce each co-product 340 

(Supplemental Method 1). On a food basis, the indicators already studied, like GHGe, have a similar 341 

order of magnitude of allocations as other studies (Clune et al., 2017), indicating the choices made in 342 

Agribalyse (ADEME, 2020b) are similar to that of most published studies. 343 

This low-meat protein profile also has drawbacks on a nutritional aspect, with the lowest PANDiet 344 

values of all profiles. This is mainly explained by the low intake of nutrient-dense food sources, in 345 

particular red meat, which is not offset by higher intakes of fruits and vegetables. It should be noted 346 

that even if it is the most plant-based profile, the consumption of pulses, whole grains and other 347 
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recommended plant food groups is far from what is recommended in optimization studies (Dussiot et 348 

al., 2022; Willett et al., 2019). Moreover, the nutrient security in this low-meat profile was not lower 349 

than that of the general population, confirming that even if there are some slightly lower intakes of 350 

some nutrients, there is no overall increase in the risk of overt deficiency. As far as long-term health is 351 

concerned, this profile has the lowest estimated risk of long-term morbidity or mortality from coronary 352 

heart disease, stroke, type 2 diabetes, and colorectal cancer, as assessed using the HiDiet score. Given 353 

that the small increase in nutrient inadequacy does not increase the risk of overt deficiency, this profile 354 

shows strong co-benefits for environmental and human health. 355 

Compared to the other profiles high in animal flesh (meat or fish), the profile with high intakes of 356 

protein from poultry has a lower impact on most of the environmental indicators. In fact, GHGe are 357 

specifically one of the advantages of this profile. Similar results from previous studies show that 358 

poultry produces the lowest GHGe among all types of meat (González et al., 2011; Nijdam et al., 359 

2012). 360 

Surprisingly, this profile exhibited poor dietary scores with values under the population average for all 361 

scores except the HiDiet. This latter score was the only one in line with the epidemiological data 362 

showing that poultry consumption was not associated with a higher risk of mortality or morbidity (Du 363 

et al., 2020; Makiuchi et al., 2020; Micha et al., 2017a, 2017b). The low scores for the other nutritional 364 

and health scores may be explained by the low fish consumption and the fact that other food categories 365 

with a positive weight in these health and nutritional scores are low in the poultry profile. 366 

The profile with a high fish consumption has high values for all health and nutritional scores. This was 367 

expected as fish consumption is positively weighted in all of the scores considered in this study. Fish 368 

is a very good contributor to bioavailable nutrients and has well-known health benefits against chronic 369 

disease (Bogard et al., 2019). The high intake of indispensable nutrients associated with the higher 370 

level of protein for fish but also an overall dietary profile of higher quality explains the high PANDiet 371 

and SecDiet score. In contrast, this high fish intake has some important drawbacks on the 372 

environmental indicators. As described before, water use and photochemical ozone formation are two 373 

important issues of fish consumption (Ruiz-Salmón et al., 2021). It is important to note that there is 374 
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significant variability between fish species, and it may be possible to improve the health and 375 

environmental impact by consuming different fish species (ADEME, 2020a). However, these results 376 

need to be verified with other LCA as environmental pressures from fish are not precise, being mostly 377 

measured indirectly. 378 

4.2 Limits and strengths 379 

First, it should be noted that INCA3 survey was conducted between 2014 and 2015, so diets may have 380 

changed since then, and the sample of 1125 individuals that we used is small. However, it is the latest 381 

French representative survey to date. The environmental database Agribalyse has also some 382 

limitations. For example, the quantification of soil carbon storage and removal is not considered in the 383 

calculation of the GHGe. Biodiversity and the impact of phytosanitary products are also not yet 384 

calculated. Land use is often a proxy for lost biodiversity. However, in the Agribalyse database, land 385 

use is expressed in the loss of Soil Carbon and cannot be used similarly to when expressed in hectares 386 

or m². Another drawback is that there is no information about farming practices (such as organic 387 

production) for foods production that are consumed in the survey, and the environmental indicators are 388 

only for mean of consumed foods differing in farming practices. However, this database includes a 389 

large variety of environmental indicators covering the entire food chain from production to the plate 390 

and virtually all the foods consumed by the French population since it was created for this purpose. 391 

Though, it should be noted that several of these indicators are strongly linked to fuel use. 392 

Finally, the major strength of this study is the variety of indicators and food described in a 393 

representative survey. Using this information, it was possible to precisely describe 14 environmental 394 

indicators and 6 nutritional and health dietary scores for five protein profiles in a representative sample 395 

of the French population  396 

5 Conclusion 397 

In the present study, we showed that the profiles of protein intake of the population are varied and 398 

have contrasting associations with health and environmental impacts. Using the Agribalyse study, we 399 

could assess 14 environmental pressures, which we brought together with 6 health indicators. The 400 
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protein profile marked by ruminant meat had the worst scores on both health and environmental 401 

aspects, especially regarding GHGe, land use, and particulate matter emissions, and long-term health. 402 

Conversely, the most environment-friendly protein profile is very low in meat, and this profile also 403 

had the lowest risk for long-term morbidity and mortality. Apart from the protein profile low in meat, 404 

the profile with high intakes of protein from poultry has a lower impact on most of the environmental 405 

indicators, including GHGe. The fish protein profile had overall the best diet quality indicators but 406 

mixed values for environmental indicators, with high water use and photochemical ozone formation. 407 

As we studied real profiles identified in the general population, the differences in health and 408 

environmental impacts between profiles may be useful to consider realistic targets for acceptable 409 

changes in the diet. These changes may be more practical than those identified by modeling studies. 410 

Our results thus support the importance of protein profiles for health and environmental impacts  411 
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Figure 1 Consumption (g/day) of protein groups in individuals in the 5 protein profile as identified in 667 

the dietary survey (INCA3). * P < 0.05, ** P < 0.01, *** P < 0.001 668 
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 670 

Figure 2. Environmental indicators associated with the diet consumed by individuals in the 5 protein 671 

profiles as identified in the dietary survey (INCA3). Data are in percentage of difference to the mean 672 

value of the total population. GHGe is the emission of greenhouse gases measured in kg CO2 eq. The 673 

ozone depletion is in kg CFC-11eq. The photochemical ozone formation is in kg of Non-Methane 674 

Volatile Organic Compounds eq. Particulate matter is in kg of PM2.5 emitted. The acidification is in 675 

mol H
+
 eq. The terrestrial eutrophication is in mol N eq, the freshwater eutrophication is in kg P eq, 676 

and the marine eutrophication is in kg N eq. The freshwater ecotoxicity is based on the USEtox model. 677 

Land use is in kg C deficit, water use in m
3
, fossils resource use in MJ, and Metals and minerals use in 678 

kg SB eq. * P < 0.05, ** P < 0.01, *** P < 0.001 679 
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 681 

Figure 3. Nutritional and health indicators by profile. All data are in percentage of difference to the 682 

mean value of the population. The HiDiet was used to assess the diet impact on long-term mortality 683 

and morbidity (variation between -1 and 1). The Alternative Healthy Eating Index (AHEI-2010) is a 684 

modified Healthy Eating Index, assessing the adherence to Dietary Guidelines for Americans, 685 

improving target food choices and macronutrient sources associated with reduced chronic disease risk 686 

(maxpoint = 100). The PANDiet evaluates the probability of adequate nutrient intake (maxpoint = 687 

100). The SecDiet evaluates the nutrient risk of overt deficiency (maxpoint = 1). The Literature-Based 688 

Adherence Score to the Mediterranean Diet (LAMD) assesses adherence to the Mediterranean diet 689 

(maxpoint = 16). sPNNS-GS2 the adherence to the French Food-based Dietary Guidelines (maxpoint 690 

= 10.5). * P < 0.05, ** P < 0.01, *** P < 0.001 691 


