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We completely solve the two Diophantine equation B k = J n + J m and C k = J n + J m where {B k } k≥0 , {C k } k≥0 and {J k } k≥0 are the sequences of balancing , Lucas-balancing and Jacobsthal numbers, respectively. We use Matveev's theorem on linear forms in logarithms and a related reduction procedure of Dujella and Peth ö .

Introduction

Balancing numbers are defined by B 0 = 0, B 1 = 1 and B n+1 = 6B n -B n-1 for n ≥ 1 . The first few terms of this sequence are 0, 1, 6, 35, 204, 1189, 6930, ... Lucas-Balancing numbers are strongly related to Balancing numbers and defined by C 0 = 1, C 1 = 3 and C n+1 = 6C n -C n-1 for n ≥ 1 . The first few terms of this sequence are 1, 3, 17, 99, 591, 3543, 21255, ... Jacobsthal sequence is defined by J 0 = 0, J 1 = 1, and J n + 1 = J n + 2J n-1 for n ≥ 1. Its first few terms are 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, ... Many Diophantine equations related to balancing numbers has been recently investigated. For instance, see [START_REF] Ddamulira | Repdigits as sums of three balancing numbers[END_REF], [START_REF] Erduvan | Fibonacci numbers which are products of two balancing numbers[END_REF], [START_REF] Nansoko | Balancing numbers as Sum of same power of consecutive balancing numbers[END_REF] and [START_REF] Rayaguru | Factoriangular numbers in balancing and Lucas-balancing sequence[END_REF]. The aim of this paper is to study the two Diophantine equations

B k = J n + J m , (1.1) 
and

C k = J n + J m . (1.2)
The complete sets of solutions are provided in the following theorems.

Theorem 1.1. The only non-negative solutions (k, n, m) which satisfy Eq.(1.1) and n ≥ m are (1, 1, 0), [START_REF] Cohen | Number theory: Volume I: Tools and diophantine equations[END_REF][START_REF] Ddamulira | Repdigits as sums of three balancing numbers[END_REF][START_REF] Ddamulira | Repdigits as sums of three balancing numbers[END_REF], [START_REF] Cohen | Number theory: Volume I: Tools and diophantine equations[END_REF][START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF][START_REF] Behera | On the square roots of triangular numbers[END_REF], [START_REF] Cohen | Number theory: Volume I: Tools and diophantine equations[END_REF][START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF][START_REF] Cohen | Number theory: Volume I: Tools and diophantine equations[END_REF].

Theorem 1.2. The only non-negative solutions (k, n, m) which satisfy Eq.(1.2) and n ≥ m are (0, 1, 0), (0, 2, 0), (1, 3, 0).

Preliminary results

Balancing and Lucas-balancing sequences

The characteristic equation of the sequences of balancing and Lucas-balancing numbers is Θ(x) := x 2 -6x + 1 = 0.

Let ρ = 3 + √ 8 and δ = 3 -√ 8 be the roots of the characteristic equation. The Binet formulas of the balancing and Lucas-balancing numbers are

B n = ρ n -δ n 2 √ 8 for all n ≥ 0. ( 2.1) 
and

C n = ρ n + δ n 2 for all n ≥ 0. (2.2)
It is easy to prove that

ρ n-1 ≤ B n < ρ n holds for all n ≥ 1. (2.3) and ρ n 2 ≤ C n < ρ n+1 2 holds for all k ≥ 2. (2.4)
For more details concerning balancing and Lucas-balancing numbers, see [START_REF] Behera | On the square roots of triangular numbers[END_REF] and [START_REF] Ray | Balancing and cobalancing numbers[END_REF].

Jacobsthal sequence

The characteristic equation of the Jacobsthal sequence is

P (x) = x 2 -x -2.
Its Binet formula is

J n = 2 n -(-1) n 3 . (2.5) It is known that 2 n-2 ≤ J n ≤ 2 n-1 for all n ≥ 1. (2.6)
Basic properties of Jacobsthal numbers can be found in [START_REF] Horadam | Jacobsthal representation numbers[END_REF] and [START_REF] Koshy | Foibanacci and Lucas Numbers with applications[END_REF].

Linear forms in logarithms.

Let α be an algebraic number of degree d with minimal polynomial (over Z) given by

a 0 x d + a 1 x d-1 + ... + a d = a 0 d i=1 (x -α (i) ),
where the leading coefficient a 0 is positive and the α (i) 's are the conjugates of α. Then the logarithmic Weil height (over algebraic real field) of α is given by

h(α) := 1 d log a 0 + d i=1 log max α (i) , 1
The following are some basic of the properties of the logarithmic height function h(.):

h (α 1 ± α 2 ) ≤ h (α 1 ) + h (α 2 ) + log 2; h α 1 α ±1 2 ≤ h (α 1 ) + h (α 1 ) ; h (α s ) = |s| h (α) (s ∈ Z) .
The proof of the following result can be found in [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II[END_REF]. Theorem 2.1. (Matveev) Let α 1 , ..., α l be positive real algebraic numbers in a real algebraic number field L ⊂ R of degree D, b 1 , ..., b l be a non zero integers, and assume that

Λ 1 := α b 1 1 α b 2 2 ...α b l l -1 ̸ = 0. Then, log |Λ| > -1.4 • 30 l+3 • l 4.5 • D 2 • (1 + log D) • (1 + log B)A 1 ...A l , (2.7) 
where B ≥ max{|b 1 | , ..., |b l |}, and A i ≥ max{Dh (α i ) , |log α i | , 0.16}, for all i = 1, ..., l.

Dujella and Pethö reduction lemma

Let X be a real number. Set ||X| | := min{|X -n| : n ∈ Z}. In [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF], Dujella and Pethö proved the following significant result .

Lemma 2.2. Let M be a positive integer. Let τ, µ, A > 0, B > 1 be given real numbers. Assume p q is a convergent of τ such that q > 6M and ϵ

:= ||µq|| -M ||τ q|| > 0. If (n, m, ω) is a positive solution to the inequality 0 < |nτ -m + µ| < A B ω with n ≤ M, then ω < log Aq ϵ log B .

Legendre theorem

The following theorem is due to Legendre and appeared in his book [START_REF] Legendre | Essai sur la théorie des nombres[END_REF]. We will use this theorem in some cases of our investigation of Balancing numbers that can be written as the sum of two Jacobsthal numbers. The interested reader can see [START_REF] Cohen | Number theory: Volume I: Tools and diophantine equations[END_REF] for more details.

Theorem 2.3. Let x be a real number, let p, q ∈ Z and let

x = [a 0 , a 1 , ...]. If p q -x < 1 2q 2
then p q is a convergent of the continued fraction of x. Furthermore, if M and n are non negative integers such that q n > M , then

1 (b + 2) q 2 < p q -x
where b = max{a i : i = 0, 1, 2, .., n}.

3 Proof of Theorem 1.1

3.1 Bounding m, n and k.

Applying the inequalities (2.6) and (2.3), we get

ρ k-1 ≤ B k ≤ 2 n and 2 n-2 ≤ B k ≤ ρ k' . (3.1) 
These implies that,

(n -2) log 2 log ρ ≤ k ≤ n log 2 log ρ + 1. (3.2)
The value of log 2 log ρ is approximately 0.39, so we can take k < 2n. Using the Binet formulas of the Balancing and Jacobsthal sequences in (1.1). We get

ρ k -δ k 2 √ 8 = 2 n -(-1) n 3 + 2 m -(-1) m 3 . (3.3) Then, ρ k 2 √ 8 - 2 n 3 = 2 m 3 - ((-1) n + (-1) m ) 3 + δ k 2 √ 8 . (3.4) This implies that ρ k 2 √ 8 - 2 n 3 < 4 • 2 m 3 . (3.5) Thus, 3ρ k 2 -n 2 √ 8 -1 < 4 2 n-m . (3.6) Let Λ 1 = 3ρ k 2 -n 2 √ 2 -1, l = 3, α 1 = 3 2 √ 8 , α 2 = ρ, α 3 = 2, b 1 = 1, b 2 = k, b 3 = -n. If Λ 1 = 0, then 3ρ k = 2 n .2 √ 8. Consider the automorphism σ such that σ(ρ) = δ. Then 3δ k = 2 n .2 √ 8. But 3δ k < 3, then 2 n .2 √ 8 < 3 which is a contradiction. So, Λ 1 ̸ = 0. Take L = Q(ρ). Then D = 2. The logarithmic heights are h(α 1 ) ≤ h(3) + h(2 √ 8) ≤ log 3 + 5 2 log 2; h(α 2 ) = 1 2 log ρ; h(α 3 ) = log 2.
Taking, Eq.(3.3) can be written as,

A
ρ k 2 √ 8 - 2 n (1 + 2 m-n ) 3 = δ k 2 √ 8 - (-1) n -(-1) m 3 , (3.11) 
Therefore,

3ρ k 2 -n 2 √ 8(1 + 2 m-n ) -1 = 3 • 2 -n 2 √ 8(1 + 2 m-n ) δ k 2 √ 8 - (-1) n -(-1) m 3 . (3.12) Hence, 3ρ k 2 -n 2 √ 8(1 + 2 m-n ) -1 < 5 2 m . (3.13) Let Λ 2 = 3ρ k 2 -n 2 √ 8(1+2 m-n ) -1. Then, log |Λ 2 | < log 5 -m log 2. ( 3 

.14)

Let

α 1 = 3 2 √ 8(1 + 2 m-n ) , α 2 = ρ, α 3 = 2, l = 3, b 1 = 1, b 2 = k, b 3 = -n, B = 2n.
First we show that Λ 2 ̸ = 0. If Λ 2 = 0, then 3ρ k = 2 √ 8(2 n + 2 m ). Consider the automorphism σ such that σ(ρ) = δ. Then 3δ k = 2 √ 8(2 n + 2 m ). But 3δ k < 3, which is a contradiction. Then we take L = Q(ρ), for which D = 2. We compute the logarithmic heights as follows:

h(α 1 ) ≤ h(3) + h(2) + h(2 √ 8) + h(1 + 2 m-n ) ≤ log 3 + 7 2 log 2 + (n -m) log 2; h(α 2 ) = 1 2 log ρ; h(α 3 ) = log 2.
We take, 

A 1 = 2 log 3 + 2(n -m) log 2 + 7

Reducing bound on n

Now, we use the reduction lemma to reduce the upper bound on n.

Γ 1 = log( 3 2 √ 8 ) + k log ρ -n log 2.
Eq.(3.6) gives, for m -n ≥ 5,

Λ 1 = e Γ 1 -1 < 4 2 m-n < 1 4 , (3.17) 
which implies that

|Γ 1 | < 1 2 . (3.18) Then |Γ 1 | < 2 e Γ 1 -1 . Therefore we get |Γ 1 | < 8 2 n-m . (3.19) We observe that Γ 1 ̸ = 0 since Λ 1 ̸ = 0. Then 0 < log( 3 2 √ 8 ) log 2 -n + k log ρ log 2 < 8 2 n-m log 2 < 12 2 n-m .
(3.20)

We apply lemma (2.2) with

M = 6 × 10 29 (M > 2n > k) , τ = log ρ log 2 , µ = log( 3 2 √ 8
) log 2 , A = 12, B = 2. Write τ as a continued fraction [a 0 , a 1 , ...] we get q 61 = 6332847229674209482244367144203 > 6M . We compute

ϵ = ||µq 61 | | -M ||τ q 61 | | > 0.4.
Thus by lemma (2.2), we get n -m < 108. Now we put

Γ 2 = log 3 2 √ 8(1 + 2 m-n ) + k log ρ -n log 2.
Then we have from equation(3.13) that, for m ≥ 5,

Λ 2 = e Γ 2 -1 < 5 2 m < 1 4 , (3.21) 
which implies that

|Γ 2 | < 1 2 . (3.22) Then |Γ 2 | < 2 e Γ 2 -1 . Therefore we get |Γ 2 | < 10 2 m . (3.23) Then 0 < log 3 2 √ 8(1+2 m-n ) log 2 -n + k log ρ log 2 < 15 2 m . (3.24)
We apply lemma (2.2) with

M = 6 × 10 29 (M > 2n > k), τ = log ρ log 2 , µ = log( 3 2 √ 8(1+2 m-n ) ) log 2
, A = 15 and B = 2. It can be seen that q 65 > 6M . . We consider the values of ϵ in two cases

Case I: if n -m < 108 and n -m ̸ = 1 ϵ = ||µq 65 | | -M ||τ q 65 | | > 0.0008.
Thus by lemma (2.2), we get m < 124 so n < 232 and k < 464 .

Case II: n-m = 1 we get ϵ always negative. So we solve equation(1.1) if n-m = 1. In this case equation(1.1) can be written as B k = J m + J m+1 and can be reduced as

B k = 2 m . (3.25)
Then k < 2m and from Eq.(4.16) we get m < 3 × 10 29 . As before, we can prove that

γ k 2 -(m+3) -1 < 1 2 m ,
This gives, for m ≥ 3, that

k log γ log 2 -(m + 3) < 4 2 m < 1 4 .
Employing that 16m < 2 m for m ≥ 7, we deduce that

4 2 m < 1 2k 2 . Then log ρ log 2 -m+3 k < 1 2k 2 . So, by Legendre's theorem, m+3 k is a convergent of log ρ log 2 .
Using k < M and some computations we find that q 58 < M < q 59 and b := max{a i : i = 0, 1, 2, ..., 59} = 200. We take k < 2n. Replacing the Lucas-Balancing and Jacobsthal sequences in (1.2) by their Binet formulas, we get

ρ k + δ k 2 = 2 n -(-1) n 3 + 2 m -(-1) m 3 . (4.3) Then, ρ k 2 - 2 n 3 = 2 m 3 - ((-1) n + (-1) m ) 3 -δ k . (4.4) Therefore, ρ k 2 - 2 n 3 ≤ 2 m 3 + 2 3 + δ k Then ρ k 2 - 2 n 3 < 4 • 2 m 3 (4.5) Thus, 3ρ k 2 n+1 -1 < 4 2 n-m . (4.6)
Consider the following:

Λ 3 = 3ρ k 2 -(n+) -1, l = 3, α 1 = 3, α 2 = ρ, α 3 = 2, b 1 = 1, b 2 = k, b 3 = -(n + 1).
As before, we can prove that Λ 3 ̸ = 0. Take L = Q(ρ), for which D = 2. Then, h(α 1 ) = log 3;

h(α 2 ) = 1 2 log ρ; h(α 3 ) = log 2.
We take, 

A 1 = 2 log 3, A 2 =
ρ k 2 - 2 n (1 + 2 m-n ) 3 = - δ k 2 - (-1) n -(-1) m 3 . (4.11) So, 3ρ k 2 -(n+1) 1 + 2 m-n -1 = 3 • 2 -n 1 + 2 m-n - δ k 2 - (-1) n -(-1) m 3 . (4.12) Then, 3ρ k 2 -(n+1) 1 + 2 m-n -1 < 5 2 m . (4.13) Let Λ 4 = 3 1+2 m-n ρ k 2 -(n+1) -1. Hence, log |Λ 4 | < log 5 -m log 2. ( 4 

.14)

Set

α 1 = 3 1 + 2 m-n , α 2 = ρ, α 3 = 2, l = 3, b 1 = 1, b 2 = k, b 3 = -(n + 1).
Again, we have that Λ 4 ̸ = 0. Let L = Q(ρ). Then, h(α 1 ) ≤ log 3 + (n -m) log 2 + log 2; h(α 2 ) = 1 2 log ρ; h(α 3 ) = log 2.

We take, 

1 = 2

 12 log 3 + 5 log 2, A 2 = log ρ, and A 3 = 2 log 2, B = 2n and applying Matveev's Theorem(2.1), we obtain log |Λ 1 | > -1.4 × 30 6 × 3 4.5 × 4 × (1 + log 2)(1 + log 2n)(2 log 3 + 5 log 2)(2 log 2 log ρ), then, log |Λ 1 | > -2 × 10 13 (1 + log 2n). (3.7) Also, from (3.6) we have, log |Λ 1 | < log 4 + (m -n) log 2. (3.8) Thus by comparing inequalities in (3.7) and (3.8), we get (n -m) log 2 -log 4 < 2 × 10 13 (1 + log 2n). (3.9) Hence, m log 2 > n log 2 -2 × 10 13 (1 + log 2n) -log 4. (3.10)

< 5 •

 5 10 32 . Then m ≤ 108. Solution of Eq.(4.25) for m < 108 gives no solutions and solution of Eq.(4.25) for m < 124, n < 232 and k < 464 gives the triples in Theorem (1.1).

A 1 =|Γ 3 | < 2 e Γ 3 - 1 .|Γ 3

 13313 2 log 3 + 2(n -m) log 2 + 2 log 2, A 2 = log γ, A 3 = 2 log 2, and B = 2n. Then log |Λ 4 | > -1.4×30 6 ×3 4.5 ×4×(1+log 2)(1+log 2n)(2 log 3+2 log 2+2(n-m) log 2)(2 log 2 log ρ), Then using equations (4.9), (4.10) and (4.14) with some computation we get, n log 2 < 11 × 10 12 (1 + log 2n) + 12 × 10 24 (1 + log 2n) 2 + 3. (4.15) Hence, n < 3 × 10 28 . (4.16) 4.2 Reducing bound on n. Assume that n -m ≥ 5 and let Γ 3 = log(3) + k log ρ -(n + 1) log 2. By Eq.(4.6), we have Λ 3 = e Γ 3 -Therefore, we have apply lemma (2.2) with M = 6 × 10 28 (M > 2n > k) , τ = log ρ log 2 , µ = log 3 log 2 , A = 12, and B = 2. Considering the continued fraction of τ , we find that q 65 > 6M . We compute ϵ = ||µq 65 | | -M ||τ q 65 | | > 0.3.

  log 2, A 2 = log ρ, and A 3 = 2 log 2.

	By Matveev's Theorem, we get
	log |Λ 2 | > -1.4×30 6 ×3 4.5 ×4×(1+log 2)(1+log 2n)(2 log 3+2(n-m) log 2+7 log 2)(2 log 2 log ρ),
	Using Eqs.(3.9),(3.10),(3.14) and direct computations, we find

n log 2 < 6 × 10 13 (1 + log 2n) + 12 × 10 25 (1 + log 2n) 2 + 3.

(3.15)

We deduce that n < 3 × 10 29 . (3.16)

  By symmetry of Eq.(1.2), we assume that n ≥ m.

	4 Proof of Theorem 1.2		
	By (2.4) and (2.6), we have				
	ρ k 2	≤ C k ≤ 2 n and 2 n-2 ≤ C k ≤	ρ k+1 2	.	(4.1)
	These imply that,					
	(n -1)	log 2 log ρ	-1 ≤ k ≤ (n + 1)	log 2 log ρ	.	(4.2)

4.1 bounding m, n and k.

  log ρ, and A 3 = 2 log 2.

	Let B = 2n. Then Theorem(2.1) shows that	
	log |Λ 3 | > -1.4 × 30 6 × 3 4.5 × 4 × (1 + log 2)(1 + log 2n)(2 log 3)(2 log 2 log ρ).
	Consequently,	
	log |Λ 3 | > -3 × 10 12 (1 + log 2n).	(4.7)
	Then also from (4.6) we have,	
	log |Λ 3 | < log 4 + (m -n) log 2.	(4.8)
	Thus by comparing inequalities in (4.7) and (4.8) we get,	
	(n -m) log 2 -log 6 < 3 × 10 12 (1 + log 2n).	(4.9)
	Hence,	
	m log 2 > n log 2 -3 × 10 12 (1 + log 2n) -log 4.	(4.10)
	Eq.(4.3) is equivalent to	

Thus, by lemma (2.2), we get n -m < 117. Set Γ 4 = log 3 1 + 2 m-n + k log ρ -(n + 1) log 2. and let m > 5. Then we have from equation(4.13) that We observe that Γ 4 ̸ = 0. So,

We apply lemma (2.2) again with

, A = 15, and B = 2. We have q 65 > 6M . We consider the values of ϵ in two cases By induction, we can prove that all the Lucas-Balancing numbers are odd. Therefore, we have no solutions in this case. Solutions of Eq.(1.2) for m < 122, n < 239 and k < 478 yields the solutions which appear in Theorem (1.2).