
HAL Id: hal-03822771
https://hal.science/hal-03822771

Submitted on 20 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural Architecture Search: A Visual Analysis
Gabriela Ochoa, Nadarajen Veerapen

To cite this version:
Gabriela Ochoa, Nadarajen Veerapen. Neural Architecture Search: A Visual Analysis. 17th Inter-
national Conference on Parallel Problem Solving from Nature (PPSN XVII), Sep 2022, Dortmund,
Germany. pp.603-615, �10.1007/978-3-031-14714-2_42�. �hal-03822771�

https://hal.science/hal-03822771
https://hal.archives-ouvertes.fr

Neural Architecture Search: A Visual Analysis

Gabriela Ochoa1[0000−0001−7649−5669] and Nadarajen
Veerapen2[0000−0003−3699−1080]

1 University of Stirling, Scotland, United Kingdom
gabriela.ochoa@stir.ac.uk

2 Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
nadarajen.veerapen@univ-lille.fr

Abstract. Neural architecture search (NAS) refers to the use of search
heuristics to optimise the topology of deep neural networks. NAS algo-
rithms have produced topologies that outperform human-designed ones.
However, contrasting alternative NAS methods is difficult. To address
this, several tabular NAS benchmarks have been proposed that exhaus-
tively evaluate all architectures in a given search space. We conduct a
thorough fitness landscape analysis of a popular tabular, cell-based NAS
benchmark. Our results indicate that NAS landscapes are multi-modal,
but have a relatively low number of local optima, from which it is not
hard to escape. We confirm that reducing the noise in estimating perfor-
mance reduces the number of local optima. We hypothesise that local-
search based NAS methods are likely to be competitive, which we confirm
by implementing a landscape-aware iterated local search algorithm that
can outperform more elaborate evolutionary and reinforcement learning
NAS methods.

Keywords: Neural Architecture Search, Fitness Landscapes, Local Optima Net-
works, Neuroevolution, Neural Networks, Deep Learning

1 Introduction

Neural architecture search (NAS) is a fast growing topic within automated ma-
chine learning (AutoML). The idea is to use search methods to automatically
design the architecture (or topology) of deep neural networks. NAS has pro-
duced neural network models that surpass the performance of human-designed
ones in image recognition [1, 2] and natural language processing [1, 3]. NAS is
a relatively recent term, coined in 2017 by Zoph and Le [1], but the subject
of research overlaps with earlier topics such as hyper-parameter optimisation,
meta-learning and neuroevolution.

Neuroevolution, the use of evolutionary algorithms to design neural networks,
has a long tradition in evolutionary computation with roots in the late 1980s and
early 1990s [4]. Most neuroevolution systems optimise both the neural network
topology and its weights. However, when scaling up to contemporary deep models
with millions of weights for supervised learning tasks, gradient-based weight

optimisation generally outperforms evolutionary methods. In consequence, many
recent neuroevolution systems use gradient-based weight optimisation and only
evolve the topology [2, 5]. Other approaches to NAS include random search [6,
7], hill-climbing [7], reinforcement learning [1], Bayesian optimisation [8], and
gradient-based optimisation [3].

NAS is generally formulated as a discrete optimisation problem maxa∈Af(a),
where A denotes a set of architectures (the search space) and f(a) denotes the
objective function to be maximised3, often set to the validation accuracy af-
ter training with a fixed set of hyper-parameters. Several search spaces have
been studied [9], including chain-structured networks, which encode a sequence
of layers; multi-branch networks, which incorporate skip connections; and net-
works consisting of repeated motifs also called cells or blocks. These cell-based
architectures are designed by combining repeated cells in a predefined arrange-
ment. Despite the underlying complexity of deep neural network architectures,
many NAS spaces can be encoded as fixed-length strings of symbols of a given
alphabet, where symbols represent predefined operations. This is the case of the
search space considered in our study (see Section 2 for details).

The performance of NAS algorithms crucially depends on the search space
structure. However, very little work has been devoted to analysing NAS fitness
landscapes [7, 10]. Our work is inspired by White et al. [7] findings when study-
ing NAS loss landscapes, which the authors summarise as follows: “. . . we show
that (1) the simplest hill-climbing algorithm is a powerful baseline for NAS, and
(2), when the noise in popular NAS benchmark datasets is reduced to a mini-
mum, hill-climbing outperforms many popular state-of-the-art algorithms”. Our
contributions are to:

– Analyse the fitness landscapes of a established NAS benchmark, using three
landscape analysis techniques not previously used in this setting: (i) density-
of-states [11], fitness-distance correlation [12], and local optima networks
[13]. These techniques explore the landscape global structure and have a
strong visual component.

– Explore the impact of reducing the noise in estimating the fitness function
(validation accuracy) on the NAS landscape structure.

– Propose a local search-based NAS method informed by the structure of NAS
landscapes.

2 The Selected NAS Benchmark

It is challenging to provide fair and statistically sound comparisons among NAS
methods due to the different search spaces and training setups, as well as the
high computational costs [9, 6]. In response to this challenge, several tabular NAS
benchmarks have been proposed, which exhaustively evaluate all architectures
in a given search space, and store a wealth of training, evaluation and testing
metrics in queryable look-up tables [14–16]. This facilitates the reproducibility

3 NAS can also be formulated as a minimisation problem (minimising validation loss).

 x Nimage conv cell
Residual

block
(stride = 2)

 x Ncell
Residual

block
(stride = 2)

 x Ncell
global avg.

pool

Fig. 1: The macro skeleton of candidate architectures in the search space. The
skeleton is shared by all architectures and only the configuration of the cell
(visualised in red) is subject to change.

of NAS experiments, drastically reduces the computational costs, and fosters a
wider uptake of this topic. Our experiments use one of these tabular benchmarks,
specifically, the cell-based topology search space St in NATS-Bench [16], also
called NAS-Bench-201 [15].

The NATS-Bench Topology Search Space was inspired by the successful cell-
based NAS algorithms [1–3], it consists of a predefined macro skeleton where
modular (searchable) cells are stacked. Figure 1 illustrates the macro skeleton.
The architecture starts with one 3×3 convolution layer with 16 output channels
and a batch normalisation layer. The main body contains three stacks of cells,
connected by a residual block. Each cell is stacked N = 5 times. The architecture
ends with a global average pooling layer that flattens the feature map in to a
vector. A fully connected layer with softmax is used for the final classification
[16]. The macro skeleton remains fixed for all architectures, what changes is the
configuration of the red cell in Fig. 1. For a given architecture, all the cells in the
macro skeleton will have the same structure. Therefore, searching for a suitable
architecture is reduced to searching for a suitable cell.

A cell is represented as a dense directed acyclic graph (DAG), as illustrated in
Figure 2a. Each edge in this DAG is associated with an operation that transforms
the feature map from the start to the end node. Operations are selected from a
predefined set of five: (A) zeroize, (B) skip connection, (C) 1 × 1 convolution,
(D) 3×3 convolution, and (E) 3×3 average pooling layer. The zeroise operation
simply drops the associated edge. Therefore, the cell topology is not restricted
to densely connected DAGs. The nodes represent the sum of the feature maps
from the incident edges. The DAG has V = 4 nodes. This number was chosen
to allow the encoding of basic residual block-like cells, which require 4 nodes. A
complete graph with 4 nodes has combinations of 4 in 2,

(
4
2

)
= 6 edges. Since each

edge can be one of 5 operations, the search space contains 56 = 15, 625 unique
neural architectures. Each architecture was trained three times using different
random seeds on three popular image classification datasets: CIFAR-10, CIFAR-
100, and ImageNet-16-120. The training pipeline and hyper-parameters is the
same for all architectures. NATS-Bench [16] provides training, validation, and
test loss and accuracy metrics for all architectures that can be queried via an
API4 with negligible computational costs.

4 https://github.com/D-X-Y/NATS-Bench

1

3

2

6
4

5

(A) zeroize

(B) skip-connect

(C) 1x1 conv

(D) 3x3 conv

(E) 3x3 avg pool

(a) Cell

D A C D E C

(b) Genotype

Fig. 2: Encoding of an example architecture showing the mapping from a cell
to the corresponding linear genotype. (a) A cell is represented as DAG with
six edges representing operations taken from a fixed set of five operations (A –
E) as indicated in the legend. (b) A candidate solution (genotype) is encoded
as a string of six symbols, each representing the operation associated with the
numbered edge in the DAG.

3 Fitness Landscape Analysis

A fitness landscape [17] is a triplet (S,N, f) where S is a set of admissible
solutions i.e., a search space, N : S −→ 2S , is a neighbourhood structure, a
function that assigns a set of neighbours N(s) to every solution s ∈ S, and
f : S −→ R is a fitness function that measures the quality of the corresponding
solutions. We define below these three components for our NAS formulation.

Search space. The search space consists of strings of length n = 6 (the num-
ber of edges in the DAG representing the cell, Fig. 2a) in the alphabet Σ =
{A,B,C,D,E}, where each symbol represents a predefined operation. An ex-
ample genotype is given in Fig. 2b, where the symbol at position i corresponds
to the operation associated to edge i in the DAG. The size of the search space
is |Sigma|n, that is, 56 = 15, 625 as indicated in Section 2.

Neighbourhood Structure. We use the standard Hamming distance 1 neighbour-
hood (1-change operator). The Hamming distance between two strings is the
number of positions in which they differ. Therefore, the neighbourhood N(s) of
solution s includes the set of all solutions at a maximum Hamming distance 1
from s. The size of the neighbourhood is n× (|Σ| − 1), that is, 6× 4 = 24.

Fitness Function. To measure the performance of each cell we consider the
validation accuracy metric, to be maximised. In NATS-Bench, every architecture
(cell) was independently trained three times using three different random seeds.
Therefore, there are three sets of metrics for each image dataset. Since we are
interested in exploring the effect of noise in the fitness landscape, we follow the
approach in [7], where two ways to draw the validation metric were considered:
(i) using a single value, and (ii) using the average of the three values to obtain

a less noisy estimate. We therefore consider two fitness functions that we call
fsng and favg, to refer to using a single validation accuracy or the average of the
three available values, respectively.

3.1 Density of States

The density of states (DOS) [11], plots the number of solutions in the search
space with a certain fitness value. Normally, this plot requires sampling the
search space, but since we have access to the whole space, we do not need a
sample and instead use the complete set of solutions. The density of states gives
an indication of the performance of random search or a random initialisation of
metaheuristics, as it gives the probability of having a given fitness value when
a solution is randomly chosen. Moreover, the right tail of the distribution near
optimal fitness values gives a measure of the difficulty of a maximisation problem,
the faster the decay, the harder the problem.

0

500

1000

1500

25 50 75

f_sng

c
o
u
n
t

cifar10

0

250

500

750

1000

0 20 40 60

f_sng

c
o
u
n
t

cifar100

0

200

400

600

0 10 20 30 40 50

f_sng

c
o
u
n
t

ImageNet16-120

0

500

1000

1500

25 50 75

f_avg

c
o
u
n
t

cifar10

0

300

600

900

1200

0 20 40 60

f_avg

c
o
u
n
t

cifar100

0

200

400

600

800

0 10 20 30 40

f_avg

c
o
u
n
t

ImageNet16-120

Fig. 3: Density of states for the two fitness functions fsng (top) and favg (bottom)
on all the datasets. The x-axis shows the whole range of validation accuracy val-
ues for each dataset, grouped in bins of width 0.5 in order to draw the frequency
polygons.

In order to visualise the distribution of fitness function values, Figure 3,
shows frequency polygon plots contrasting the distribution across the two fitness
functions, fsng (top) and favg (bottom), for the three image datasets. There is
no clear visual difference between the distributions of the two fitness functions.

operations A B C D E

2 4 6

b
e

s
t

1
%

 c
e

lls

cifar10

2 4 6

b
e

s
t

1
%

 c
e

lls

cifar100

2 4 6

b
e

s
t

1
%

 c
e

lls

ImageNet

2 4 6

w
o

rs
t

1
%

 c
e

lls

cifar10

2 4 6

w
o

rs
t

1
%

 c
e

lls

cifar100

2 4 6

w
o

rs
t

1
%

 c
e

lls

ImageNet

Fig. 4: Genotype maps of the best 1% (top), and worst 1% (bottom) performing
cells for all datasets, sorted according to favg. Each line in the plots visualises a
cell where positions are coloured according to the respective operation.

Notice that the range of accuracy values (x-axis) is different for each image
dataset, which is consistent with the difficulty of the respective classification task.
The DOS curves show a faster decay towards near optimal fitness in all cases,
indicating that NAS landscapes are not completely smooth. For ImageNet, there
is wider range of accuracy values with high frequency of solutions, indicating a
more complex landscape. Another interesting observation is the high frequency
of cells with a low accuracy near zero in all plots. A close inspection revealed
that these low accuracy cells correspond to genotypes where three or more of
the symbols are ‘A’, that is zeroise (dropped) operations, so they are mostly
no-operation, empty cells, which explains their low performance.

Figure 4 visualises the configuration of the best 1% (top plots), and worst 1%
(bottom plots) performing cells (genotypes) for the three datasets according to
favg. Each line in these plots is a cell configuration (solution in the search space),
where positions are visualised with colours identifying operations. The rows are
sorted by their favg value, where the cell with the highest fitness value (highest
average accuracy) in the set is the top line of each plot. We can clearly see that
the low performing cells (bottom plots) are those containing a majority of ‘A’
(zeroise, or drop) operations, thus they are mostly empty cells. Specially the
4th positions is always an ‘A’ in the worst performing configurations. The best
performing configurations (top plots) also show a visible pattern, with the most
common operations being ‘C’ (green) and ‘D’ (orange), corresponding to 1 × 1
and 3× 3 convolutions, respectively. The exception is the 4th position, which for

all datasets is mostly a ‘B’ (light blue, skip connection) in the best performing
cells. The plots suggest that the choice of operation for the 4th position (4th

edge in the DAG cell, Fig. 2a) has more impact in performance than the other
positions. An analysis of the frequency of operations in the top 1% performing
cell across the 3 datasets revealed that they rank as follows: D, C, B, A, E with
frequency percentages of: 45.7, 24.8, 19.2, 6.1, 4.1, respectively. We argue that
this information can be used to design informed mutation operations that can
improve the performance of search heuristics in this domain, and we set to do
that in Section 4.

3.2 Fitness Distance Correlation

Since the whole search space is available, and thus the optimal cell is known,
we can compute the distances from all cells in the search space to the global
optimum. Specifically, for each cell i we have a pair (fi, di), where fi is the
validation accuracy (either fsng or fsng) of cell i and di is the Hamming distance
to the cell with the highest validation accuracy (global optimal cell). The FDC
is calculated as the (Spearman) correlation coefficient of this set of (accuracy,
distance) pairs.

Figure 5 shows the FDC plots, as well as the Spearman correlation coeffi-
cients (R) with significance level (p-values) for each image classification dataset.
The top plots show the measurements with a single training seed (fsing), while
the bottom plots show the average of the 3 training seeds available (favg). The
regression lines with confidence regions (95%) are also shown. The horizontal
axes show the Hamming distance between all architectures and the global op-
timal architecture, while the vertical axes show the validation accuracy of each
architecture. From these plots we can observe that there is a moderate negative
correlation (ranging from -0.33 to -0.46) between distance and fitness (validation
accuracy), suggesting a gradient towards the global optimum. However, for all
studied scenarios, some configurations that differ in 3 or 4 operations from the
global optimum reveal a low accuracy value, these are the cells with a high num-
ber of zeroise operations. For the three datasets, the correlations coefficients are
higher when the less noisy estimation of fitness favg is considered, supporting
the insight from [7] indicating that reducing noise in the estimation of fitness can
improve search. The range of possible values for R is [−1, 1] where, for a max-
isimisation problem, high negative correlations would be regarded as easier for a
hill climber. When FDC was proposed [12], −0.15 ≤ R ≤ 0.15 was classified as
hard, and R ≤ −0.15 was considered as misleading for a minimisation problem.
Using these criteria, none of the problems used in this study is regarded as hard
or misleading. The ImageNet dataset reveals the lowest correlation coefficient,
which supports that this is hardest of the three instances.

3.3 Local Optima Networks

To further understand the landscapes’ global structure, we extract and analyse
local optima networks (LONs)[13]. LONs are graph-based model of landscapes

Fig. 5: FDC plots for all datasets. The horizontal axes show the Hamming dis-
tance to the global optimum, using the fsng fitness values (top plots), and the
less noisy favg values (bottom plots). The Spearman correlation coefficients with
p-value are also shown.

where nodes are local optima and edges are transitions among optima with a
given search operator.

Definitions. The relevant definitions, and the procedure to construct the LON
modes, are given below.

Local optima. A local optimum, which in our NAS formulation is a maximum, is
a solution l such that ∀s ∈ N(l), f(l) > f(s). Local optima are identified with a
best-improvement hill-climbing heuristic using the 1-change (Hamming distance
1) neighbourhood. The set of local optima, denoted by L, corresponds to the
nodes in LON model.

Edges. Edges are directed and based on the perturbation operator 2-change.
There is an edge from local optimum l1 to local optimum l2, if l2 can be obtained
after applying a random perturbation (changing at random 2 locations in the
genotype) to l1 followed by local search. Edges are weighted with estimated
frequencies of transition in a sampling process. The weight is the number of
times a transition between two local optima occurred when constructing the
LON models as detailed below. The set of edges is denoted by E.

LON. The LON is the directed graph LON = (L,E), with node set L, and edge
set E as defined above.

LON Sampling and Construction. To construct the LON models for each dataset
and fitness function, a sampling process is conducted. It consists in running an
iterated local search algorithm (ILS) [18], where the stopping condition is set
to t = 100 iterations without any improvement. This serves the purpose of
empirically estimating the global optimum or the end of a funnel, i.e., a solution
at the end of an ILS trajectory, where escaping is difficult, if not impossible.
While running ILS, we store in a set L all the unique optima obtained after
the local search stage, and in a set E all the unique edges obtained after a
perturbation followed by local search. To construct the LONs for each image
dataset and fitness function, these sets of nodes and edges are aggregated over
1 000 runs, started from different random configurations.

Network Visualisation. One advantage of network models is that they can
be visualised, bringing useful insight into their structure. Figure 6 illustrates the
LONs for all datasets and fitness functions. The networks capture the whole set of
sampled nodes and edges in each case. In the plots, each node is a local optimum
and edges are perturbation transitions. Plots were produced using force-directed
layout methods as implemented in the igraph R library [19]. The global optimum,
which was unique in all cases, is highlighted in red. The other local optima are
painted in grey. The edges’ colour indicate whether they end in a node with
better fitness (dark gray), worse fitness (orange) or equal fitness (blue). The
size of nodes is proportional to their incoming weighed degree, so larger nodes
indicate attractors in the search process.

The networks in Fig. 6 indicate that for all datasets and fitness functions,
there is a connected component of nodes that can reach the global optimum (red
node) in a few search steps. This is indicative of a multi-modal landscape, but
where it is not too hard to reach the global optimum. For all datasets, there are
fewer local optima when the less noisy fitness function favg is used (Figs. 6d, 6e
and 6f), which indicates that improving the fitness estimate facilitates the search
process, as the search paths to the global optimum become shorter.

The LON analysis indicates that the edges considered (changing 2 locations
in the genotype), allow escaping local optima in most cases. This suggests that a
local search based method, coupled with a escape mechanism can be a suitable
NAS search strategy. This is empirically explored in the next section.

4 Search Performance Analysis

4.1 Competing Algorithms

We propose and implement a local search based algorithm, specifically an iter-
ated local search (ILS) method [18]. ILS is a simple yet powerful metaheuristic
that alternates a local search stage with a perturbation stage. We use a first
improvement local search with a 1-change neighbourhood, and a perturbation
operator that changes 2 positions in the incumbent solution. Only improving
moves are accepted. We consider two versions of the ILS: ILS-shuffle where

lon Nodes: 19 Edges: 44

Local
Global
Improving
Equal
Worsening

(a) cifar10, fsng, (19,44)

lon Nodes: 26 Edges: 41

(b) cifar100, fsng, (26,41)

lon Nodes: 43 Edges: 145

(c) ImageNet, fsng, (43,145)
lon Nodes: 10 Edges: 18

(d) cifar10, favg, (10,18)

lon Nodes: 18 Edges: 27

(e) cifar100, favg, (18,27)

lon Nodes: 28 Edges: 98

(f) ImageNet, favg, (28,98)

Fig. 6: LONs for all datasets and the two fitness functions. For each model, the
number of nodes n and edges e are indicated as (n, e).

the values for the 1-change operator are explored in random order and ILS-order

where the 1-change operator uses insights from the landscape analysis. Specif-
ically, following the frequency profile observed in the 1% best-performing cells
(Section 3.1 and Fig. 3) we systematically explore neighbours using the following
ordering of the operations: D, C, B, A, E.

We contrast our proposed ILS against the following NAS methods, as imple-
mented in [16].

– Random search (RANDOM) [6]. This serves as the baseline. It draws cells
at random and returns the best found.

– Regularised evolution (REA) [2]. This is a mutation only evolutionary
algorithm that uses tournament selection and introduces the notion of age
to the individuals. The replacement strategy removes the oldest individual
in the population, thus favouring newer cells. This serves as a mechanism to
handle the noisy performance estimation.

– Reinforcement learning (REINFORCE) [1]. This approach frames NAS
as a reinforcement learning problem. The generation of a neural cell corre-
spond to the agent’s actions, with the action space identical to the search

92.0

92.5

93.0

93.5

94.0

0 5 × 103 1 × 104 1.5 × 104 2 × 104

Estimated wall−clock time (s)

Te
st

 a
cc

ur
ac

y
Algorithm

ILS−order

ILS−shuffle

RANDOM

REA

REINFORCE

(a) cifar10

65

67

69

71

0 1 × 104 2 × 104 3 × 104 4 × 104

Estimated wall−clock time (s)

Te
st

 a
cc

ur
ac

y

Algorithm

ILS−order

ILS−shuffle

RANDOM

REA

REINFORCE

(b) cifar100

40

42

44

46

0 4 × 104 8 × 104 1.2 × 105

Estimated wall−clock time (s)

Te
st

 a
cc

ur
ac

y

Algorithm

ILS−order

ILS−shuffle

RANDOM

REA

REINFORCE

(c) ImageNet

Fig. 7: Evolution of average test accuracy across the three datasets.

space. The agent’s reward is based on an estimate of the cell performance
on unseen data.

4.2 Empirical Setup

Our experiments follow the protocol suggested by NATS-Bench [16]. The bench-
mark provides performance data on each neural architecture for two scenarios:
one with 12 epochs, the other 200. The epoch indicates the number of times the
entire training dataset is used while building the model.

We replicate the NATS-Bench experiments by training the models over 12
epochs and using the accuracy calculated on the validation set as feedback to
direct the search. This is meant to simulate a faster but less accurate training
step. The configurations obtained are then evaluated against the test set of the
200 epoch scenario. The best solution found using 12 epochs is therefore not
necessarily the best for 200 epochs. The training time budgets considered for
cifar10, cifar100 and ImageNet datasets are 20 000, 40 000 and 120 000 seconds
respectively. Each algorithm is executed 30 times.

4.3 Results

The average test accuracy is presented on Figure 7. The different methods have
fairly similar behaviour. ILS, for its part, initially converges slightly slower than
the rest since it is costly to evaluate multiple neighbours before accepting a new
solution. However, on average, it manages to get ahead of the other approaches
within the time budget on the cifar10 and ImageNet datasets. Using ILS-order

improves convergence speed and the final result. As was previously noted [16],
despite its simplicity, random search performs comparatively well, even if it
comes in last.

In order to better grasp the overall performance of the different algorithms,
Figure 8 presents boxplots of the test accuracy calculated on the cell configu-
rations found at the end of each run. The ILS-order boxplots are fairly tight,
indicating that there is little spread in the quality of configurations obtained.
In contrast, the results for ILS-shuffle on cifar10 and cifar100 are much more

93.2

93.6

94.0

94.4

ILS
order

ILS
shuffle

RANDOM
REA

REINFORCE

Te
st

 a
cc

ur
ac

y

(a) cifar10

70

71

72

73

ILS
order

ILS
shuffle

RANDOM
REA

REINFORCE

Te
st

 a
cc

ur
ac

y

(b) cifar100

43

44

45

46

47

ILS
order

ILS
shuffle

RANDOM
REA

REINFORCE

Te
st

 a
cc

ur
ac

y

(c) ImageNet

Fig. 8: Test accuracy distribution for configurations found at the end of 30 runs.

spread out. This is because its slower convergence means it hasn’t yet reached
the very bottom of the landscape. This is not the case on the ImageNet dataset
where both ILS versions converge to similar solutions within the allotted budget.

On this problem, the challenge for optimisation methods compared to classic
optimisation problems is that the function used to evaluate the end result (test
accuracy) is not the same as the objective function (validation accuracy). We
know from sampling the landscape and LON analysis that ILS is able to reach
the global validation accuracy optima on the benchmarks when there is no time
limit, however this is not a guarantee that the same solution will be the best for
test accuracy.

Overall, ILS proves to be a viable and competitive approach for optimis-
ing neural network topology, especially if appropriate design choices are im-
plemented. Despite its conceptual simplicity, ILS is able to match and even
outperform more sophisticated approaches within the time budget in this NAS
topology benchmark.

5 Conclusions

We analysed the fitness landscape of a popular tabular, cell-based NAS bench-
mark for image classification. Our analysis revealed that the landscapes are not
trivial to search, they are rugged (multi-modal), however they have a relatively
low number of local optima, from which it is not difficult to escape with a simple
perturbation operation. Our analysis of the best-performing cells indicated that
some operations of the available set appear more frequently than others. We
used this information to design a conceptually simple, yet high-performing local
search based NAS method. On the studied benchmark, our iterated local search
(ILS) implementation outperforms both a reinforcement learning method on the
3 available image datasets, and the state-of-the-art evolutionary method on 2 of
the 3 image datasets. Future work will analyse the landscapes of other available
NAS-benchmarks, as well as test the performance of the proposed ILS on them.
We will also incorporate noise-handling mechanisms into our ILS approach since
our landscape analysis reported a smoother landscape when noise is reduced.

References

1. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
Conference on Learning Representations, ICLR (2017)

2. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: AAAI Conference on Artificial Intelligence, AAAI.
pp. 4780–4789. AAAI Press (2019)

3. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In:
Conference on Learning Representations, ICLR (2019)

4. Schaffer, J., Whitley, D., Eshelman, L.: Combinations of genetic algorithms and
neural networks: a survey of the state of the art. In: International Workshop on
Combinations of Genetic Algorithms and Neural Networks. pp. 1–37 (1992)

5. Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W.:
Nsga-net: Neural architecture search using multi-objective genetic algorithm. In:
Genetic and Evolutionary Computation Conference (GECCO). p. 419–427. ACM,
New York, NY, USA (2019)

6. Yu, K., Sciuto, C., Jaggi, M., Musat, C., Salzmann, M.: Evaluating the search
phase of neural architecture search. In: Conference on Learning Representations,
ICLR (2020)

7. White, C., Nolen, S., Savani, Y.: Exploring the loss landscape in neural architecture
search. In: Conference on Uncertainty in Artificial Intelligence, UAI. Proceedings
of Machine Learning Research, vol. 161, pp. 654–664. AUAI Press (2021)

8. Kandasamy, K., Neiswanger, W., Schneider, J., Póczos, B., Xing, E.P.: Neural
architecture search with bayesian optimisation and optimal transport. In: Advances
in Neural Information Processing Systems, NeurIPS 2018. pp. 2020–2029 (2018)

9. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey. J. Mach.
Learn. Res. 20, 55:1–55:21 (2019)

10. Rodrigues, N.M., Silva, S., Vanneschi, L.: A study of generalization and fitness
landscapes for neuroevolution. IEEE Access 8, 108216–108234 (2020)

11. Rosé, H., Ebeling, W., Asselmeyer, T.: The density of states – a measure of the dif-
ficulty of optimisation problems. In: Parallel Problem Solving from Nature, PPSN
IV. pp. 208–217. Springer (1996)

12. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty
for genetic algorithms. In: International Conference on Genetic Algorithms. pp.
184–192. Morgan Kaufmann (1995)

13. Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of nk landscapes’ basins
and local optima networks. In: Genetic and Evolutionary Computation Conference,
GECCO. pp. 555–562. ACM (2008)

14. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-Bench-
101: Towards reproducible neural architecture search. In: International Conference
on Machine Learning, ICML. vol. 97, pp. 7105–7114. PMLR (2019)

15. Dong, X., Yang, Y.: NAS-Bench-201: Extending the scope of reproducible neural
architecture search. In: Conference on Learning Representations, ICLR (2020)

16. Dong, X., Liu, L., Musial, K., Gabrys, B.: NATS-Bench: Benchmarking nas algo-
rithms for architecture topology and size. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2021)

17. Stadler, P.F.: Fitness landscapes. Appl. Math. and Comput 117, 187–207 (2002)
18. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated Local Search: Framework and

Applications, pp. 363–397. Springer US, Boston, MA (2010)
19. Csardi, G., Nepusz, T.: The igraph software package for complex network research.

InterJournal Complex Systems, 1695 (2006)

