
HAL Id: hal-03822979
https://hal.science/hal-03822979v1

Submitted on 28 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control Your Virtual Agent in its Daily-activities
for Long Periods

Lysa Gramoli, Jérémy Lacoche, Anthony Foulonneau, Valérie Gouranton,
Bruno Arnaldi

To cite this version:
Lysa Gramoli, Jérémy Lacoche, Anthony Foulonneau, Valérie Gouranton, Bruno Arnaldi. Control
Your Virtual Agent in its Daily-activities for Long Periods. PAAMS 2022 - 20th International Con-
ference on Practical Applications of Agents and Multi-Agent Systems, Jul 2022, L’Aquila, Italy.
pp.203-216, �10.1007/978-3-031-18192-4_17�. �hal-03822979�

https://hal.science/hal-03822979v1
https://hal.archives-ouvertes.fr


Control Your Virtual Agent
in its Daily-activities for Long Periods

Lysa Gramoli1,2(B) , Jérémy Lacoche1 , Anthony Foulonneau1 ,
Valérie Gouranton2 , and Bruno Arnaldi2

1 Orange, Rennes, France
{jeremy.lacoche,anthony.foulonneau}@orange.com

2 Univ Rennes, INSA Rennes, Inria, CNRS, Irisa, Rennes, France
lysa.gramoli@irisa.fr, {valerie.gouranton,bruno.arnaldi}@irisa.fr

Abstract. Simulating human behavior through virtual agents is a key
feature to improve the credibility of virtual environments (VE). For many
use cases, such as daily activities data generation, having a good ratio
between the agent’s control and autonomy is required to impose specific
activities while letting the agent be autonomous. This is why we propose
a model allowing a user to configure the level of the agent’s decision-
making autonomy according to their requirements. Our model, based
on a BDI architecture, combines control constraints given by the user,
an internal model simulating human daily needs for autonomy, and a
scheduling process to create an activity plan considering these two parts.
Using a calendar, the activities that must be performed in the required
time can be given by the user. In addition, the user can indicate whether
interruptions can happen during the activity calendar to apply an effect
induced by the internal model. The plan generated by our model can be
executed in the VE by an animated agent in real-time. To show that our
model manages well the ratio between control and autonomy, we use a
3D home environment to compare the results with the input parameters.

Keywords: Autonomous agent · Daily activity model · Scheduling ·
Control over the agent’s decision-making autonomy

1 Introduction

Reproducing human behavior through virtual agents is an essential feature to 
improve the usefulness of virtual environments (VE). To increase the credibility 
of agent’s behaviors, some human processes can be simulated such as human 
needs, decision-making, or preferences. With such features, a virtual agent can 
reason and adapt its behavior according to the situation and its internal state. As 
a result, it becomes more autonomous in its decision-making process as per the 
definition of autonomy provided by Avradinis et al. [3].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18192-4_17&domain=pdf
http://orcid.org/0000-0002-1200-1057
http://orcid.org/0000-0003-3926-7768
http://orcid.org/0000-0001-8065-2524
http://orcid.org/0000-0002-9351-2747
http://orcid.org/0000-0002-2868-8826


204 L. Gramoli et al.

In this paper, we particularly focus on an agent model allowing the gener-
ation of daily routines in indoor environments. Such a model could be useful
for virtual environment developers and researchers using simulations to gener-
ate new databases. Indeed, it could integrate and improve existing simulators
allowing the generation of data for “indoor inhabitant understanding” based for
example on computer vision as in VirtualHome [17] or on data from connected
objects such as OpenSHS [1]. In such use cases, they may want to impose specific
activities to execute in the VE while maintaining an agent autonomous process
outside these periods. Therefore, a model adjusting the degree of autonomy and
being able to execute activities in a VE is required to generate accurate, diversi-
fied and credible datasets. To go further, Suggesting a way to interrupt specified
activities is also important to make the generated behaviour more credible.

However, being able to modify the agent’s level of decision-making auton-
omy with the same model is quite rare in the literature. Current approaches
are based either on agents reacting to the situation but facing the challenge of
respecting strong constraints, or agents being able to plan but facing the chal-
lenge of adapting to the situation. Yet, it is important for us to ensure that the
activities required by the user are performed on time with the correct duration,
regardless of what the agent was doing before.

To address this issue, we propose a model adjusting the degree of agent’s
decision-making autonomy according to the user’s will. Our model, based on a
BDI architecture [21], combines an internal state model simulating human daily
needs, a module giving the user’s constraints through a calendar, a scheduler
guiding the decision-making according the both previous parts, and an execution
process performing activities in a VE. Moreover, an interruption mechanism
is also introduced in the scheduler so that the agent can interrupt, delay or
shorten activities indicated by the user. To demonstrate our model, we propose
to simulate daily routines in a 3D house environment which could be adapted to
our identified use cases, shown in Fig. 1. As our model is oriented towards decision
making and activity execution, work focusing on the production of verbal agents
is not covered in this paper. The paper is organized as follows. In Sect. 2, we
propose some related work. In Sect. 3, we explain our model and its main process
implied in the management of autonomy. Finally, the Sects. 4 and 5, are used for
the results and the conclusion.

Fig. 1. Global view of the 3D simulator and the agent performing activities



Control Your Virtual Agent in its Daily-activities for Long Periods 205

2 Related Work

Approaches to simulate human behavior can be divided into many classes such
as reactive-based methods, plan-based methods and learning-based methods.

Regarding reactive-based methods, the agent chooses and executes the most
appropriate action according to the current context. They are particularly well
suited to dynamic environments and multi-agent issues. One well-known action-
based method is Beliefs-Desires-Intentions (BDI) [21]. In BDI, a perception sys-
tem interpreting the state of the world is modeled through beliefs, the choice of
possible goals is modelled through desires, and the choice of predefined sequences
of actions to satisfy these goals is done by intentions. In this category, we can
also find action selection mechanisms such as the work of De Sevin and Thal-
mann [19] and MAGE [3] where the level of motivations (or needs) is used to
select activities. These approaches stay limited on the control over the agent’s
decision-making since the activities are chosen in reaction to the VE or the
agent’s internal state including motivation or needs.

In contrast to reactive-based methods, other approaches use plan-based meth-
ods. In this case, the agent sets up a plan according to the current context and
constraints. Among the best known methods, we can find Hierarchical Tasks
Network (HTN) [8], STRIPS [7] or meta-heuristics such as Genetic algorithms
[5]. This category is interesting to schedule activities and to control the agent’s
choices. However, they have some limitations regarding the reactivity to the
change of the environment and the internal state. In our case, only using a
scheduler is not sufficient because we want to simulate the agent’s internal state
for its autonomy as well as interruptions when they cannot be satisfied otherwise.

Finally, recent approaches use learning-based systems to simulate daily activ-
ities, such as LIDA [13], the work of Jang et al. [9] or rules-based approaches like
Soar and ACT-R models [10]. In the work of Jang et al. a double Deep Q-Network
(DQN) structure is used to find the most appropriate goals according to the
agent’s needs, the input real data and the time. For the Rules-Based approaches,
they use memory systems and explicit rules to construct the decision-making pro-
cess. All these approaches are promising, but they are limited in terms of the
behavior extensibility and control, due to their nature.

The three category described above provide autonomous agents which are free
to make their own decisions during all the simulation. However, these solutions
are not really focused on the problematic of offering different level of auton-
omy. Thus, the control that we can have over them is insufficient for our case.
Therefore, it would be more relevant for us to get close to approaches combining
several categories such as the work of de Silva [20] where BDI and HTN are
mixed even though our problematic is not still addressed in their work. There
is also the work of Azvine et al. [4] where an intelligent assistant is proposed
to help the user with communication, information and time management. This
multi-agent system includes reactive scheduling methods to manage various level
of time constraints. Thus, a good ratio between control and autonomy can be
reached with this system. However, it is difficult to use it in our context, since
the proposed model is a user-oriented approach and the use cases are distinct.



206 L. Gramoli et al.

Fig. 2. Our proposed agent model

In addition, this model does not execute actions in a 3D environment. Other
approaches also started to address our problematic This is the case of SMACH
[2,18] and the work of Ordoñez [15]. For SMACH, the choice of activities is based
on probabilities. Consequently, strong constraints have not formal guarantees of
being kept. For the work of Ordoñez, the algorithm is run on a user-defined time
windows. Unfortunately, this model does not consider the internal state and the
effects of activities occurring in another time window. Finally, for both papers,
activities are not executed in a 3D Simulator. This is thus limiting for our use
cases since the visual aspects are essentials if we want to simulate sensors (cam-
eras or connected objects). This is why, we propose a model allowing the user to
adjust the level of decision-making autonomy and allowing to perform activities
in a 3D virtual environment.

3 Agent Model Description

3.1 Global Model Structure

Our model structure is inspired from the BDI models [21] where some adjust-
ments were made to consider our requirements regarding the management of the
agent’s autonomy. BDI was chosen because of its compatibility with our require-
ments and for its intuitive approach of the human decision model. Our proposed
model is configured to adapt the level of decision-making autonomy according
to the user’s will and to execute activities in the VE. Using a calendar, the user
can give activities that must be performed in the required time. Moreover, inter-
ruptions can be allowed to interrupt these activities. In this paper, an activity
is a concrete formulation of the way to satisfy a goal or a need. For example,
if the agent wants to improve its hygiene, then “Showering” can be an activity.
Figure 2 shows the global structure made of the following processes:



Control Your Virtual Agent in its Daily-activities for Long Periods 207

Agent Parameters: It manages the initial parameters. A calendar can be given
in input to provide activities that must be performed. The user is also able to
configure activities, needs and tasks.

Internal State Model: It can be related to desires in BDI. However, its name
differs because it could include other cognitive factors than desires. For now,
it is used to update the urgency of needs. Needs are inspired by human needs
defined in the Maslow’s theory of needs [12]. They can be physiological such as
hunger or they can be more elaborated like self-esteem. More details are given
in Sect. 3.2.

Decision-Making Model: At the heart of the decision-making, it can be
related to intentions in the BDI process. However, our model does not retrieve
predefined plan according to the situation but it builds the plan of activities
during the simulation. Our model adjusts the agent’s autonomy to respect the
user’s constraints while producing autonomous behaviours through the internal
state. Our scheduler is designed to be able to reschedule at any time, so it is
compatible with dynamic environments. More details are given in Sect. 3.3.

Task Execution Model: This model executes the selected activity in the VE
by executing the related sequences of tasks. A task is made of basic actions and
animations that can be executed in the VE. For instance, a task can be “Getting
dry” for the activity “Showering”. This model receives from the decision-making
model the activity to perform. In exchange, the activity state is returned. More
details are given in Sect. 3.4

External Perception Model: This model can be related to Beliefs in BDI,
since all the useful data from the VE are stored in its semantics database. It is
used to filter activities according to their available resources and to provide the
semantics needed to make the execution possible in the VE.

3.2 Agent Internal State

The internal state model provides essential information about the agent’s inter-
nal conditions. This information will be then used in the decision-making model
for autonomy phases and interruptions. For now, only needs are described here,
but other factors such as preferences or emotions could be included.

According to the Maslow’s pyramid of needs [12], needs are ordered according
to their level of urgency: basic but imperative needs are distinguished from more
elaborate needs, which are more complex but less urgent to satisfy. To integrate
this approach in our work, a value Pyra ∈ {1, . . . , 5} is assigned to each need,
where 1 corresponds to basic needs and 5 to the most elaborate needs. For this
paper, we explain our function-based approach evolving through the time, as
in the work of De Sevin and Thalmann [19]. However, the process to calculate



208 L. Gramoli et al.

needs urgency can be made with other approaches as in the work of Jang et
al. [9] where a fuzzy-logic approach is used. For now, The computation of the
level of urgency called PNeed is made of 3 steps:

(1) Need threshold Initialization ThNeed: this threshold is used to deter-
mine when a need becomes urgent to satisfy. Each threshold has a default val
Thd ∈ (0, 1) modifiable by the user (in this paper, the default is set to 0.5). At
this step, preferences could be used to deviate the threshold from this default
value, and thus modifying the time when the need becomes urgent.

(2) Need intensity i(t): Each need has an intensity value evolving through
time as shown in Eq. 1. This evolution is modelled as the second half of a parabola
bounded in [0, 1], similar to the Need Manager of the work by De Sevin and
Thalmann [19]. The start i(t) = 0 occurs for t = tstart, and the maximum i(t) = 1
occurs for t = tend. These two parameters allow us to control the evolution of
needs intensity over long periods. Each need has its own [tstart, tend] interval that
can be set in two ways:

– Specific hours: they are set so that intensity starts and peaks at specific
times. i.e. we can constrain hunger to start at 12 p.m. and peak at 13 p.m.

– Periods of time: they are set so that intensity peaks at varying intervals.
For example, to simulate the toilet need, which is not constrained by specific
hours, we can set time slots for its intensity at regular intervals of 3 h.

In both cases, real data could be used to configure these time slots, such in the
work of Jang et al. [9]. The user can configure them through the agent parameters
process. When the intensity reaches its maximum, it stays at this value until the
need is satisfied. After this, its intensity decreases by the value given by the
activity satisfying it.

i(t) =
(

t − tstart
tend − tstart

)2

(1)

(3) Need priority PNeed: the need priority grows in [−1, 1] proportionally
to need intensity, considering Pyra and ThNeed as shown in Eq. 2.

PNeed =
i(t) − ThNeed

Pyra · (1 − ThNeed)
(2)

This priority could also depend on the satisfaction of another need. For instance,
if the agent drinks, then toilet need could evolve faster.

3.3 Decision-Making Model

The decision-Making model is the main process to control the level of the agent’s
decision-making autonomy according to the user’s constraints. Two main pro-
cess, called activity scheduler and activity selector, are described here.

The Activity Selector retrieves the activities of the plan and runs the
scheduler to produce a new plan when there is no more activity to perform. In
the latter case, the activity selector relays the start and end times of the plan to



Control Your Virtual Agent in its Daily-activities for Long Periods 209

the scheduler. The last executed activity and the one starting just after the plan
are also given. These activities surrounding the plan are either calendar activities
or special activities only serving to delimit the plan. Thus, the activities calendar
are included with the right times while leaving autonomy between them. The
activity selector also transfers the selected activity to the task executor and gets
its status back.

Fig. 3. Main Steps of the activity scheduler

The Activity Scheduler is inspired by the principle of reactive schedulers
proposed in particular by the work of Azvine et al. [4]. This process can be
relaunched if necessary, making our model compatible with dynamic VE. It has
several functions summarized in Fig. 3:

Retrieving Plan Boundaries and Time Budget: This step corresponds to the
moment when the agent defines the duration of its free time in relation to the
activities already scheduled. The agent will then prepare a plan of activities to
be carried out during this free time Concretely, The scheduler retrieves the plan
period given by the activity selector. This period is converted into a time budget
that must be respected to avoid trimming the future activities of the calendar.
The last activity executed and the activity being just after the plan are stored
to be considered. They will define what we call the boundaries of the plan. If
there is no activity in the calendar after the period, then a special activity called
“Activity Boundaries” with a duration of 0 is given by the activity selector to
indicate the end of the plan. If the time budget is too short to put any activity,
all the next steps until the checking interruption are skipped.

Filtering Possible Activities: During this step, the agent identifies what activity
is possible or not during his free time. Activities having a minimum duration
exceeding the time budget or reaching its maximum occurrence are excluded. The
perception model is also used to exclude activities using unavailable resources.
If no activity is found, all the next steps until the Filling Gap are skipped.



210 L. Gramoli et al.

Anticipating Future Emergency Needs: In this step, the agent will anticipate its
needs for the duration of its free time. To do this, the scheduler identifies the
future moments when the needs become urgent. This forecast is limited to the
period of the plan. First, the scheduler retrieves the level of urgency of each need
at the current time. Then, for each time step, the scheduler launches the process
calculating the level of urgency described in the previous Sect. 3.2. The scheduler
thus gets the interval of urgency. A time called TNeed is retrieved randomly inside
this interval. This step is repeated until all possible emergency moments are
identified in the duration of the plan. For instance, if the duration of the plan
lasts 7 h and that thirst becomes urgent every 3 h, then the algorithm will find 2
moments of urgency which are stored as TNeed. After this, the scheduler checks
whether the needs are already met by the activity happening just after the plan.
In this case, if the time difference between both is below a defined threshold,
then the regarded TNeed is removed. If no TNeed is found during this step, all the
next steps until the Filling Gap are skipped.

Associating Needs to Activities: During this phase, the agent tries to reserve
activities able to satisfy its needs. After retrieving all the TNeed for each need, the
scheduler tries to put a possible activity satisfying them. At this step, the start
time of the activity is positioned at each occurrence of TNeed with its minimum
duration. The scheduler starts by placing the activities on the TNeed closest
in time. When an activity is placed, the minimum duration of this activity is
removed from the remaining time budget. This step ends when the time budget is
exhausted, in this case all the next TNeed are removed, or when all the TNeed have
been associated to activities. Due to this setting, activities cannot be performed
at the same time. For instance, if we have TNeed occurring at 1 p.m. for thirst and
another at 2 p.m. for hunger, then the scheduler firstly places drinking activity
at 1 p.m. and then eating activity at 2 p.m. if the time budget is not exceeded.

Positioning Activities and Adjustment of their Duration: At this step, The agent
adapts the duration and the beginning of the activities, in order to be ready at
the end of its free time. The scheduler adjusts the start time and duration of each
activity so that they are close to their related TNeed. It also ensures that the start
and end times do not exceed the time window. To do this, the scheduler first goes
through the list of TNeed in reverse chronological order to temporally shift the
activities having their end times arriving either outside of the plan boundaries,
or after the start of another activity. Then, the scheduler performs a second run
of this list, but in chronological order to shift the activities that have their start
time beginning before the start of the plan or before the end of another activity.
With these two round trips, activities are sure to start and end within the plan
without overlapping with other placed activities. After this, starting with the
activity closest in time, the duration of each activity are extended either until
its maximum duration or the start of the next activity if the maximum is larger.

Filling Gaps: At this stage, The agent also schedules activities outside of its
needs to keep busy. Concretely, time gaps where no activities are scheduled can



Control Your Virtual Agent in its Daily-activities for Long Periods 211

appear. Here, gaps are considered as moments when the agent has no constraints
coming from the user or its internal state. Therefore, these are periods when
the agent can wait if the duration is short or can entertain itself. We thus use
activities linked to entertaining or waiting to fill gaps. Of course, these activities
can be configured by the user. Concretely, we use activities such as “Watching
TV”, “Computing”, “Waiting” and so on.

Fig. 4. Global Architecture of the implementation

Checking Interruptions: Sometimes, the agent will also have to interrupt its
scheduled activities to satisfy its urgent needs. This is the case when needs
could not be satisfied during the plan period. To solve this, the user can indicate
whether a need may interrupt a calendar activity when it is urgent. In the same
way, it can also indicate what calendar activity can be interruptible. During this
step, the scheduler takes the activity situated just after the plan and verifies if
this activity is interruptible. In addition, it checks if this activity has a sufficient
duration to support a reduction equal to the duration of the interruption. If these
conditions are reached, the scheduler checks whether a need that may interrupt
and being urgent at the beginning of the plan has a moment of satisfaction in the
plan. If it does not, the scheduler creates an interruption. A random moment is
retrieved between the start and the end of the interruptible activity. Depending
on this moment value, the interruption can starts before, after or during the
interruptible activity, without exceeding the initial duration of this activity.

3.4 Task Execution Model

This model executes the current activity in the VE by launching the associated
sequence of predefined tasks, containing animations or moves. It communicates
with the activity selector to retrieve the activity to perform and returns its
status. The perception model is also used to retrieve the needed semantics of
the 3D environment so as to correctly perform the activities. For instance, the
objects like the door to open or the book to take are given by the perception
model. Of course, the user can modify objects used by tasks, as long as the
object type and semantics are respected.

For this model, we use existing approaches specialized in the tasks execu-
tion. Among them, we can mention petri nets [16], finite state machines [11] or
behavior trees [14]. These approaches allow to go from a state to another via



212 L. Gramoli et al.

transitions triggering actuators (animations, movements...) while respecting the
conditions given by sensors (object state, agent’s location...). For our use case,
petri-nets were used because some tasks sequences were already provided in this
form, but the other approaches can be well integrated instead. The duration
of these sequences is automatically synchronized with the activity duration to
respect the allocated time. The animation times are also considered in the cal-
culation of the tasks to respect this duration. Figure 1 shows our use case where
agents can perform activity in a 3D house environment.

4 Results

In this section, we demonstrate our model by using an agent executing activities
in a 3D virtual house. Figure 4 shows the global structure of our implementation
that produced the results explained below. To execute tasks in the VE, we use a
Petri-Net based scripting module called #SEVEN [6]. Unity Engine1 is used to
represent the VE where an animated character as well a 3D reactive environment
were imported. This 3D reactive environment mainly contains the 3D virtual
house, the semantic data and the algorithm allowing the relationship between
the semantic and our behavior model.

More than 20 daily activities were implemented and animated as well as 8
needs to represent the agent’s internal states. Some example of activities and
needs can be seen in the figures and tables of this part. All the simulations last
8 simulated days. For these simulations, needs and activities were configured

Fig. 5. Comparison between theoretic and simulated timelines for a same day with a
strict calendar

Fig. 6. Timelines of three separated days without theoretic calendar

1 Unity Engine, official website: https://unity.com/.

https://unity.com/


Control Your Virtual Agent in its Daily-activities for Long Periods 213

Fig. 7. Comparison between theoretic and simulated timelines for a same day with a
moderate calendar

as detailed in Tables 1 and 2 for all these simulations. This section presents
results showing the different level of control that the user can have over the
agent’s decision-making autonomy. Validation is done first on a specific day, then
over the long term by analysing several days to obtain quantitative results. The
numbers of activities and needs are for illustrative purposes. The user can thus
add as many as necessary without impacting the model working. A video of our
use case can be viewed at the following link: https://youtu.be/v8GxXCAAV1k

The first result presents the case where the user provides a calendar with
no free time. To illustrate it, Fig. 5 compares timelines between a day coming
from a theoretic calendar without free time with the results obtained after the
simulation of this day. Here, thirst and toilets needs have been authorized to
interrupt the calendar. Some calendar activities such as Using Phone, Reading
are interruptible. These results show that calendar activities are performed on
time and with the right duration. Interruptions are indicated by blue triangles
for thirst and yellow triangles for toilets. Thus, the agent is able to interrupt a
calendar activity to satisfy its needs allowed to interrupt.

Tables 1 and 2 and the Fig. 6 show the result of a simulation without calendar.
They summarize information about satisfaction of needs according to the initial
parameters. We can see that needs are satisfied when they are urgent since the
average satisfaction over 8 days is globally in the bracket between the beginning
of the emergency and its maximum urgency. A better accuracy is also observed
when time slots are used rather than periods. Moreover, the frequencies are
respected since differences come from the sleep period which approximately takes
8 h. Indeed, in the simulated case, sleep was not allowed to be interrupted, so
the nightly satisfaction could not be reached. For the Fig. 6, we can conclude
that the periodic satisfaction of needs creates a routine having small variations
due to the variety of possible activities and the number of occurrences per day.
For instance, eating is made three times per day around the same periods. This
variation is interesting to produce more credible behavior.

Figure 7 compares timelines between a day coming from a theoretic calendar
containing free times with the results of the same day simulation. Here, the agent
must manage its free time in order to be ready for the next required activity.
As seen in this timeline, the agent schedules accurately its activities during its
free time while taking into account the satisfaction of its needs. The difference
between the simulated and the theoretical for the calendar activities is again of

https://youtu.be/v8GxXCAAV1k


214 L. Gramoli et al.

Table 1. Information about the needs configured with timeslots and their associated
activities compared to their input configuration

Need

name

Related

activities

Theoretic

time slot

Min/Max

start time

slot

Mean and

standard

deviation time

slot

Mean

Fre-

quency

per day

(theo-

retic)

Mean

Fre-

quency

per day

(simu-

lated)

Min/Max

Duration

(theo-

retic)

Min/Max

Duration

(simu-

lated)

Hungry Eating [7 a.m.,

9.30 a.m.]

7.19

a.m./7.48

a.m

7.34 a.m. ± 0 h

11m

3 3.0 0 h

10m/1 h

0 h

10m/1 h

[12 p.m.,

1.30 p.m.]

12.04

p.m./1.12

p.m

12.36 p.m.±
0 h 27m

[7 p.m., 9

p.m.]

7.04

p.m./8.47

p.m

7.53 p.m. ± 0 h

37m

Tiredness Sleeping [10 p.m.,

12 a.m.]

10.08

p.m./10.40

p.m

10.24 p.m. ±
0 h 12m

1 1.0 8 h/11 h 8 h/11 h

Table 2. Information about the needs configured with period and their associated
activities compared to their input configuration

Need

name

Related

activities

Theoretic

periods

Min/Max

gap

between 2

satisfac-

tions

(except

night)

Mean and

standard

deviation

between 2

satisfactions

Mean

Fre-

quency

per day

(theo-

retic)

Mean

Fre-

quency

per day

(simu-

lated)

Min/Max

Duration

(theo-

retic)

Min/Max

Duration

(simu-

lated)

Thirst Drinking Every 3 h

(urgency

2 h 05m)

2 h

13m/3 h

41m

2h 57m ± 0 h

26m

8 5.75 0 h

01m/0 h

05m

0h

01m/0 h

05m

Hygiene Showering

Using

the Sink

Every 6 h

(urgency

4 h 02m)

4 h

25m/6 h

40m

5h 29m ± 0 h

45m

4 3.0 0 h

15m/1 h

0 h

05m/0 h

20m

0h

15m/0 h

35m 0h

05m/0 h

20m

Sport Doing

Sport

Every 48 h

(urgency

33 h 56m)

34 h

57m/37 h

22m

36 h 10m ± 1 h

12m

0.5 0.50 0 h

15m/2 h

0 h

15m/0 h

38m

the same order as the strict calendar, proving that the agent respects the strong
constraints. We can also see that there is no redundancy when the calendar
activities satisfy needs and are positioned close to the times when these needs
are urgent. This is the case with hunger for instance, where the ”Eating” calendar
activity happens when hunger becomes urgent. The planner also considers the
calendar activities to satisfy the agent’s needs.

These results show that the agent performs activities in the VE while respect-
ing its input constraints and its needs. We can thus consider that our model is
able to adjust the level of autonomy according to the user’s configurations and
the agent’s internal state. The autonomous part satisfies the needs when they



Control Your Virtual Agent in its Daily-activities for Long Periods 215

become urgent and respects the schedule given by the user, allowing a good ratio
between control and autonomy.

5 Conclusion

We presented a model allowing the user to configure the level of the agent’s
decision-making autonomy. With our model, combining BDI architecture and
scheduling processes, either the user can leave the agent totally autonomous
during the simulation, or the activities to perform can be fully or partially con-
trolled by users through a calendar. Interruption can also be used to satisfy
the urgent needs of the agent if the calendar is too restrained. In addition, all
activities are performed in a 3D virtual environment through animations and
movements. Thus, our model is ready to use for data generation: if virtual sen-
sors or simulated cameras are included in the VE, then users could retrieve
information about the agent’s activities to generate data.

In future work, we will evaluate this model for activity detection with virtual
sensors of a smart house. Some experiments will be also made to compare our
simulated data with real data. Moreover, the internal state can also be enriched
by other cognitive methods such as preferences or emotions. Similarly, perception
can be improved to manage resources in addition to activity filtering. We also
plan to produce concrete examples showing the management of dynamic VE.
After this, our goal would be to extend this model for multi-agent systems.

References

1. Alshammari, N., Alshammari, T., Sedky, M., Champion, J., Bauer, C.: OpenSHS:
open smart home simulator. Sensors 17(5), 1003 (2017)

2. Amouroux, É., Huraux, T., Sempé, F., Sabouret, N., Haradji, Y.: SMACH: agent-
based simulation investigation on human activities and household electrical con-
sumption. In: Filipe, J., Fred, A. (eds.) ICAART 2013. CCIS, vol. 449, pp. 194–210.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44440-5 12

3. Avradinis, N., Panayiotopoulos, T., Anastassakis, G.: Behavior believability in
virtual worlds: agents acting when they need to. SpringerPlus 2(1), 1–11 (2013).
https://doi.org/10.1186/2193-1801-2-246

4. Azvine, B., Djian, D., Tsui, K.C., Wobcke, W.: The intelligent assistant: an
overview. In: Intelligent Systems and Soft Computing, pp. 215–238 (2000)

5. Charypar, D., Nagel, K.: Generating complete all-day activity plans with genetic
algorithms. Transportation 32(4), 369–397 (2005)

6. Claude, G., Gouranton, V., Berthelot, R.B., Arnaldi, B.: Short Paper: #SEVEN, a
sensor effector based scenarios model for driving collaborative virtual environment,
p. 5 (2014)

7. Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem
proving to problem solving. Artif. Intell. 2(3–4), 189–208 (1971)

8. Georgievski, I., Aiello, M.: An overview of hierarchical task network planning.
arXiv preprint arXiv:1403.7426 (2014)

https://doi.org/10.1007/978-3-662-44440-5_12
https://doi.org/10.1186/2193-1801-2-246
http://arxiv.org/abs/1403.7426


216 L. Gramoli et al.

9. Jang, H., Hao, S., Chu, P.M., Sharma, P.K., Sung, Y., Cho, K.: Deep Q-network-
based multi-criteria decision-making framework for virtual simulation environment.
Neural Comput. Appl. 33, 10657–10671 (2020)

10. Laird, J.E.: An analysis and comparison of act-r and soar. arXiv preprint
arXiv:2201.09305 (2022)

11. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a
survey. Proc. IEEE 84(8), 1090–1123 (1996)

12. Maslow, A.H.: A theory of human motivation. Psychol. Rev. 50(4), 370 (1943)
13. McCall, R.J., Franklin, S., Faghihi, U., Snaider, J., Kugele, S.: Artificial motivation

for cognitive software agents. J. Artif. Gener. Intell. 11(1), 38–69 (2020)
14. Miller, D.: Hierarchical task network prototyping in Unity3D, p. 124 (2016)
15. Ordóñez Medina, S.A.: Personalized multi-activity scheduling of flexible activities.

Arbeitsberichte Verkehrs-und Raumplanung 1099 (2015)
16. Peterson, J.L.: Petri nets. ACM Comput. Surv. (CSUR) 9(3), 223–252 (1977)
17. Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S., Torralba, A.: Virtual-

home: simulating household activities via programs. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8494–8502 (2018)

18. Reynaud, Q., Haradji, Y., Sempé, F., Sabouret, N.: Using time use surveys in multi
agent based simulations of human activity. In: ICAART, no. 1, pp. 67–77 (2017)

19. de Sevin, E., Thalmann, D.: A motivational model of action selection for virtual
humans. In: International 2005 Computer Graphics, pp. 213–220. IEEE, Stony
Brook (2005)

20. de Silva, L.: BDI agent reasoning with guidance from HTN recipes. In: Proceedings
of the 16th Conference on Autonomous Agents and MultiAgent Systems. pp. 759–
767. International Foundation for Autonomous Agents and Multiagent Systems,
Richland (2017)

21. Silva, L.d., Meneguzzi, F., Logan, B.: BDI agent architectures: a survey. In: Pro-
ceedings of the Twenty-Ninth International Joint Conference on Artificial Intelli-
gence, Yokohama, Japan, pp. 4914–4921 (2020)

http://arxiv.org/abs/2201.09305

	Control Your Virtual Agent in its Daily-activities for Long Periods
	1 Introduction
	2 Related Work
	3 Agent Model Description
	3.1 Global Model Structure
	3.2 Agent Internal State
	3.3 Decision-Making Model
	3.4 Task Execution Model

	4 Results
	5 Conclusion
	References




