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Higher-order corrections to spin-orbit and spin-spin tensor interactions in hydrogen molecular ions: theory and application to H + 2

We consider higher-order corrections to hyperfine coefficients related to the spin-orbit and spinspin tensor interactions in hydrogen molecular ions. The mα 7 ln(α)-order radiative correction is derived in the NRQED framework. We present complete numerical calculations, including as well the mα 6 -order relativistic correction, for the case of H + 2 . The theoretical uncertainty is reduced by more than one order of magnitude with respect to the Breit-Pauli level, down to a few ppm. We also compare our results with available rf spectroscopy data.

I. INTRODUCTION

In recent years, precision spectroscopy of hydrogen molecular ions has established itself as a fruitful direction for fundamental metrology. Rovibrational transition frequencies in HD + have been measured with very high accuracies [1, 2] and compared with theoretical predictions [START_REF] Korobov | Rovibrational spin-averaged transitions in the hydrogen molecular ions[END_REF] to obtain improved determinations of the proton-electron mass ratio or constrain hypothetical interactions beyond the Standard Model [START_REF] Germann | Three-body QED test and fifth-force constraint from vibrations and rotations of HD +[END_REF]. In these works, accurate predictions of the hyperfine structure have been used to extract a "spin-averaged" transition frequency from the measured hyperfine components. Discrepancies between theory and experiments have been observed in the hyperfine slitting of the rovibrational lines [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF][START_REF] Karr | Higher-order corrections to spin-spin scalar interactions in HD + and H + 2[END_REF], which in some cases increases the uncertainty of rovibrational transition frequencies [START_REF] Patra | Proton-electron mass ratio from laser spectroscopy of HD + at the part-per-trillion level[END_REF][START_REF] Koelemeij | Effect of correlated hyperfine theory errors in the determination of rotational and vibrational transition frequencies in HD +[END_REF]. This makes it highly desirable to improve further the hyperfine structure theory in hydrogen molecular ions.

The theory of the leading hyperfine interaction, namely the "Fermi" spin-spin contact interaction that gives rise to the main (∼ 1 GHz) splitting in HD + and ortho-H + 2 , has been recently improved [START_REF] Karr | Higher-order corrections to spin-spin scalar interactions in HD + and H + 2[END_REF][START_REF] Korobov | Theoretical Hyperfine Structure of the Molecular Hydrogen Ion at the 1 ppm Level[END_REF]. The next step consists in improving the next largest hyperfine coefficients, related to the electronic spin-orbit and spin-spin tensor (dipolar) interactions [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF][START_REF] Bakalov | High-Precision Calculation of the Hyperfine Structure of the HD + Ion[END_REF]. It is worth noting that the spin-orbit and spin-spin tensor interactions, being essentially free of nuclear finite-size and structure corrections, allow for more precise tests of the theory with respect to the contact interaction. In Ref. [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF], we derived the effective Hamiltonian for relativistic corrections of order mα 6 in the hydrogen molecular ions, following the nonrelativistic QED (NRQED) approach that had been previously validated by applying it to the hyperfine splitting of the 2P state in hydrogen [START_REF] Haidar | Nonrelativistic QED approach to the fine-and hyperfine-structure corrections of order mα 6 and mα 6 (m/M ): Application to the hydrogen atom[END_REF]. This allowed us to get improved values of the spin-orbit coefficient for a few states [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF]. In this work, we improve the theory further by deriving the radiative correction at the following order mα 7 ln α.

We then present extensive numerical calculations of the spin-orbit and spin-spin tensor coefficients in the slightly simpler case of H + 2 , whereas HD + will be considered in a forthcoming publication. There are several motivations to study the hyperfine structure specifically in H + 2 . Recent efforts and proposals towards high-resolution laser spectroscopy of this ion [START_REF] Chou | Preparation and coherent manipulation of pure quantum states of a single molecular ion[END_REF][START_REF] Schmidt | Trapping, Cooling, and Photodissociation Analysis of State-Selected H + 2 Ions Produced by (3 + 1) Multiphoton Ionization[END_REF][START_REF] Tu | Tank-Circuit Assisted Coupling Method for Sympathetic Laser Cooling[END_REF] offer new opportunities to test the theory; accurate theoretical predictions of the hyperfine splitting are also likely to be required to extract spin-averaged transition frequencies, similarly to HD + [1, 2]. Moreover, H + 2 is of high astrophysical importance due to its role in the formation of H + 3 . This has made its radio-astronomical detection, using e.g. hyperfine transitions analogous to the 21-cm line in atomic hydrogen, a long-standing goal [START_REF] Jefferts | Radio Search for Interstellar H + 2[END_REF][START_REF] Shuter | A Search for Vibrationally Excited Interstellar H + 2[END_REF][START_REF] Black | Molecules in harsh environments[END_REF]. Interest in H + 2 is further enhanced by prospects of experimental studies on the antihydrogen molecular ion H-2 , aimed at performing improved tests of the CPT symmetry [START_REF] Myers | CP T tests with the antihydrogen molecular ion[END_REF]; some of these tests could be performed through measurements of hyperfine-Zeeman transitions. Finally, a few hyperfine intervals that are essentially independent from the "Fermi" coefficients have been measured with very high precision (∼ 10 -7 ) [START_REF] Menasian | High-resolution study of (1,1/2,1/2)-(1[END_REF], thus providing a stringent test of theory for the spin-orbit and spin-spin tensor interactions.
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Square brackets around quantities imply that derivatives act only within the bracket (this notation only applies to Eq. (1) and is no longer used in the following).

The above expression differs from Eq. (1) of [START_REF] Hill | NRQED Lagrangian at order 1/M 4[END_REF], which is complete up to the order 1/m 4 , in several details. Firstly, we have omitted terms involving the coefficients c X4 and c X7 -c X12 , which only contribute at orders mα 8 and above, and the two-photon (seagull) terms involving c A1 and c A2 , since for the corrections we aim to calculate it is sufficient to perform a matching of one-photon scattering amplitudes. Secondly, the terms involving the coefficients c W1 and c W2 have been reformulated by introducing the coefficients c W and c 2 q , as done in [START_REF] Kinoshita | Radiative corrections to the muonium hyperfine structure: The α 2 (Zα) correction[END_REF][START_REF] Nio | Radiative corrections to the muonium hyperfine structure. II. The α(Zα) 2 correction[END_REF]. In a similar way, we have reformulated the terms involving c X5 and c X6 by introducing c Y1 and c Y2 . The reason behind these transformations is to get simpler expressions for the NRQED effective potentials. Finally, for convenience we have changed the definitions of c X1 -c X3 by introducing numerical prefactors in the corresponding terms.

For the following calculations, π can be replaced by p in the last three lines because the terms involving A only contribute at higher orders.

The QED scattering amplitude at tree level for a static scalar field A 0 (q) is

A QED E (p, p ′ ) = -iA 0 J 0 (p, p ′ ) , (2) 
where p, p ′ are the four-momenta of the incident and scattered particle, and J is the charge-current density operator, which is written in terms of the Dirac and Pauli form factors F 1 (q 2 ) and F 2 (q 2 ) (with q = p ′p):

J µ = ie u(p ′ ) γ µ F 1 (q 2 ) + iκ 2m σ µν q ν F 2 (q 2 ) u(p). (3) 
Here, κ is the particle's anomalous magnetic moment, and u(p), u(p ′ ) are on-shell Dirac spinors. Using the nonrelativistic normalization condition u * (p)u(p) = 1, a Dirac spinor can be expressed in terms of a Schrödinger-Pauli spinor ψ(p) as

u(p) = E p + m 2E p ψ(p) σ•p Ep+m ψ(p) , E p = m 2 + p 2 . ( 4 
)
It can then be expanded in powers of p 2 /m 2 :

u(p) ≈   1 -p 2 8m 2 + 11p 4 128m 4 + . . . ψ σ•p 2m 1 -3p 2 8m 2 + . . . ψ   (5) 
The form factors may also be expanded as

F 1 (q 2 ) = F 1 -F ′ 1 q 2 m 2 + F ′′ 1 q 4 m 4 + . . . (6) 
F 2 (q 2 ) = F 2 -F ′ 2 q 2 m 2 + . . . (7) 
with F 1 = F 2 = 1 for an electron. Using Eqs. ( 2)-( 3) and ( 5)- [START_REF] Koelemeij | Effect of correlated hyperfine theory errors in the determination of rotational and vibrational transition frequencies in HD +[END_REF], one gets the following expansion of the QED scattering amplitude:

A QED E (p, p ′ ) = ψ * (p ′ )eA 0 F 1 - q 2 8m 2 (F 1 + 2κF 2 + 8F ′ 1 ) + i σ•(q×p) 4m 2 (F 1 + 2κF 2 ) + q 4 8m 4 (F ′ 1 + 2κF ′ 2 + 8F ′′ 1 ) -i σ•(q×p) q 2 4m 4 (F ′ 1 + 2κF ′ 2 ) + q 2 (p ′2 + p 2 ) 64m 4 (3F 1 + 4κF 2 ) + (p ′2 -p 2 ) 2 128m 4 (5F 1 + 4κF 2 ) -i σ•(q×p) p ′2 + p 2 32m 4 (3F 1 + 4κF 2 ) + . . . ψ(p). (8) 
Similarly, for a vector field A(q), the scattering amplitude

A QED M (p, p ′ ) = -iA µ J µ (p, p ′ ) (9) 
can be expanded as follows:

A QED M (p, p ′ ) = ψ * (p ′ )eA• - (p ′ + p) 2m F 1 -i (σ×q) 2m (F 1 + κF 2 ) + q 2 (p ′ + p) 16m 3 (8F ′ 1 + κF 2 ) + (p ′ + p)(p ′2 + p 2 ) 8m 3 F 1 + q p ′2 -p 2 16m 3 (F 1 -κF 2 ) (10) +i (σ×q) p ′2 + p 2 8m 3 F 1 + i [σ×(p ′ + p)] p ′2 -p 2 16m 3 F 1 +i (σ•p ′ ) (p×q) + (σ•p) (p ′ ×q) 8m 3 κF 2 + i q 2 (σ×q) 16m 3 (κF 2 + 8F ′ 1 + 8κF ′ 2 ) ψ(p).
The NRQED scattering amplitude is directly obtained from the Hamiltonian (1). For a scalar field one gets

A NRQED E (p, p ′ ) = ψ * (p ′ )eA 0 1 -c D q 2 8m 2 + ic S σ•[q×(p ′ + p)] 8m 2 +c X1 (p ′2 -p 2 ) 2 128m 4 + c X2 (p ′2 + p 2 )q 2 64m 4 + c X3 q 4 8m 4 -ic Y1 (p ′2 + p 2 )σ•[q×(p ′ + p)] 64m 4 + ic Y2 σ•[q×(p ′ + p)] q 2 8m 4 ψ(p) , (11) 
and for a vector field:

A NRQED M (p, p ′ ) = ψ * (p ′ )eA• - (p ′ + p) 2m -ic F (σ×q) 2m + (p ′2 + p 2 ) (p ′ + p) 8m 3 +ic W p ′2 + p 2 (σ×q) 8m 3 + ic q 2 q 2 (σ×q) 8m 3 +ic p ′ p (σ•p ′ ) (p×q) + (σ•p) (p ′ ×q) 8m 3 + c M q 2 (p ′ + p) 8m 3 ψ(p) . (12) 
Matching Eq. ( 11) with Eq. ( 8) and Eq. ( 12) with Eq. ( 10) allows us to determine the coefficients of the NRQED Hamiltonian. Note that the last term in the third line of Eq. ( 10) does not appear in the corresponding NRQED expression [START_REF] Chou | Preparation and coherent manipulation of pure quantum states of a single molecular ion[END_REF], because it is gauge dependent and thus does not contribute to the scattering amplitude. Our final result is:

c F = F 1 + κF 2 c D = F 1 + 2κF 2 + 8F ′ 1 c S = F 1 + 2κF 2 c W = F 1 c q 2 = 1 2 (κF 2 + 8F ′ 1 + 8κF ′ 2 ) c p ′ p = κF 2 (13) 
c M = 1 2 (κF 2 + 8F ′ 1 ) c X1 = 5F 1 + 4κF 2 c X2 = 3F 1 + 4κF 2 c X3 = F ′ 1 + 2κF ′ 2 + 8F ′′ 1 c Y1 = 3F 1 + 4κF 2 c Y2 = -(F ′ 1 + 2κF ′ 2 )
This can be compared with Ref. [START_REF] Hill | NRQED Lagrangian at order 1/M 4[END_REF] with the help of the relationships

c W + c q 2 = c W1 c q 2 = c W2 , c Y1 = 32c X5 -c Y1 + 8c Y2 = 32c X6 , (14) 
which are easily obtained using the equation q 2 = p ′2 + p 2 -2p ′ •p. Our results are in agreement with those of Ref. [START_REF] Hill | NRQED Lagrangian at order 1/M 4[END_REF], except for c X1 and c X3 . Note that these two coefficients do not depend on spin and therefore do not play any role in the interactions studied in this work. For the electron case, the first expansion coefficients of the form factors are:

F ′ 1 = α 3π ln m λ - 3 8 + . . . , F ′′ 1 = α 20π ln m λ - 11 12 + . . . , a e F ′ 2 = α 12π + . . . , (15) 
where λ is a photon mass. The coefficients of the NRQED Hamiltonian are then:

c F = 1 + a e c D = 1 + 2a e + 8 3 α π ln m λ - 3 8 c S = 1 + 2a e c W = 1 c q 2 = a e 2 + 4 3 
α π ln m λ - 1 8 c p ′ p = a e (16) 
c M = a e 2 + 4 3 
α π ln m λ - 3 8 c X1 = 5 + 4a e c X2 = 3 + 4a e c X3 = α π 11 15 ln m λ - 13 40 c Y1 = 3 + 4a e c Y2 = - 1 3 α π ln m λ + 1 8
It is important to note that logarithmic contributions can be immediately obtained by substituting the photon mass λ in the ln(m/λ) terms with the natural energy scale mα 2 (see, e.g., [START_REF] Labelle | Derivation of the Lamb shift using an effective field theory[END_REF]).

III. HYPERFINE STRUCTURE CORRECTIONS AT ORDERS mα 6 AND mα 7 ln(α)

A. Terms contributing at the order mα 6

Effective potentials contributing to the spin-orbit and spin-spin tensor interactions can be obtained from the NRQED Hamiltonian, Eq. (1), using perturbation theory. For the mα 6 order, this has been done in our previous work [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF]. We recall these results before moving on to the new corrections appearing at order mα 7 ln(α). We use natural relativistic units (h = c = 1) and the following notations: s e is the electron spin, Z 1 , Z 2 and M 1 , M 2 are the nuclear charges and masses (here

Z 1 = Z 2 = 1, M 1 = M 2 = m p ), r a = r e -R a (a = 1, 2)
is the position of the electron with respect to nucleus a, and p e , P 1 , P 2 are the impulse operators for the electron and both nuclei, respectively.

We first list the corrections to the electronic spin-orbit interaction. The total energy correction is a sum of first-order and second-order contributions, ∆E so(6) = H so(6) + ∆E 2 nd -order so( 6)

, ( 17 
)
where denotes an expectation value with the nonrelativistic wave function ψ 0 . The mα 6 -order effective Hamiltonian is

H so(6) = c W U W + c Y1 U Y1 + c S U CM + U MMN , U W = Z a 4m 3 M a p 2 e , 1 r 3 a r a ×P a •s e , U Y1 = - Z a 16m 4 p 2 e , 1 r 3 a (r a ×p e ) •s e , U CM = Z 2 a 4m 2 M a 1 r 4 a (r a ×P a )•s e + Z 1 Z 2 4m 2 M 1 1 r 1 r 3 2 (r 2 ×P 1 )•s e + Z 1 Z 2 4m 2 M 2 1 r 3 1 r 2 (r 1 ×P 2 )•s e - Z 1 Z 2 4m 2 M a 1 r 3 1 r 3 2 (r 1 ×r 2 ) (r a •P a )•s e , U MMN = - Z 2 a 2m 2 M a 1 r 4 a (r a ×p e )•s e , (18) 
with implicit summation over a = 1, 2. We have omitted retardation terms, which were considered in [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF] and shown to be negligibly small. The second-order contribution arises from various terms of the Breit-Pauli Hamiltonian:

∆E 2 nd -order so(6)
= ∆E so-HB + ∆E so-ret + ∆E

(1) so-so ,

∆E so-HB = 2 H so Q(E 0 -H 0 ) -1 QH B , ∆E so-ret = 2 H so Q(E 0 -H 0 ) -1 QH ret , ∆E (1) 
so-so = H so Q(E 0 -H 0 ) -1 QH so (1) . (19) 
where H 0 and E 0 are respectively the nonrelativistic Hamiltonian and energy, and Q is a projection operator on a subspace orthogonal to ψ 0 . A (k) denotes the term of rank k in the decomposition of A as a sum of irreducible tensor operators. The involved terms of the Breit Pauli-Hamiltonian are

H B = - p 4 e 8m 3 + Z a π 2m 2 δ(r a ), H ret = Z a 2 p i e m δ ij r a + r i 1 r j 1 r 3 a P j a M a , H so = Z a (1+2a e ) 2m 2 (r a ×p e )•s e r 3 a - Z a (1+a e ) mM a (r a ×P a )•s e r 3 a . ( 20 
)
We now turn to the electron-nucleus spin-spin tensor interaction. Similarly, we have

∆E (2) ss(6) = H (2) 
ss( 6) + ∆E

(2)2 nd -order ss( 6)

, ( 21 
)
where the mα 6 -order effective Hamiltonian is

H (2) ss(6) = c W U (2) 
W + c S U (2) 
CM , U

W = - 1 4m 2 p 2 e , r 2 a µ e •µ a -3(µ e •r a )(µ a •r a ) r 5 a U (2) CM = - Z a 6m r 2 a µ e •µ a -3(µ e •r a )(µ a •r a ) r 6 a - 1 6m Z 2 (r 1 •r 2 )µ e •µ 1 -3(µ e •r 1 )(µ 1 •r 2 ) r 3 1 r 3 2 + Z 1 (r 1 •r 2 )µ e •µ 2 -3(µ e •r 2 )(µ 2 •r 1 ) r 3 1 r 3 2 . ( (2) 
) 22 
Here, µ e and µ a are the electronic and nuclear magnetic moments. Neglecting the electron's anomalous magnetic moment, we get µ e = -(|e|/m)s e . In H + 2 , µ a = 2µ p µ N I a , where µ p is the proton's magnetic moment in units of the nuclear Bohr magneton µ N , and I a the spin operator of nucleus a. The second-order contribution is

∆E (2)2 nd -order ss(6) = ∆E (2) ss-HB + ∆E (2) so-ss + ∆E (2) so-soN , ∆E (2) ss-HB = 2 H (2) ss Q(E 0 -H 0 ) -1 QH B , ∆E (2) 
so-ss = 2 H (2) ss Q(E 0 -H 0 ) -1 QH so (2) 
, ∆E

so-soN = 2 H so Q(E 0 -H 0 ) -1 QH soN (2) . ( (2) 
) 23 
It involves two additional terms of the Breit-Pauli Hamiltonian:

H (2) ss = µ e •µ a r 3 a -3 (µ e •r a )(µ a •r a ) r 5 a - 8πα 3 µ e •µ a δ(r a ), H soN = 1 m (r a ×p e )•µ a r 3 a - 1 M a 1 - Z a m p I a M a µ a (r a ×P a )•µ a r 3 a . ( 24 
)
We have changed our notations of the first-order terms with respect to Ref. [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF] in order to clearly identify their link to the terms of the NRQED Hamiltonian. U CM and U MMN denote seagull terms with simultaneous exchange of a

Coulomb and a magnetic photon (CM ), and of two magnetic photons at the nucleus (M M N ). The correspondence with notations used in our earlier work [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF] is the following:

U W ↔ U 2b , U Y1 ↔ U 1b , U CM ↔ U 5a , U MMN ↔ U 6b , U (2) 
W ↔ U (2) 2d , U (2) 
CM ↔ U (2) 5b . (25) 
None of the coefficients involved in the terms listed in this section have any logarithmic contribution at first order in α (see Eq. ( 16)). One can conclude that these terms do not contribute to the order mα 7 ln(α). Since the nonlogarithmic mα 7 -order correction is not considered in the present work, in our numerical calculations we truncate the expressions of all coefficients at zero order in α.

B. Terms contributing at the order mα 7 ln(α)

Contributions at this order stem from spin-dependent coefficients of the NRQED Hamiltonian that depend on ln(α), i.e. c q 2 and c Y2 , and can be derived using perturbation theory as done in [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF][START_REF] Haidar | Nonrelativistic QED approach to the fine-and hyperfine-structure corrections of order mα 6 and mα 6 (m/M ): Application to the hydrogen atom[END_REF]. The first contribution is from a transverse photon exchange with the c q 2 term on the electron side and a dipole vertex (labeled 2N in Eq. ( 7) of [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF]) on the nucleus side. The corresponding effective potential in momentum space is

U q 2 = ie 8m 3 q 2 (σ×q) k Z a e (P a + P ′ a ) 2M a l - 1 q 2 δ kl - q k q l q 2 = iZ a e 2 16m 3 M a (σ×q)•(P a + P ′ a ) = - iZ a e 2 16m 3 M a [q×(P a + P ′ a )]•σ . ( 26 
)
After Fourier transform, the effective potential in real space is found to be

U q 2 = iZ a e 2 8m 3 M a (p e ×4πδ(r a )P a -P a ×4πδ(r a )p e )•s e . (27) 
The other contribution is due to a Coulomb photon exchange with the c Y2 term on the electron side and a Coulomb vertex (2N in Eq. ( 7) of [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF]) on the nucleus side:

U Y2 = ie 8m 4 σ•[q×(p ′ + p)] q 2 [-Z a e] 1 q 2 = - iZ a e 2 4m 4 (q×p)•σ , (28) 
which yields for the real-space effective potential:

U Y2 = iZ a e 2 2m 4 (p e ×4πδ(r a )p e )•s e . (29) 
Both terms contribute to the spin-orbit interaction. The total effective potential of order mα 7 ln(α) is thus obtained as:

H so(7 ln) = c q 2 U q 2 + c Y2 U Y2 , (30) 
with

c q 2 ≡ 4 3 α π ln α -2 , c Y2 ≡ - 1 3 α π ln α -2 . ( 31 
)
Note that the nonrecoil term U q 2 had been obtained for an electron in an external potential in [START_REF] Jentschura | Nonrelativistic QED approach to the Lamb shift[END_REF] (see also [START_REF] Pachucki | Quantum electrodynamics effects on helium fine structure[END_REF]), but the recoil term U Y2 had not been considered so far, to the best of our knowledge. There is also a second-order perturbation term:

∆E 2 nd -order so(7 ln) = 2 H so Q(E 0 -H 0 ) -1 QH (5 ln) , (32) 
where

H (5 ln) = α 3 4 3 ln(α -2 )Z a δ(r a ) (33) 
is the logarithmic part of the effective Hamiltonian describing leading-order radiative corrections. The total correction to the spin-orbit interaction at this order is ∆E so(7 ln) = H so(7 ln) + ∆E 2 nd -order so(7 ln)

.

(34)

From the above discussion of logarithmic terms in the NRQED Hamiltonian coefficients, it is clear that there are no effective potentials contributing to the spin-spin tensor interaction at the order mα 7 ln(α). The only contribution is thus the second-order term ∆E

(2)

ss(7 ln) = 2 H (2) ss Q(E 0 -H 0 ) -1 QH (5 ln) . (35) 
The explicit expressions of corrections to the spin-orbit and spin-spin tensor coefficients, which in the H + 2 case are denoted by c e and d 1 respectively (see Eq. ( 3) of [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF] for definitions), in terms of reduced matrix elements of the effective potentials listed in this section, are given in Appendix A (see [27] for details).

IV. NUMERICAL RESULTS

A. Variational method

The main features of our numerical method have been described in Ref. [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF]. The wave function for a rovibrational state (v, L) is expanded in terms of exponentials of interparticle distances in the following way:

Ψ 0 (R, r 1 ) = l1+l2=L Y l1l2 LM ( R, r1 )G l1l2 (R, r 1 , r 2 ), Y l1l2 LM ( R, r1 ) = R l1 r l2 1 Y l1 ( R) ⊗ Y l2 (r 1 ) LM , G l1l2 (R, r 1 , r 2 ) = N/2 n=1 C n Re e -αnR-βnr1-γnr2 + D n Im e -αnR-βnr1-γnr2 . (36) 
The complex exponents α n , β n , γ n are generated in a pseudorandom way in several intervals, which play the role of variational parameters. We have used 2 intervals for the lower vibrational states (0 ≤ v ≤ 4) and 4 for higher states (5 ≤ v ≤ 9).

B. Second-order terms

Second-order terms have a general expression of the type AQ(E 0 -H 0 ) -1 QB . They are evaluated by solving numerically the equation

(E 0 -H 0 )ψ (1) = (B -B ) ψ 0 , (37) 
and calculating the scalar product Ψ 0 |A|ψ (1) . In order to solve Eq. (37), ψ (1) is expanded in an "intermediate" variational basis following Eq. (36). As discussed in [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF], the most difficult contributions for numerical evaluation are the singular second-order terms: ∆E so-HB [Eq. ( 19)], ∆E ss-HB , [Eq. ( 23)], ∆E 2 nd -order so(7 ln)

[Eq. ( 32)], and ∆E

(2) ss(7 ln)

[Eq. ( 35)]. Indeed, if B = H B or B = H (5 ln) in Eq. (37), the intermediate wave function ψ (1) behaves like 1/r 1 (1/r 2 ) at small electron-nucleus distances, resulting in very slow convergence. To circumvent this problem, we rewrite the second-order energy shift as [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF] AQ

(E 0 -H 0 ) -1 QB = AQ(E 0 -H 0 ) -1 QB ′ + U A -U A , (38) 
where

U = c 1 r 1 + c 2 r 2 , B ′ = B -(E 0 -H 0 )U -U (E 0 -H 0 ). ( 39 
)
For the case B = H B , we have

c a = µ a (2µ a -m e ) 4m 3 e Z a , (40) 
with µ a = M a m e /(M a + m e ), and for B = H (5 ln) ,

c a = α 3 4 3 ln(α -2 )Z a × - µ a Z a 2π . (41) 
The replacement of B by B ′ in Eq. (37) reduces the singularity of the intermediate wavefunction. The remaining logarithmic singularity ψ (1) ∼ ln(r 1 ) (ln(r 2 )) still slows down the convergence, and necessitates expanding ψ (1) in a "multilayer" basis set (see Table I in [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF] for an example), where the first subsets (between 2 and 4) approximate the regular part, and 8 additional subsets contain growing exponents β n (γ n ) up to 10 4 in order to reproduce the singular behavior.

C. Convergence study

We now analyze the convergence of our numerical results. For first-order terms, sufficient accuracy is quite easily obtained; for illustration, the reduced matrix elements involved in calculation of U W and U Y1 [Eq. [START_REF] Myers | CP T tests with the antihydrogen molecular ion[END_REF]] are shown in Table I. Convergence is slower for the terms involving (r a × p e ), which are related to the electronic contribution to the total orbital momentum, because their nonzero value entirely comes from the smaller "non-σ" (i.e. l 2 = 0 in Eq. ( 36)) components of the wave function. For the same reason, these matrix elements are smaller than those involving (r a × P a ) by a factor of order m/M a ∼ 10 -3 . Overall, first-order terms are obtained with at least 3-4 significant digits of accuracy. Second-order terms, especially the singular terms discussed above, require heavier numerical calculations. This is illustrated in Table II, which shows the convergence of ∆E so-HB [Eq. [START_REF] Menasian | High-resolution study of (1,1/2,1/2)-(1[END_REF]]. The quantities appearing in this Table are

A a = vL 1 r 3 a (r a × p e )Q(E 0 -H 0 ) -1 QH ′ B vL , (42) 
where H ′ B is the effective Hamiltonian obtained by applying the transformation (39) to B = H B , whereas the lefthand side appears in the nonrecoil part of H so [Eq. ( 20)]. From Table II it can be estimated that these matrix elements are obtained with 3 significant digits. Second-order matrix elements involving (r a × P a ) in the left-hand side, corresponding to the recoil part of H so , exhibit faster convergence (not shown in Table II), similarly to what was discussed for first-order terms. A term that deserves a separate discussion, ∆E

(1) so-so [Eq. [START_REF] Menasian | High-resolution study of (1,1/2,1/2)-(1[END_REF]], is also shown in Table II. Again, only the contributions from the nonrecoil part of H so , which are the most difficult to converge, are shown. These contributions, denoted by a e 0 and a e + , are obtained from Eq. (A6) by replacing A so with A e so , which only includes the first term of H so :

A e so = Z a 2m 2 (r a ×p e ) r 3 a (43)
The corresponding contribution to c e is (see Eq. (A5)) ∆c (6) e | so e -so e = -

1 2 1 L(L + 1) (L + 1)a e -+ a e 0 -La e + . ( 44 
)
As can be seen from Table II, the quantities a e 0 , a e + converge more rapidly than A 1 and A 2 , in accordance with the fact that H so is less singular than H ′ B . However, due to a quasi cancellation between the different angular momentum components, they are larger than the total contribution ∆c [START_REF] Karr | Higher-order corrections to spin-spin scalar interactions in HD + and H + 2[END_REF] e | so-so by several orders of magnitude. As a consequence, they need to be calculated with a high relative accuracy, which requires using a large variational basis. From the results of Table II, the numerical uncertainty of ∆c [START_REF] Karr | Higher-order corrections to spin-spin scalar interactions in HD + and H + 2[END_REF] e | so-so may be conservatively estimated to 10 -7 E h α 4 (where E h is the Hartree energy), i.e. less than 2 Hz.

D. Results

The values of all the contributions to the spin-orbit coefficient c e are given in Table III for a few states of interest for experiments. Note that the term U MMN [Eq. ( 18)] was omitted, because it was found to be smaller than 1 Hz, which is negligible with respect to the overall uncertainty. Our new theoretical values of c e can be found in the last column. Complete results for the rovibrational states (0 ≤ L ≤ 4, 0 ≤ v ≤ 9) are given in the Appendix B.

The numerical uncertainty is dominated by the singular second-order term ∆E so-HB ; from the convergence study shown in the previous paragraph and similar tests performed for higher vibrational states, it is estimated to be smaller than 10 Hz for all rovibrational states. The theoretical uncertainty is mainly due to the yet uncalculated nonlogarithmic correction of order mα 7 [START_REF] Pachucki | Quantum electrodynamics effects on helium fine structure[END_REF][START_REF] Pachucki | Reexamination of the helium fine structure[END_REF]. We estimate it to about one third of the mα 7 ln(α) correction, which corresponds to 100-150 Hz or 3-4 ppm.

(L, v) c (BP ) e UY 1 UW UCM ∆Eso-H B ∆E (1) 
so-so ∆Eso-ret ∆c (6) e UY 1 U q 2 ∆Eso-H (5 ln) ∆c (7 ln (Ref. [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF]) is given in column 2. Columns 3-5 and 6-8 are respectively the first-order and second-order contributions [Eqs. [START_REF] Myers | CP T tests with the antihydrogen molecular ion[END_REF] and [START_REF] Menasian | High-resolution study of (1,1/2,1/2)-(1[END_REF]] at the mα 6 order, and the total correction at this order, ∆c [START_REF] Karr | Higher-order corrections to spin-spin scalar interactions in HD + and H + 2[END_REF] e , is given in column 9. Columns 10-12 are the first-order [Eq. ( 30)] and second-order [Eq. ( 32)] contributions at the mα 7 ln(α) order, respectively. The total correction at this order, ∆c

(7 ln) e
, is given in column 13. The last column is our new value of ce. Its estimated uncertainty (equal to one third of ∆c

(7 ln) e
) is indicated between parentheses.

Regarding the spin-spin tensor interactions, we write the related term of the H + 2 effective spin Hamiltonian [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF] in the following way:

H ss(2) eff = d 1 2L 2 (s e •I) -3 [(L•s e )(L•I) + (L•I)(L•s e )] (45) 
This definition differs from that of Ref. [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF] by a factor 3(2L -1)(2L + 3) = 15 (for L = 1), but coincides with that of the E 6 coefficient in the HD + effective spin Hamiltonian [START_REF] Bakalov | High-Precision Calculation of the Hyperfine Structure of the HD + Ion[END_REF], which facilitates future comparison between H + 2 and HD + . The values of all the contributions to the d 1 coefficient are given in Table IV for a few L = 1 states, whereas complete results for the ro-vibrational states (0 ≤ L ≤ 4, 0 ≤ v ≤ 9) are given in the Appendix B. The second-order terms ∆E

so-ss and ∆E

(2) so-soN have been omitted, because they were found to be much smaller than the overall uncertainty. The numerical uncertainty, dominated by the singular second-order term ∆E [START_REF] Patra | Proton-electron mass ratio from laser spectroscopy of HD + at the part-per-trillion level[END_REF] ss-HB , is estimated to be smaller than 1 Hz for all rovibrational states. Similarly to the spin-orbit coefficient, the theoretical uncertainty due to the yet uncalculated nonlogarithmic correction of order mα 7 is estimated to about one third of the mα 7 ln(α) correction, which corresponds to 10-20 Hz or about 2 ppm. (Ref. [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF]) is given in column 2. Columns 3-4 and 5 are respectively the first-order and second-order contributions [Eqs. [START_REF] Hill | NRQED Lagrangian at order 1/M 4[END_REF] and [START_REF] Nio | Radiative corrections to the muonium hyperfine structure. II. The α(Zα) 2 correction[END_REF]] at the mα 6 order. The total correction at this order, ∆d

(L, v) d (BP ) 1 U (2) W U (2) CM ∆E (2) ss-H B ∆d ( 
1 , is given in column 6. Column 7 is the second-order contribution at the mα 7 ln(α) order [Eq. ( 35)]. The last column is our new value for d1. Its estimated uncertainty (equal to one third of ∆d

(7 ln) 1
) is indicated between parentheses. To match the notations of Ref. [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF], all values should be multiplied by 3(2L -1)(2L + 3) = 15.

V. COMPARISON WITH EXPERIMENTS

We now use our new values of the c e and d 1 coefficients to obtain improved theoretical predictions of the hyperfine intervals measured in [START_REF] Menasian | High-resolution study of (1,1/2,1/2)-(1[END_REF]. To do this, we diagonalize the effective spin Hamiltonian of Ref. [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF]. The values of the spin-spin contact interaction coefficient b F are taken from [START_REF] Karr | Higher-order corrections to spin-spin scalar interactions in HD + and H + 2[END_REF]; it is worth recalling that they have been found to be in excellent agreement with experimental rf spectroscopy data [START_REF] Jefferts | Hyperfine structure in the molecular ion H + 2[END_REF]. The smaller hyperfine coefficients c I and d 2 , which respectively describe the nuclear spin-orbit and the proton-proton spin-spin tensor interaction, are calculated in the framework of the Breit-Hamiltonian with account of the electron's anomalous magnetic moment [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF]. The values of all the coefficients used here can be found in the Appendix C.

In order to estimate the uncertainties of the theoretical hyperfine intervals f v , we calculated the derivatives

γ ce,v = ∂f v ∂c e , γ cI ,v = ∂f v ∂c I , . . . (46) 
Their values for the three rovibrational levels of interest are given in Appendix D. The uncertainty of f v is calculated via propagation of the uncertainties of the hyperfine coefficients. Note that this uncertainty only weakly depends on our assumptions regarding correlations, because it is dominated by the uncertainty of the c e coefficient, whereas the second largest uncertainty, from d 1 , is smaller by more than one order of magnitude. Assuming no correlations between uncertainties of different coefficients, the total uncertainty is

u(f v ) = (γ ce,v u(c e , v)) 2 + (γ cI ,v u(c I , v)) 2 + (γ bF ,v u(b F , v)) 2 + (γ d1,v u(d 1 , v)) 2 + (γ d2,v u(d 2 , v)) 2 (47) 
The uncertainties u(c e ) and u(d 1 ) have been estimated above, u(b F ) is taken from [START_REF] Karr | Higher-order corrections to spin-spin scalar interactions in HD + and H + 2[END_REF], and for the coefficients calculated at the Breit-Pauli level we take u(c I ) = α 2 c I and u(d 2 ) = α 2 d 2 .

(L, v) Theory [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF] Theory (this work) Experiment [ TABLE V: Comparison between theory and experiment for the hyperfine splitting between the (F = 1/2, J = 3/2) and (F = 1/2, J = 1/2) states (in MHz). The second column gives the theoretical prediction obtained from calculation of the hyperfine coefficients at the Breit-Pauli level, and the third one is our new prediction including higher-order corrections to bF , ce, and d1. The experimental values are shown in the last column.

The comparison between theory and experiment, presented in Table V, reveals a reasonable agreement. The observed deviations, which range between 1.2 and 1.6 σ, may for example be caused by a slight underestimate of the nonlogarithmic correction of order mα 7 to the spin-orbit coefficient c e .

In conclusion, we have advanced the hyperfine structure theory in hydrogen molecular ions by calculating higherorder corrections to the spin-orbit and spin-spin tensor interactions. This allowed us to improve the accuracy of the related hyperfine coefficients in H + 2 by about one order of magnitude and reach agreement with rf spectroscopy data at a level of 4-6 ppm. In the future, the theory can be improved further by calculating nonlogarithmic mα 7 -order corrections to the spin-orbit coefficient. Application to HD + , which has been a subject of several high-precision experiments in recent years, will be presented in a forthcoming paper.

(L, v) c (BP ) e UY 1 UW UCM ∆Eso-H B ∆E (1) 
so-so ∆Eso-ret ∆c (6) e UY 2 U q 2 ∆E ln so-H (5) ∆c (7 ln [START_REF] Karr | Higher-order corrections to spin-spin scalar interactions in HD + and H + 2[END_REF] (resp. [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF]). Uncertainties are discussed in the main text. To match the notations of Ref. [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF], all the d2 values should be multiplied by 3(2L -1)(2L + 3) = 15.

(L, v) γc 

  209756[-03] -0.211145[-03] -0.718198 -0.718358 1600 -0.211462[-03] -0.212048[-03] -0.718194 -0.718138 1800 -0.210752[-03] -0.210806[-03] -0.718136 -0.718143 2000 -0.210069[-03] -0.211858[-03] -0.718145 -0.718142 2200 -0.210909[-03] -0.210218[-03] 2400 -0.211099[-03] -0.211191[-03] 2600 -0.211024[-03] -0.211042[-03] TABLE I: Convergence of the reduced matrix elements involved in the first-order terms UW and UY 1 [Eq. (18)] for the (L = 1, v = 4) state of H + 2 (values are given in a.u).

2 (

 2 746134[-04] -0.801218[-04] -0.12654393[-01] -0.12680066[-01] -0.6418[-05] 10000 -0.795165[-04] -0.797075[-04] -0.12657847[-01] -0.12680231[-01] -0.5596[-05] 12000 -0.796812[-04] -0.797663[-04] -0.12657987[-01] -0.12680252[-01] -0.5566[-05] 14000 -0.796931[-04] -0.797285[-04] -0.12658040[-01] -0.12680278[-01] -0.5560[-05] 16000 -0.797234[-04] -0.797646[-04] -0.12658073[-01] -0.12680294[-01] -0.5555[-05]TABLE II: Convergence of second-order terms contributing to ∆Eso-H B and to ∆E(1) so-so for the (L = 1, v = 4) state of H + values are given in a.u).

TABLE III :

 III Corrections to the spin-orbit interaction coefficient ce for a few rovibrational states of H + 2 (in kHz). The leadingorder (Breit-Pauli) value c

							e	)	ce (this work)
	(1,0) 42 416.318 1.551 -3.631 0.028	2.765	0.414	0.333	1.460 -0.035 0.060	-0.486	-0.460 42 417.32(15)
	(1,4) 32 654.638 1.205 -2.979 0.055	2.154	0.325	0.261	1.020 -0.027 0.049	-0.364	-0.342 32 655.32(11)
	(1,5) 30 437.196 1.127 -2.813 0.058	2.010	0.305	0.239	0.925 -0.025 0.046	-0.337	-0.316 30 437.80(11)
	(1,6) 28 280.421 1.049 -2.645 0.059	1.858	0.283	0.220	0.824 -0.023 0.044	-0.312	-0.292 28 280.95(10)
	(2,0) 42 162.530 1.542 -3.601 0.027	2.733	0.412	0.336	1.447 -0.034 0.060	-0.481	-0.456 42 163.52(15)
	(2,1) 39 571.598 1.451 -3.440 0.036	2.579	0.388	0.311	1.326 -0.032 0.057	-0.448	-0.424 39 572.50(14)
	(BP ) e						

TABLE IV :

 IV Corrections to the spin-spin tensor interaction coefficient d1 for a few rovibrational states of H + 2 (in kHz). The leading-order (Breit-Pauli) value d

			6) 1	∆d	(7 ln) 1	d1 (this work)
	(1,0) 8 565.983 -0.802 0.092	0.951	0.241 -0.050 8 566.174(17)
	(1,4) 6 537.247 -0.642 0.079	0.740	0.178 -0.039 6 537.386(13)
	(1,5) 6 080.287 -0.603 0.076	0.676	0.149 -0.036 6 080.400(12)
	(1,6) 5 637.524 -0.564 0.072	0.629	0.137 -0.033 5 637.627(11)
	(BP )			
	1			

TABLE VI :

 VI Numerical results for the spin-orbit coefficient ce in H + 2 for the range of rovibrational states (L = 1 -4) and (v = 0 -9) (in kHz). All definitions are identical to those given in TableIII.(L, v) d

	(BP ) 1	U	(2) W	U	(2) CM ∆E	(2) ss-H B ∆d	(6) 1	∆d	(7 ln) 1	d1 (this work)	e	)	ce (this work)
	(1,0) 42 416.318 1.551 -3.631 0.028 (1,0) 8565.983 -0.802 0.092 2.765 0.414	0.333 0.951	1.460 -0.035 0.060 0.241 -0.050 8566.174(17) -0.486	-0.460 42 417.32(15)
	(1,1) 39 812.244 1.460 -3.469 0.037 (1,1) 8022.434 -0.761 0.089 2.609 0.391	0.307 0.893	1.335 -0.033 0.058 0.222 -0.047 8022.609(16) -0.453	-0.428 39 813.15(14)
	(1,2) 37 327.644 1.373 -3.307 0.045 (1,2) 7505.293 -0.721 0.086 2.455 0.368	0.279 0.837	1.213 -0.031 0.055 0.203 -0.044 7505.452(15) -0.422	-0.398 37 328.46(13)
	(1,3) 34 946.747 1.288 -3.144 0.050 (1,3) 7011.264 -0.681 0.082 2.304 0.346	0.258 0.780	1.103 -0.029 0.052 0.182 -0.041 7011.406(14) -0.392	-0.369 34 947.48(12)
	(1,4) 32 654.638 1.205 -2.979 0.055 (1,4) 6537.247 -0.642 0.079 2.154 0.325	0.261 0.740	1.020 -0.027 0.049 0.178 -0.039 6537.386(13) -0.364	-0.342 32 655.32(11)
	(1,5) 30 437.196 1.127 -2.813 0.058 (1,5) 6080.286 -0.603 0.076 2.010 0.305	0.239 0.676	0.925 -0.025 0.046 0.149 -0.036 6080.400(12) -0.337	-0.316 30 437.80(11)
	(1,6) 28 280.421 1.049 -2.645 0.059 (1,6) 5637.523 -0.564 0.072 1.858 0.283	0.220 0.629	0.824 -0.024 0.044 0.137 -0.033 5637.627(11) -0.312	-0.292 28 280.95(10)
	(1,7) 26 170.618 0.971 -2.474 0.060 (1,7) 5206.141 -0.525 0.068 1.709 0.261	0.201 0.580	0.727 -0.022 0.041 0.122 -0.031 5206.233(10) -0.287	-0.268 26 171.08(9)
	(1,8) 24 093.944 0.895 -2.300 0.060 (1,8) 4783.309 -0.486 0.063 1.553 0.240	0.182 0.523	0.629 -0.020 0.038 0.100 -0.028 4783.381(9) -0.262	-0.245 24 094.33(8)
	(1,9) 22 036.009 0.819 -2.122 0.058 (1,9) 4366.125 -0.447 0.059 1.370 0.219	0.163 0.479	0.508 -0.019 0.035 0.091 -0.026 4366.190(9) -0.238	-0.222 22 036.29(7)
	(2,0) 42 162.530 1.542 -3.601 0.027 (3,0) 940.8385 -0.087 0.010 2.733 0.412	0.336 0.103	1.447 -0.034 0.060 0.0259 -0.0054 940.8590(18) -0.481	-0.456 42 163.52(15)
	(2,1) 39 571.598 1.451 -3.440 0.036 (3,1) 881.0351 -0.083 0.010 2.579 0.388	0.311 0.097	1.326 -0.032 0.057 0.0239 -0.0051 881.0539(17) -0.448	-0.424 39 572.50(14)
	(2,2) 37 099.164 1.364 -3.279 0.043 (3,2) 824.1126 -0.078 0.010 2.425 0.365	0.287 0.091	1.207 -0.031 0.054 0.0218 -0.0048 824.1296(16) -0.418	-0.394 37 099.98(13)
	(2,3) 34 729.525 1.280 -3.116 0.049 (3,3) 769.7077 -0.074 0.009 2.276 0.342	0.265 0.085	1.095 -0.029 0.052 0.0196 -0.0045 769.7227(15) -0.388	-0.366 34 730.25(12)
	(2,4) 32 447.862 1.199 -2.953 0.053 (3,4) 717.4796 -0.070 0.009 2.126 0.316	0.242 0.079	0.984 -0.027 0.049 0.0177 -0.0042 717.4931(14) -0.360	-0.339 32 448.51(11)
	(2,5) 30 240.020 1.120 -2.788 0.056 (3,5) 667.1019 -0.066 0.008 1.981 0.302	0.239 0.073	0.910 -0.025 0.046 0.0160 -0.0039 667.1140(13) -0.334	-0.313 30 240.62(10)
	(2,6) 28 092.116 1.041 -2.621 0.058 (3,6) 618.2585 -0.061 0.008 1.832 0.281	0.221 0.068	0.813 -0.023 0.043 0.0142 -0.0036 618.2691(12) -0.308	-0.289 28 092.64(10)
	(2,7) 25 990.449 0.964 -2.451 0.059 (3,7) 570.6370 -0.057 0.008 1.682 0.260	0.203 0.063	0.717 -0.022 0.040 0.0128 -0.0033 570.6465(11) -0.283	-0.265 25 990.90(9)
	(2,8) 23 921.136 0.889 -2.277 0.058 (3,8) 523.9225 -0.053 0.007 1.529 0.239	0.184 0.057	0.622 -0.020 0.037 0.0112 -0.0031 523.9306(10) -0.259	-0.242 23 921.52(8)
	(2,9) 21 869.840 0.813 -2.100 0.057 (3,9) 477.7905 -0.048 0.006 1.373 0.217	0.166 0.052	0.527 -0.018 0.034 0.0096 -0.0028 477.7973(9) -0.235	-0.219 21 870.15(7)
	(3,0) 41 786.644 1.528 -3.558 0.025	2.685	0.407		0.335	1.423 -0.034 0.059	-0.474	-0.449 41 787.62(15)
	(3,1) 39 215.192 1.438 -3.398 0.034	2.532	0.384		0.313	1.304 -0.032 0.056	-0.442	-0.417 39 216.08(14)
	(3,2) 36 760.783 1.352 -3.238 0.041	2.382	0.362		0.290	1.189 -0.030 0.054	-0.411	-0.388 36 761.58(13)
	(3,3) 34 407.831 1.267 -3.077 0.047	2.234	0.340		0.269	1.081 -0.028 0.051	-0.382	-0.360 34 408.55(12)
	(3,4) 32 141.595 1.188 -2.914 0.051	2.086	0.318		0.247	0.975 -0.027 0.048	-0.355	-0.333 32 142.24(11)
	(3,5) 29 947.980 1.109 -2.750 0.054	1.942	0.298		0.238	0.891 -0.025 0.045	-0.328	-0.308 29 948.56(10)
	(3,6) 27 813.188 1.031 -2.584 0.056	1.795	0.278		0.220	0.795 -0.023 0.043	-0.303	-0.284 27 813.70(9)
	(3,7) 25 723.515 0.955 -2.416 0.056	1.647	0.257		0.203	0.702 -0.022 0.040	-0.279	-0.260 25 723.96(9)
	(3,8) 23 665.107 0.880 -2.244 0.056	1.495	0.236		0.185	0.609 -0.020 0.037	-0.255	-0.238 23 665.48(8)
	(3,9) 21 623.545 0.804 -2.067 0.055	1.340	0.216		0.167	0.514 -0.018 0.034	-0.231	-0.215 21 623.84(7)
	(4,0) 41 294.193 1.510 -3.501 0.022	2.624	0.401		0.332	1.389 -0.033 0.058	-0.465	-0.440 41 295.14(15)
	(4,1) 38 748.286 1.421 -3.343 0.031	2.473	0.379		0.311	1.273 -0.032 0.056	-0.433	-0.409 38 749.15(14)
	(4,2) 36 317.502 1.335 -3.184 0.038	2.326	0.357		0.290	1.161 -0.030 0.053	-0.403	-0.380 36 318.28(13)
	(4,3) 33 986.398 1.252 -3.025 0.044	2.180	0.335		0.271	1.057 -0.028 0.050	-0.375	-0.353 33 987.10(12)
	(4,4) 31 740.365 1.172 -2.864 0.048	2.034	0.314		0.249	0.953 -0.026 0.047	-0.347	-0.326 31 740.99(11)
	(4,5) 29 565.382 1.094 -2.702 0.051	1.891	0.294		0.236	0.864 -0.025 0.045	-0.321	-0.301 29 565.94(10)
	(4,6) 27 447.714 1.017 -2.537 0.053	1.747	0.273		0.218	0.771 -0.023 0.042	-0.296	-0.278 27 448.21(9)
	(4,7) 25 373.700 0.942 -2.371 0.054	1.599	0.253		0.201	0.679 -0.021 0.039	-0.272	-0.254 25 374.12(8)
	(4,8) 23 329.495 0.868 -2.200 0.053	1.452	0.233		0.184	0.589 -0.020 0.036	-0.249	-0.232 23 329.85(8)
	(4,9) 21 300.601 0.793 -2.025 0.052	1.298	0.212		0.166	0.496 -0.018 0.033	-0.225	-0.210 21 300.89(7)

TABLE VII :

 VII Numerical results for the spin-spin tensor coefficient d1 in H + 2 with range of rovibrational states (L = 1 -4) and (v = 0 -9) (in kHz). All definitions are identical to those given in TableIV. (L, v) bF cI d2 (1, 4) 836 728.705 -35.826 -16.414 (1, 5) 819.226 705 -34.148 -15.531 (1, 6) 803 174.518 -32.385 -14.633

TABLE VIII :

 VIII Hyperfine coefficients for a few rovibrational states of H + 2 (in kHz). The value of bF (resp. cI , d2) is taken from

TABLE IX :

 IX Derivatives of the interval between the (F = 1/2, J = 3/2) and (F = 1/2, J = 1/2) states for three rovibrational levels of H + 2 .

		e,v	γc I ,v	γ b F ,v	γ d 1 ,v	γ d 2 ,v
	(1,4)	0.488	-1.989	0.0013	-0.266	0.257
	(1,5)	0.489	-1.990	0.0012	-0.252	0.244
	(1,6)	0.490	-1.991	0.0011	-0.238	0.230

Appendix A: Expressions of corrections to the hyperfine coefficients All the first-order terms contributing to the spin-orbit interaction, Eqs. [START_REF] Myers | CP T tests with the antihydrogen molecular ion[END_REF] and (30), as well as the second-order terms ∆E so-HB , ∆E so-ret in Eq. ( 19) and ∆E 2 nd -order so (7 ln) [Eq. (32)], can be written in the form U i = A i •s e , where A i is a vector operator acting on space variables. The corresponding correction to the spin-orbit coefficient (denoted by c e in H + 2 [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF]) is then obtained from the Wigner-Eckart theorem as

Similarly, the first-order terms contributing to the spin-spin tensor interaction [Eq. ( 22)], and the second-order terms ∆E

ss-HB in Eq. ( 23) and ∆E

(2) ss(7 ln) [Eq. ( 35)], can be written in the form

i •U (2) , where T

(2) i is an operator of rank 2 acting on space variables, and (see Appendix B in [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF])

µ .

(A2)

Here, I = I 1 + I 2 is the total nuclear spin. Using again the Wigner-Eckart theorem and the relationship

one gets for the correction to the tensor coefficient (denoted by d 1 in H + 2 [START_REF] Korobov | Hyperfine structure in the hydrogen molecular ion[END_REF]):

Some of the second-order terms are more complicated because they involve a coupling of two spatial operators of rank 1 or 2. This case was treated in detail in the Appendix B of [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF]; we only give here the final formula for the term ∆E

(1) so-so in Eq. ( 19), as obtained by applying Eqs. (B3) and (B6) of that reference:

where

A so is the spatial part of the spin-orbit Hamiltonian H so in Eq. ( 20), i.e. H so = A so •s e .