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Abstract: The ‘fluid mechanical sewing machine’ is a device in which a thin thread of viscous fluid
falls onto a horizontal belt moving in its own plane, creating a rich variety of ‘stitch’ patterns depend-
ing on the fall height and the belt speed. This review article surveys the complex phenomenology
of the patterns, their symmetries, and the mathematical models that have been used to understand
them. The various patterns obey different symmetries that include (slightly imperfect) fore–aft
symmetry relative to the direction of belt motion and invariance under reflection across a vertical
plane containing the velocity vector of the belt, followed by a shift of one-half the wavelength. As
the belt speed decreases, the first (Hopf) bifurcation is to a ‘meandering’ state whose frequency is
equal to the frequency Ωc of steady coiling on a motionless surface. More complex patterns can be
studied using direct numerical simulation via a novel ‘discrete viscous threads’ algorithm that yields
the Fourier spectra of the longitudinal and transverse components of the motion of the contact point
of the thread with the belt. The most intriguing case is the ‘alternating loops’ pattern, the spectra of
which are dominated by the first five multiples of Ωc/3. A reduced (three-degrees-of-freedom) model
succeeds in predicting the sequence of patterns observed as the belt speed decreases for relatively low
fall heights for which inertia in the thread is negligible. Patterns that appear at greater fall heights
seem to owe their existence to weakly nonlinear interaction between different ‘distributed pendulum’
modes of the quasi-vertical ‘tail’ of the thread.

Keywords: viscous threads; coiling instability; fluid mechanical sewing machine

1. Introduction

Everyone is familiar with the beautiful ‘liquid thread coiling’ instability (also known
as ‘liquid rope coiling’) that occurs when a thin stream of honey falls onto a piece of toast
(Figure 1a). Liquid coiling is a classic example of a symmetry-breaking bifurcation. In
this case, the basic state is an axisymmetric stagnation flow (Figure 1b). When the fall
height H exceeds a critical value (for small heights) or the volumetric flow rate Q becomes
less than a critical value (for large heights), the stagnation flow becomes unstable to small
lateral perturbations (incipient bending) of the thread’s axis. The instability eventually
saturates to form a coil with a finite radius R that rotates about the vertical with an angular
frequency Ω. The resulting structure comprises three distinct parts in general: an upper
quasi-vertical ‘tail’, the ‘coil’ in which the thread is strongly bent, and an underlying ‘pile’ of
fluid previously laid down by the coiling. The essential difference between the tail and the
coil is that deformation of the former is dominated by stretching, whereas the deformation
of the coil is dominated by bending. Since the equations that describe bending are of higher
order in the arcwise derivatives than those describing stretching, the coil can be thought of
as a boundary layer that ensures the satisfaction of all the relevant boundary conditions at
the contact point with the pile.
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Figure 1. Behaviors of a viscous thread falling onto a motionless surface. (a) Steady coiling for
ν = 6150 cS, Q = 0.032 mL s−1, and H = 7 cm. The definitions of the coil radius R and the radius a1

of the thread at the contact point are shown. The structure comprises a long and nearly vertical tail,
the coil, and a pile of fluid previously laid down by the coiling. (b) Axisymmetric stagnation flow for
ν = 3450 cS, Q = 3.55 mL s−1, and H = 23.5 cm. (c) Coiling with an unstable pile for ν = 3450 cS,
Q = 0.68 mL s−1, and H = 25 cm.

In laboratory experiments, the formation of a pile on the surface is unavoidable. Under
some conditions, this pile is a steady-state feature (Figure 1a), while under others it is itself
unstable to small perturbations, leading to periodic collapse or quasi-steady secondary
buckling (Figure 1c). Especially in these latter cases, the time-dependence of the pile
corresponds to a rather ‘dirty’ unsteady boundary condition at the bottom of the freely
coiling thread. It is thus natural to ask: what would happen if we could continuously
remove all the fluid laid down by the coiling, thereby doing away with the pile? An easy
way to do this comes to mind: it is to let the fluid fall, not onto a motionless surface, but onto
a surface moving with a constant horizontal speed V. The result is the “fluid mechanical
sewing machine” (FMSM), a name first coined by Chiu-Webster and Lister [1].

Figure 2 shows a simple laboratory apparatus that realizes the FMSM. A fluid thread
ejected at a constant volumetric rate Q from a nozzle falls onto a belt in the form of a
closed loop that is kept in motion by two rollers. When V is sufficiently high, the thread is
stretched in the downstream direction and remains confined to a vertical plane, as shown
in Figure 2. However, when V is less than a critical value, the thread becomes unstable to
out-of-plane oscillations. This oscillatory motion leaves complex traces of fluid on the belt
that resemble stitch patterns when viewed from above, hence the name FMSM.
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Figure 2. A laboratory apparatus for studying the FMSM. The units on the ruler are centimeters
(left) and inches (right). Photograph courtesy of J. R. Lister.

The first investigations of the dynamics of threads of viscous fluid falling onto sur-
faces were the experimental studies of liquid thread coiling by G. Barnes and collabora-
tors [2,3]. Since then, liquid thread coiling has been studied in depth using laboratory
experiments [4–14] linear stability analysis [11,15,16], scaling analysis [8], asymptotic anal-
ysis [17], and numerical analysis based on slender-thread theory [9–14,18]. Interest in the
more complicated case of a moving surface—the FMSM—began with the pioneering study
of Chiu-Webster and Lister [1], who performed laboratory experiments and proposed a
theoretical model in which the thread deforms by stretching alone, without bending. In
the same year, Ribe et al. [19] proposed a theoretical model that included bending. They
performed a linear stability analysis of the steady dragged state of the thread, and found
that the predicted critical belt speed and frequency for the onset of out-of-plane oscillations
(meandering) agreed closely with the experimental measurements of [1]. Extensive labo-
ratory experiments with improved apparatus were performed by Morris et al. [20], who
determined a detailed phase diagram of the stitch patterns as a function of fall height and
belt speed. They showed that the onset of meandering is a Hopf bifurcation, and applied
equivariant bifurcation theory together with symmetry constraints to determine generic
amplitude equations for interacting modes of the thread’s motion. Blount and Lister [21]
used matched asymptotic expansions to determine the structure and stability of a dragged
viscous thread in the limit of extreme slenderness. Brun et al. [22] performed numerical
simulations of the FMSM patterns using an algorithm based on a discrete formulation of
the slender-thread equations, and classified the different patterns according to their Fourier
spectra. Finally, Brun et al. [23] proposed a reduced (three-degrees-of-freedom) model for
non-inertial FMSM patterns, and showed that the model equations accurately predict the
sequence of bifurcations that occur as the belt speed changes.

This review article begins in Section 2 by surveying the complex phenomenology of
the stitch patterns and classifying them according to their symmetries. Section 3 reviews
liquid thread coiling on a motionless surface, the physics of which underlies the FMSM.
Section 4 examines the initial bifurcation from a steady dragged thread to meandering via
a linear stability analysis based on the theory of slender viscous threads. Section 5 presents
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direct numerical simulations of the stitch patterns using a ‘discrete viscous threads’ (DVT)
numerical model. Section 6 presents a spectral analysis of selected stitch patterns based
on DVT simulations. Section 7 discusses a reduced model for inertia-free stitch patterns
that explains several curious features of the more complicated DVT simulations. Finally,
Section 8 discusses the (slightly imperfect) fore–aft symmetry of many of the patterns, and
closes with some suggestions for further research.

2. Stitch Patterns

Figure 3 shows an essentially complete catalog of the stitch patterns observed exper-
imentally in the FMSM. In this preliminary presentation, the patterns are shown ‘all in
a jumble’, with no attempt to indicate the relationships between them. Apart from the
disordered pattern and the steady dragged thread, all the other patterns are periodic in the
coordinate x parallel to the belt’s motion, with a well-defined primary wavelength λ.

�at (steady dragged thread)

meanders

double meanders

   bunched meanders braiding

translated coiling

1 cm

sidekicks

alternating loops

slanted loops

two by two

disordered

W pattern

bunched double coiling

Figure 3. Stitch patterns observed in the FMSM. Photographs courtesy of J.R. Lister.

It is instructive to classify the patterns by their different symmetries. Let y be the
horizontal coordinate normal to the direction of the belt’s motion, with origin on the
line below the center of the nozzle. Because not all patterns are graphs y(x), we de-
scribe each pattern by the pair of functions x(s), y(s), where s is the arclength along the
thread’s axis. Let λs be the ‘arcwise wavelength’, i.e., the total arclength of the thread
contained within one wavelength λ in the x-direction. Table 1 shows the symmetries of
the patterns. The most highly symmetric pattern is of course the steady dragged thread
with y(s) = 0, which exhibits (trivial) mirror symmetry across the vertical plane y = 0.
Among the periodic patterns, three (meanders, alternating loops, and two-by-two) have the
symmetry y(s + λs/2) = −y(s). This corresponds to reflecting the pattern across the line
y = 0 and then shifting it longitudinally by an amount λs/2. Next comes the symmetry
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y(s0 − s) = y(s) for some s0, which corresponds to fore–aft symmetry with respect to the
direction of belt motion. In addition to the patterns already mentioned, translated coiling
and the W-pattern exhibit this symmetry. Finally, the lowest symmetry is simple periodicity
such that y(s + λs) = y(s). All the patterns except the disordered one are periodic.

Table 1. Symmetries of stitch patterns observed experimentally. An X indicates a pattern having the
symmetry shown at the top of each column.

Pattern y(s) = 0 y(s + λs/2) = −y(s) y(s0 − s) = y(s) y(s + λs) = y(s)

Flat (dragged thread) X X X X
Meanders − X X X
Alternating loops − X X X
Two-by-two − X X X
Translated coiling − − X X
W pattern − − X X
Bunched meanders − − − X
Braiding − − − X
Bunched double coiling − − − X
Slanted loops − − − X
Double meanders − − − X
Sidekicks − − − X
Disordered − − − −

To understand better the relationships among the patterns, it is helpful to examine a
phase diagram showing where each pattern is observed in the space of belt speed and fall
height. Figure 4 shows such a diagram for the values of the viscosity ν and the flow rate
Q given in the caption. For fall heights H ≤ 5.5 cm, the patterns appear in the order flat -
meanders - alternating loops - translated coiling as the belt speed decreases. For greater
fall heights, alternating loops disappear, only to reappear again around H = 7.8 cm. The
phase diagram is particularly rich for H ≥ 7.2 cm, where additional patterns such as the
W-pattern, double coiling, biperiodic meanders, and slanted loops are seen. Much of the
region H ≥ 7.2 cm is given over to disordered patterns, which occur in ‘patches’ in the H-V
space bounded by regions of periodic patterns.
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Figure 4. Stitch patterns of the FMSM as a function of fall height H and belt speed V, for silicone oil
with ν = 277 S and Q = 0.027 cm3 s−1. Upright and inverted triangles indicate observations made
while increasing and decreasing the belt speed, respectively. Grey shaded regions indicate ranges of
H for which the frequency of liquid thread coiling, calculated for the parameters of the experiment
using the method of Ribe [18], is multivalued. Figure adapted from figure 3 of [20].
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3. Basics of Liquid Thread Coiling

As the dynamics of liquid thread coiling underly those of the FMSM, it is important
to start by developing a basic understanding of the former. Liquid thread coiling can best
be understood by considering how its angular frequency Ω depends on the fall height H,
which is the main control parameter. Figure 5 shows a typical variation of Ω as a function
of H. As H increases, the relative importance of the viscous, gravitational, and inertial
forces acting on the coiled portion of the thread changes, leading to four distinct regimes
of liquid thread coiling. At very low fall heights, both gravity and inertia are negligible
compared to viscous forces. The coiling in this ‘viscous’ (V) regime is purely kinematic,
driven by the forced extrusion of the fluid from a nozzle, and the coiling frequency scales
as [18]

ΩV ∼
U1

H
(1)

where U1 = Q/(πa2
1) is the typical axial velocity of the fluid and a1 is (to recall) the thread

radius at the top of the pile. At somewhat larger fall heights, the viscous forces are balanced
by gravity while inertia remains negligible. In this ‘gravitational’ (G) regime, the coiling
frequency scales as [17]

ΩG ∼
U1

δ

(
ln

H
δ

)−1/2
(2)

where δ ∼ (νQ/g)1/4 is the length scale over which gravity balances viscous forces in
the coil and ν is the kinematic viscosity. The logarithmic term appears because the tail
behaves like a catenary, which is deflected by an amount ∝ F| ln F| by a horizontal force F
associated with bending in the coil. At very large fall heights, the dominant forces in the
coil are viscous forces and inertia. This is the ‘inertial’ (I) regime, in which Ω scales as [8]

ΩI ∼
(

Q4

νa10
1

) 1
3

(3)
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Figure 5. Coiling frequency Ω as a function of the fall height H for ρ = 0.97 g cm−3, ν = 105

cS, γ = 21.5 dyne cm−1, d = 0.068 cm and Q = 0.00215 mL s−1. The red curve was calculated
numerically using the method of Ribe [18]. Portions of the curve corresponding to the different steady
coiling regimes are indicated: V (viscous), G (gravitational), IG (inertiogravitational), and I (inertial).
Dotted portions of the curve represent coiling that is unstable to small perturbations. Dashed lines
with slope −1/2 are the first three pendulum frequencies of the tail of the thread, with the order of
each mode indicated by the number to the left.
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At fall heights intermediate between the G and I regimes, there appears an ‘inertio-
gravitational’ (IG) regime in which Ω is a multivalued function of H. In this regime the
tail of the thread behaves as a distributed pendulum that enters into resonance with the
coil whenever the frequency ΩG fixed by the coil is close to one of the natural oscillation
frequencies of the tail. These frequencies are [10]

Ω(n) = Cn

( g
H

)1/2
, n = 1, 2, ... (4)

where Cn are constants of proportionality. The coiling frequency ΩIG(H) in this regime
defines a set of resonance peaks centered on lines with slope −1/2 on a log–log plot of Ω
vs. H (Figure 5).

Finally, the relation between a1 and H depends on the dimensionless fall height
Ĥ ≡ H(g/ν2)1/3. For Ĥ < 2, the weight of the fluid in the tail is balanced primarily by
the viscous resistance to stretching, and a1 ∼ (νQ/gH2)1/2. For Ĥ > 10, the weight is
balanced primarily by the vertical momentum flux, and a1 ∼ (Q2/gH)1/4.

4. Onset of Meandering

We now examine more closely the first bifurcation in the FMSM from a steady dragged
thread to meandering. This bifurcation was studied experimentally by Chiu-Webster and
Lister [1] and Morris et al. [20], and theoretically by Ribe et al. [19], Morris et al. [20],
and Blount and Lister [21]. Figure 6a compares experimental measurements (circles) of
the critical belt speed Vc [1] with the prediction (solid line) of a numerical linear stability
analysis of the equations governing the motion of a slender viscous thread with inertia
deforming by stretching, bending, and twisting [19]. The parameters of the experiment are
given in the figure caption. The experiments and the numerics agree remarkably well.

(a)

1
4 5 6 7 8 910

5

10

20

50

4 5 6 7 8 9 10

(b)
10

5

2

Figure 6. Onset of meandering for golden syrup (ρ = 1.438 g cm−3, ν = 350 S), Q = 0.044 cm3

s−1, and d = 1.0 cm. (a) Critical belt speed Vc as a function of fall height. Circles: experimental
measurements. Solid line: prediction of the linear stability analysis described in the text. Dotted line
(nearly indistinguishable from the solid line): axial velocity U1 = Q/πa2

1 at the bottom of a thread
coiling on a motionless surface for the same experimental parameters. (b) Angular frequency of
oscillation σi as a function of fall height. Circles: experimental measurements. Solid line: prediction
of the linear stability analysis. Dotted line: angular frequency Ω of steady liquid thread coiling on a
motionless surface for the same experimental parameters. Figure adapted from figures 5 and 7 of [19].

To understand the origin of the critical belt speed, it is revealing to compare the
quantity Vc with the vertical speed U1 ≡ Q/(πa2

1) of a coiling viscous thread that has
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fallen through a distance H onto a stationary surface. The function U1(H), calculated
numerically using the method of Ribe [18] for the parameters of the FMSM experiment in
question, is shown by the dashed line in Figure 6a. The solid and dashed lines are nearly
indistinguishable, indicating that Vc = U1 with negligible error. This result has a simple
kinematical interpretation: meandering begins when the belt speed becomes too slow to
advect away in a straight line the fluid falling onto it.

Further insight can be obtained by comparing the angular frequency σi of incipient
meandering (i.e., the imaginary part of the growth rate predicted by linear stability analysis)
with the angular frequency Ω of liquid thread coiling with the same parameters. These two
quantities are shown as functions of H by solid and dashed lines in Figure 6b, respectively.
The two curves track each other closely apart from a small systematic offset. This means
that for a given fall height the frequency of incipient meandering is nearly equal to the
frequency of liquid thread coiling on a motionless surface.

Deeper physical insight into the mechanism of incipient meandering is provided by
the asymptotic stability analysis of Blount and Lister [21]. These authors focus on the
‘gravitational heel’ structure of the lowermost part of the thread when V ≈ U1. The shape
of this heel (Figure 7) results from a steady balance of the weight of the fluid and the viscous
forces that resist bending of the thread. The asymptotic analysis shows that the thread is
stable to meandering if bending forces in the heel pull the tail in the same direction as the
belt motion, and unstable if the tail is pushed against the belt motion. Blount and Lister [21]
liken the latter situation to the heel ‘losing its balance’.

1.0

0.5

0.0

0.00 0.02 0.04

x/H

z/H

V

Figure 7. ‘Gravitational heel’ shape of a dragged viscous thread at the onset of meandering, for the
parameters of the experiment of Figure 6. The shape was calculated numerically using the method
of Ribe et al. [19]. The horizontal scale is exaggerated by a factor of 15 relative to the vertical scale.
Figure adapted from figure 6 of [19].
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The linear stability analyses discussed above are limited to meandering of infinites-
imal amplitude. Finite-amplitude meandering was studied by Morris et al. [20] using a
phenomenological model in which the amplitude A of the meandering is governed by a
Landau equation

τȦ = εA− µA|A|2 + h.o.t. (5)

where ε = (Vc −V)/Vc is the degree of supercriticality, τ is a time scale related to the linear
growth rate of the instability, and h.o.t. denotes higher-order terms. For small amplitudes
A � 1, we can write down perturbation expansions for the position (x(t), y(t)) of the
contact point. Now the reflectional symmetry of the catenary implies that the out-of-plane
variable y(t) must be an odd function of A, while the in-plane variable x(t) must be an
even function of A. Thus the position of the contact point must have the form

y(t) = A sin ωt + O(A3), (6)

x(t) = x0 + B cos(2ωt + φ) + O(A4) (7)

where B = O(A2), ω = ωc + O(A2), ωc is the frequency of the onset of meandering, φ is
a constant phase, and x0 is the unperturbed displacement to within an O(A2) correction.
The absolute speed W(t) of the contact point is

W2 = (ẋ−V)2 + ẏ2 = V2 + 4BωV sin(2ωt + φ) +
A2ω2

2
(1 + cos 2ωt) + O(A4). (8)

We now assume that W is constant and equal to the free-fall speed U1, which is in turn
equal to the critical belt speed Vc. Setting W = Vc in (8), we find

V2
c = V2 +

A2ω2

2
+ O(A4), (9)

B =
A2ω

8V
+ O(A4), φ =

π

2
+ O(A2). (10)

Rearranging (9), we obtain

A2 =
2(V2

c −V2)

ω2 ≈ 4V2
c

ω2
c

Vc −V
Vc

, (11)

which when compared with the steady form of (5) gives

µ = (ωc/2Vc)
2. (12)

This generic argument yields the amplitude of the meanders close to threshold.
Morris et al. [20] showed in their Figure 8 that the kinematic estimate (12) agreed closely
with experimental measurements for fall heights H > 5.5 cm.

5. Direct Numerical Simulation

Brun et al. [22] performed a direct numerical simulation of the FMSM using a ‘discrete
viscous threads’ (DVT) algorithm that is most fully discussed in Audoly et al. [24]. Such
simulations allow one rapidly to construct a phase diagram of the FMSM patterns by
varying adiabatically the fall height H and the belt speed V. Brun et al. [22] presented their
phase diagrams in the space of dimensionless fall height Ĥ and belt speed V̂ defined by

Ĥ = H
( g

ν2

)1/3
, V̂ = V(νg)−1/3. (13)
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A given phase diagram is uniquely identified by the values of the following three
dimensionless groups that are independent of both H and V:

Π1 =

(
ν5

gQ3

)1/5

, Π2 =

(
νQ
gd4

)1/4
, Π3 =

γd2

ρνQ
. (14)

Figure 8 shows the phase diagram predicted using DVT for Π1 = 670, Π2 = 0.37, and
Π3 = 1.84 (vertical lines), together with experimental data from Morris et al. [20] for the
same parameters (circles). The fall heights Ĥ ≤ 0.8 here are ‘low’ values in the sense that
inertia is negligible throughout the thread. The agreement between the numerics and the
experiments is quite good, although a tendency for the predicted boundaries to be slightly
higher than the experimental ones is noticeable.

Experimental

0.50 0.55 0.60 0.65 0.70 0.75
0.00

0.01

0.02
Numerical

Figure 8. Phase diagram for the patterns at low fall heights Ĥ ≤ 0.8. Numerically predicted
and experimentally observed patterns as functions of Ĥ and V̂ are indicated by vertical lines and
circles, respectively. The patterns corresponding to each color are shown as insets. White spaces
between vertical bars of different colors indicate ranges of belt speeds for which the automatic pattern
recognition gave ambiguous results. Figure adapted from figure 6 of [22].

For fall heights Ĥ > 0.8, Brun et al. [22] encountered numerical difficulties if surface
tension was present (Π3 > 0). Accordingly, they assumed Π3 = 0 in order to be able
to construct a phase diagram for Ĥ up to 1.5. Figure 9 compares this phase diagram
(main portion) with the experimentally determined phase diagram for the same values of
Π1 and Π2, but Π3 = 1.84 (inset). The topology of the two diagrams is broadly similar.
Nevertheless, it should be noted that the maximum values of Ĥ in the two diagrams are
different, such that a given pattern appears at larger values of Ĥ in the laboratory (where
surface tension is unavoidable) than in the numerics with Π3 = 0. There are also a number
of significant differences in detail. In particuliar, the W, slanted loop, and alternating loop
patterns are observed in the experiments for Ĥ > 1.7, but do not occur in the high-Ĥ
portion of the numerical phase diagram.
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1.0

2.0

3.0

H
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C

D

E

F

I

Figure 9. Main portion: phase diagram of the FMSM constructed using DVT for Π1 = 670, Π2 = 0.37,
and no surface tension (Π3 = 0). The patterns shown as insets include translated coiling (A, red), me-
anders (B, blue), alternating loops (C, green), disordered patterns (D, grey), double coiling (E, pink),
double meanders (F, purple), and stretched coiling (H, yellow). The dimensionless frequency Ω̂c(Ĥ)

of liquid thread coiling is shown beneath the phase diagram, with multivalued intervals highlighted.
Inset: phase diagram determined experimentally [20] with Π1 = 670, Π2 = 0.37 and Π3 = 1.84 (top).
Additional patterns include the W pattern (yellow circled in black) and slanted loops (blue circled in
black). The corresponding coiling frequency Ω̂c(Ĥ) is also shown (bottom). Figure adapted from
figure 7 of [22].

6. Spectral Analysis of the Patterns

A revealing way to characterize the different FMSM patterns is to calculate the Fourier
spectra of the time-varying longitudinal coordinate x(t) and transverse coordinate y(t) of
the contact point of the thread with the belt. Figure 10 illustrates the spectral characteristics
of three FMSM patterns: translated coiling (A), alternating loops (B), and double coiling (C).
In each of the three panels, part (a) shows the trace on the belt calculated using DVT (left)
and the trajectory of the contact point in the frame of the nozzle (right). Part (b), ‘Spectral
analysis’, shows the Fourier transforms of the longitudinal (red) and transverse (blue)
motion of the contact point (top), together with the corresponding steady coiling frequency
Ω̂(Ĥ) (bottom). Translated coiling, the simplest of the three patterns, is characterized by
a quasi-circular movement of the contact point around the center of the nozzle. Both the
longitudinal and transverse motions are dominated by the same single frequency, which is
close to the steady coiling frequency for the height in question (Ĥ ≈ 1.3). Turning to the
more complicated alternating loops pattern, we see that the longitudinal and transverse
spectra are now dominated by different frequencies, with five distinct peaks in total. The
largest peak occurs for longitudinal motion, with a frequency locked to the value 2Ωc/3.
There is also a secondary peak at 4Ωc/3. The transverse motion on the other hand has
dominant frequencies Ωc/3, Ωc, and 5Ωc/3. Finally, for the double coiling pattern both
the longitudinal and transverse motions are dominated by the same two frequencies in the
ratio 2:1. These frequencies are very close to the two steady coiling frequencies that coexist
at the height in question (Ĥ ≈ 1.42).
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Figure 10. Spectral characteristics of three FMSM patterns: translated coiling (A), alternating loops
(B), and double coiling (C). See the main text for a detailed discussion. Figure adapted from figure 10
of [22].

As a final step in our analysis, we reconstruct the patterns by summing the first few
terms in a Fourier expansion of the form

x(t) + iy(t) =
Nx

∑
j=1

αj cos(ωx
j t + φx

j ) + i
Ny

∑
j=1

β j cos(ωy
j t + φ

y
j ). (15)

where i =
√
−1. In (15), ωx

j , φx
j , and αj are the angular frequency, phase, and amplitude

of mode j of the longitudinal motion of the contact point, while ω
y
j , φ

y
j , and β j are the

analogous quantities for the transverse motion. It turns out that all the patterns can
be reconstructed accurately by retaining at most two frequencies in each direction, i.e.,
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Nx ≤ 2 and Ny ≤ 2. Table 2 presents the values of the relative frequencies, phases, and
approximate amplitudes for seven selected FMSM patterns, including the three discussed
in the previous paragraph. A frequency of unity is assigned to the largest peak in either
the longitudinal or the transverse spectrum. Returning now to Figure 10, we focus on part
(c) of each panel, which shows the reconstructed trace (left) and contact point trajectory
(right) predicted in (15) with the parameters given in Table 2. No attempt has been made
to match the wavelength of the patterns in parts (a). In all three cases, the reconstructed
traces and contact-point trajectories are idealized versions of the (slightly) less regular
traces/trajectories predicted by the full DVT simulations. The kinematic reconstructions
of these three patterns exhibit perfect fore–aft symmetry, as do those of the other patterns
considered by Brun et al. [22] (meanders, double meanders, stretched coiling, and the
W pattern).

Table 2. Spectral characteristics of several FMSM patterns. The parameters shown are those that
appear in the kinematic model (15). The frequency 1 is assigned to the peak in the spectrum with the
largest amplitude. A star indicates a frequency that is locked to the steady coiling frequency Ω̂c.

Pattern ωx
1 ωx

2 ω
y
1 ω

y
2 φx

1 φx
2 φ

y
1 φ

y
2 α1 α2 β1 β2

translated coiling 1 * − 1 * − 0 − 0 − 1.0 − 1.0 −
meanders 2 − 1 * − 0 − π/4 − 0.2 − 1.0 −

alternating loops 1 − 1/2 3/2 * π/2 − 0 0 1.0 − 0.5 0.5
double coiling 1/2 1 * 1/2 1 * π/2 π/2 0 0 0.5 1.5 0.1 1.5

double meanders 1/2 − − 1 * π/4 − 0 − 1.0 0.0 0.0 1.5
stretched coiling 1 2 * 1 2 * π/2 π/2 0 0 1.0 0.1 0.5 0.1

W pattern 1 2 * 1 2 * π/2 π/2 0 0 1.0 0.2 0.2 0.5

7. A Reduced Model for Non-Inertial Patterns

At this point, we have a self-consistent and fairly complete description of the FMSM
patterns based on direct numerical simulation. However, the very high spatial order (= 21) of
the system of differential equations governing unsteady viscous threads leads us to ask: is
it possible to formulate a reduced model for the FMSM with only a few degrees of freedom
that can predict the patterns? The answer turns out to be yes, at least for the patterns
observed at low fall heights that do not involve inertia. Figure 4 shows that for H ≤ 5.5
cm, the sequence of patterns that occur as the belt speed decreases is flat→meanders→
alternating loops→ translated coiling. Moreover, DVT simulations show additionally that
the W-pattern occurs in a narrow range of belt speeds between meanders and alternating
loops, but only if V is increasing and not if it is decreasing. The experiments and the DVT
simulations together therefore suggest that the complete order of the stitch patterns is
translated coiling→ alternating loops→W-pattern→meanders→ flat if V is increasing,
but flat→meanders→ alternating loops→ translated coiling if V is decreasing.

To understand these transitions, Brun et al. [23] proposed a reduced model with three
degrees of freedom. As previously, we denote by U1 the speed at which the falling thread
impinges on the belt. Let s be the arclength along the trace of the thread on the belt, such
that s = 0 is the point that was laid down on the belt at time t = 0 and s = U1t is the
current point of contact r. Then the position on the belt q(s, t) of the point s at time t is

q(s, t) = r(s) + V(t− s/U1)ex (16)

where the second term represents the change of position due to advection by the belt
velocity Vex. The unit tangent vector at the point of contact is

t ≡ ∂sq|s=U1t = r′(s)− (V/U1)ex. (17)
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Now let {r(s), ψ(s)} be the polar coordinates of the contact point r(s), and let θ(s) be
the angle between ex and t. Referring to Figure 11, we resolve t, r′, and ex into the polar
basis (er, eψ). The two components of (17) then take the form

r′ = cos(θ − ψ) +
V
U1

cos ψ, (18)

rψ′ = sin(θ − ψ)− V
U1

sin ψ. (19)

We need one more equation to close the system. To find it, we note that the DVT model
predicts that the curvature θ′ of the trace at the contact point depends only on r and θ − ψ
to a good approximation:

θ′ = κ(r, θ − ψ). (20)

The function κ is determined by fitting to the predictions of the DVT model [23].

Figure 11. Geometry of a falling viscous thread in the vicinity of its contact point with a moving belt.
Figure adapted from figure 3 of [23].

Equation (7) are three coupled nonlinear autonomous first-order differential equations
for r(s), ψ(s) and θ(s). They involve only a single parameter, the dimensionless belt
speed V/U1. The equations remain unchanged when r and s are nondimensionalized
by, e.g., the radius Rc of steady coiling on a motionless surface. We call Equation (7) the
‘geometric model’ (GM). The GM equations were solved using the NDSolve function of
Mathematica [25]. The parameter V/U1 was varied quasi-statically during the simulations,
over a time scale large compared with the dominant period of the patterns. Additional
solutions were obtained using the continuation and bifurcation analysis software package
AUTO-07p [26] to determine the type of each bifurcation encountered as V/U1 was varied.
The convergence of the solutions was verified by showing that they remained essentially
identical when the tolerance parameters were increased by an order of magnitude.

Figure 12 presents a detailed comparison of the GM (green) and DVT (brown) predic-
tions. Part (a) shows the orbits r(s) for the four periodic patterns in the frame of the nozzle
as predicted by the GM. Part (b) shows the corresponding patterns q(s, t) predicted by both
DVT and the GM for four different values of V/U1 = 0.28 (meanders), 0.52 (alternating
loops), 0.66 (W pattern) and 0.83 (meanders). The GM captures all the patterns originally
predicted by the DVT simulations, in the proper order as V/U1 varies. The horizontal
lines in part (c) show the stability ranges of the patterns. In the original DVT simulations,
bifurcations between the patterns were found to be hysteretic: the value of V/U1 at which
each transition occurs depends on whether V/U1 is increasing or decreasing. This feature
of the solutions is reproduced by the GM, which in addition allows one to characterize the
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type of bifurcation involved in each case. The bifurcations are fold points, except for two:
a torus bifurcation from translated coiling to alternating loops as V/U1 increases, and a
period-doubling bifurcation from the W pattern to alternating loops as V/U1 decreases.
Finally, the GM explains why the W pattern was observed in DVT simulations with an
increasing belt velocity, but not with a decreasing one.

Figure 12. Comparison of the predictions of the GM (green) and full DVT simulations (brown). See
the main text for a detailed discussion. Figure adapted from figure 5 of [23].

8. Discussion

A striking feature of many of the FMSM patterns is their fore–aft symmetry with
respect to the direction of motion of the belt. Experimentally observed patterns having this
symmetry include meanders, alternating loops, two-by-two, translated coiling, and the
W pattern. Moreover, kinematic reconstructions reveal that other patterns belong to this
group, including double coiling, double meanders, and stretched coiling. Viewing such
patterns from above provides no indication of which way the belt is moving. The situation
for patterns lacking fore–aft symmetry is quite different: once any of these patterns have
been associated with a direction of belt motion by means of one observation, subsequent
observations will always be able to indicate which way the belt is moving.

Figure 3 and Table 1 shows that several patterns lack fore–aft symmetry: bunched
meanders, braiding, bunched double coiling, slanted loops, double meanders, and side-
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kicks. Different factors seem to be responsible for this. First, in some of these patterns
(braiding, bunched double coiling, slanted loops), the free part of the falling thread makes
contact with an ‘earlier’ portion of the thread that was previously laid down on the belt.
Such self-interaction does not occur in the DVT simulations, where the fluid laid down
on the belt is continuously ‘whisked away’ to make the boundary condition clean. In
laboratory experiments, however, self-interaction in the case of certain patterns cannot be
avoided, and breaks the fore–aft symmetry. A second symmetry-breaking factor is a large
amplitude of the pattern relative to its wavelength. An example is bunched meanders,
which weakly break the fore–aft symmetry of their smaller-amplitude counterparts (i.e.,
normal meanders). A third potential symmetry-breaking factor may be the presence of two
dominant frequencies, as in double meanders.

However, a closer look shows that fore–aft symmetry is always imperfect even for
patterns that look symmetric to the naked eye. This is clear from the DVT spectra of the
longitudinal motion (red lines) shown in the right-hand colum of Figure 10. These all
have noticeable power at zero frequency, indicating a constant offset of the contact point
trajectory in the x-direction relative to the center of the nozzle. This offset is visible in
the contact point trajectories shown at upper right in each panel of the left-hand column
of Figure 10. Physically, the offset reflects the fact that the gravitational heel structure
of the thread near the belt (Figure 7) does not itself have fore–aft symmetry, because the
thread is dragged in only one direction by the belt. In this context it is worth noting that
kinematic reconstructions of the DVT contact point trajectories that neglect the power at
zero frequency do exhibit fore–aft symmetry (left-hand column of Figure 10, lower-right
portion of each panel).

While existing studies provide significant physical insight, much remains to be done be-
fore we fully understand the FMSM. On the experimental side, observations obtained using
much higher values of the dimensionless parameter Π1 = (ν5/gQ3)1/5 would be desirable.
The reason is that the multivaluedness of the steady coiling frequency Ω(H) increases
with Π1 [10]. Values of Π1 ≈ 105 are easy to achieve in the laboratory using high-viscosity
silicone oil and very low flow rates [11]. A greater degree of multivaluedness indicates
a greater number of possible nonlinear interactions among the inertio-gravitational pen-
dulum modes. Such interactions should lead to an even richer phase diagram of FMSM
patterns than the one we have studied here. From the theoretical point of view, the FMSM
can be regarded as a weakly forced nonlinear oscillator. An ambitious but worthy goal
would be to develop an asymptotic nonlinear oscillator theory for the FMSM patterns by
considering the mode interactions mentioned above.
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