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Abstract

In this work, we construct an effective continuum model for architected sheets that are composed of bulky tiles con-
nected by slender elastic joints. Due to their mesostructure, these sheets feature quasi-mechanisms – low-energy local
kinematic modes that are strongly favored over other deformations. In sheets with non-uniform mesostructure, kine-
matic incompatibilities arise between neighboring regions, causing out-of-plane buckling. The effective continuum
model is based on a geometric analysis of the sheets’ unit cells and their energetically favorable modes of deformation.
Its major feature is the construction of a strain energy that penalizes deviations from these preferred modes of defor-
mation. The effect of non-periodicity is entirely described through the use of spatially varying geometric parameters
in the model. Our simulations capture the out-of-plane buckling that occurs in non-periodic specimens and show good
agreement with experiments. While we only consider one class of quasi-mechanisms, our modeling approach could
be applied to a diverse set of shape-morphing systems that are of interest to the mechanics community.

Keywords: Effective continuum models, elastic stability, plate buckling, compliant structures, architected solids

1. Introduction

Advanced manufacturing and synthesis technologies have given engineers the ability to design media with com-
plex micro- and mesostructures that strongly influence bulk constitutive properties [1–3]. For example, the mi-
cro/mesoscale geometry can be designed to attain extreme or unconventional global mechanical behaviors such as
high stiffness-to-weight ratios [1] and bistable auxeticity [4]. These fabrication processes have considerably expanded
the design space for shape-shifting media [5–7] and deployable structures [8, 9]. In this context, mesoscale design has
been used to create compliant features that replace conventional hinges, extensional elements and flexures [10–12], or
to create structures whose mechanical behaviors can be tailored by adjusting the geometry of a pattern [13–21].

In structured media, the mesoscale geometry can be designed to energetically favor desired local modes of defor-
mation [22, 23]. We refer to these behaviors as “quasi-mechanisms” when they accompany a non-negligible change
in the system’s energetic state. This distinguishes quasi-mechanisms from pure mechanisms, which are zero-energy
kinematic modes. We emphasize that quasi-mechanisms are local behaviors: these energetic preferences can be spa-
tially modulated by designing non-uniform mesostructures.

Within this context, origami [10, 14, 24, 25], kirigami [15, 26–28] and auxetic motifs [4, 16, 29–32] are the most
popular classes of mesostructures that lead to quasi-mechanisms. However, demonstrations of shape-shifting materi-
als have also been achieved using thermally responsive bilayer lattices [20] and in 3D structures such as snapology
origami [33]. Quasi-mechanisms can be used to attain non-homogeneous strain field objectives (even under uniform
loading conditions) by relying on non-uniform internal structures that spatially modulate local effective material prop-
erties. Morphing from a planar state to a doubly curved 3D geometry is an example of where this non-uniformity is
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important: Gauss’ Theorema Egregium tells us that changing a surface’s Gaussian curvature requires a non-isometric
mapping [34], which in turn requires mesostructural non-uniformity if the actuation is driven by a spatially uniform
stimulus [9, 20].

However, optimally designing non-uniform micro/mesostructures that lead to desired global behaviors can be
challenging. The presence of geometric features at disparate length scales means that conventional finite element
approaches become computationally expensive due to the need for meshes that resolve the finest features and yet span
the entire structure. Homogenization theory provides a way to determine effective properties of periodic structures
[35], but in practice it is often only viable in the limited context of linear elasticity, as the presence of non-linearity and
instabilities significantly complicates the methods [36]. In light of this, engineers have used a variety of reduced order
modeling techniques to investigate forward elastic equilibrium and stability problems, as well as to inversely design
non-uniform mesostructures at a lesser computational expense. These techniques range from bar-and-hinge [37–
39] and structural frame [40] models that capture the mechanics of folded sheets, to representations of structural
element networks that are based on effective springs [41], equivalent lattices [42], Chebyshev nets [43], discrete
elastic rods [43, 44] and Kirchhoff rods [45].

Despite the above-mentioned advancements in modeling using networks of reduced order elements, there are
limitations to the existing approaches. They can be computationally expensive in cases where the structure is much
larger than the mesoscale unit cell size and a reduced order element (such as a discrete elastic rod) is needed for
every constituent of the physical network (e.g., in hierarchical systems). Additionally, some of these models lack
the generality needed to make themselves useful to the study of other systems. For example, bar-and-hinge origami
models would not be suitable for extensional spring networks. It can also be challenging to calibrate constants such
that accurate results are achieved using these models.

For these reasons, the mechanics community has pursued the development of effective continuum models. These
models are powerful approaches to capturing the behavior of structures with internal geometric patterns in instances
where there is a sufficient separation of length scales between the local geometric parameters and the global be-
haviors [46]. When this separation of scales exists, an energy density function can be constructed to capture the
mechanical behaviors of the structure as if it were a bulk material, thus removing the need to resolve the geometric
features at the smaller length scales with a fine mesh. This coarse meshing allows for significantly faster finite element
simulations of complex physical behaviors. To this end, effective continuum models have been used to understand the
behavior of periodic structured media that display quasi-mechanism behaviors [47] and can capture their responses
to non-uniform loading conditions [48, 49]. However, these effective continuum modeling frameworks have not been
applied to modeling the quasi-mechanism behaviors of graded media.

This article demonstrates how geometric analyses of unit cells can be used to construct effective continuum models
for architected sheets with graded mesostructures. We illustrate this approach by studying generalizations of the
auxetic sheets introduced by Grima et al. [29] to spatially varying distributions of diamond-shaped cuts [16, 50, 51].
The tessellated unit cells consist of bulky tiles connected by slender joints, and display two elastic regimes: a soft
regime that occurs when the tiles rotate about the joints (as shown in Fig. 1a-b), and a stiff regime when the joints
are subjected to tension. We design heterogeneous cut patterns to provoke in-plane kinematic incompatibilities under
simple point-loading scenarios, which leads to out-of-plane buckling in a region of the structure [16] (shown in
Fig. 1e).

This article is organized as follows. In Section 2, we discuss our effective continuum model for non-periodically
patterned sheets that display quasi-mechanism behaviors. Our modeling approach entails first performing a geometric
analysis of unit cells to derive their energetically favorable kinematic modes. Specifically, we derive the effect of
geometric parameters on the rotational behavior of the tiles about the joints. Next, we begin constructing our strain
energy density function by attributing an energy penalty to deviations from the above-mentioned kinematic modes,
which may occur due to kinematic incompatibilities between neighboring regions of the sheets. Since the joints
are not ideal pins, the rotation of tiles is an elastic process, albeit softer than deviations from this preferred local
behavior. We use a common constitutive model for elastic materials to approximate the elastic energy associated with
the tile rotations. We extract the value of a few non-geometric constants from tensile experiments on periodically
patterned structures and these parameters are then used to simulate the non-periodic structure. This type of effective
material modeling enables us to use a coarse mesh to solve for pre-buckled equilibrium, the onset of instabilities,
and post-buckled equilibrium. The numerical approach is discussed in Section 3, and we compare these numerical
results to a new set of experiments in Section 4, highlighting the good agreement between coarse mesh finite element
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Fig. 1: (a-b) A sheet with a periodic cut pattern that displays a quasi-mechanism mode of deformation: rotation of tiles about slender elastic
joints. As the tiles rotate, the unit cell dimensions change from Li

α to L f
α. Although tile rotations are low-energy kinematic modes compared

to other deformations, the energetic cost associated with the deformation of the joints is not negligible. (c) Introducing a gradient in the cut
pattern modulates the quasi-mechanism kinematics over the sheet. The scale bar represents 3 cm. (d) The mesostructural non-uniformity shown in
(c) affects the extent to which tiles can rotate in different regions of the sheet, creating kinematic incompatibilities between the quasi-mechanism
behaviors of different regions. Here, λx is the maximum stretch a unit cell can attain in the direction of loading through quasi-mechanism behaviors.
(e) These in-plane kinematic incompatibilities lead to out-of-plane buckling. The design of the buckling sheets shown in (c-e) was first discussed
in our prior work [16].

simulations and experiments. Our concluding remarks and perspective for future work are presented in Section 5.
While our modeling method is demonstrated for the class of quasi-mechanisms discussed above, we believe it would
be straightforward to apply it to many other quasi-mechanisms that are of interest to the mechanics community, such
as origami tessellations [25] and shape-shifting bilayer lattices [20].

2. Modeling approach

In this section, we discuss how a strain energy density function can be extracted by modeling the effect that
mesoscale geometric features have on a structure’s energetically favorable local modes of deformation. Our approach
is presented for modeling effective continua within the context of initially flat sheets with diamond-shaped cut patterns,
although it could be generalized to other types of 2D or 3D architected media.

2.1. Quasi-mechanism kinematics

Our aim is to create an effective continuum model that captures the quasi-mechanism kinematics of sheets with
diamond-shaped cut patterns (Fig. 2a). These sheets are tessellations of unit cells that are composed of four bulky
tiles connected by slender elastic joints (Fig. 2b). The structures may be either periodic or non-periodic tessellations
of unit cells (as in Fig. 2a or Fig. 1c, respectively). In either case, the quasi-mechanism local modes of deformation
can be derived from a simple geometric analysis relating unit cell geometry to the rigid body rotations of the bulky
tiles about the joints (Fig. 2b-c).

Five spatially varying geometric parameters constitute a geometry vector field φ(xα) and define the quasi-mechan-
ism kinematics of our sheets. Namely φ = {l1, l2, δ,w1,w2}, where l1(xα) and l2(xα) are the lengths of the unit cell grid
spacing in the e1 and e2 directions, δ(xα) is the width of the slender joints, and w1(xα) and w2(xα) are the half-widths
of the two diamond-shaped cuts that define the tiles’ inclinations. These parameters are illustrated in Fig. 2d. A few
geometric parameters that are functions of the five mentioned above are also shown in Fig. 2d and will be discussed
below.

We seek to identify a function g(C,φ) such that the local quasi-mechanisms are described by the implicit relation
g(C,φ) = 0. Here, C is the right Cauchy-Green strain tensor. To do so, we first define a unit cell as a 2×2 arrangement
of quadrilateral tiles. Due to the symmetry of the unit cell, we can fully describe its quasi-mechanism kinematics by
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Fig. 2: (a) An example of a sheet with a uniform pattern of diamond-shaped cuts. (b) A unit cell (shaded) consists of four tiles (boxed). (c)
The quasi-mechanism kinematics consists of tile rotations about the slender elastic joints. This deformation mode can be entirely described by
the projection of the tile diagonals onto the fixed orthogonal coordinate frame. This rotational mode has a non-negligible energetic cost, but one
that is still much lesser than deformations where the joints are under tension or shear. (d) The reference configuration of the boxed tile shown
in (b). Five parameters define the geometry of a unit cell: l1 and l2 are the reference configuration lengths of the unit cell grid spacing in the
e1 and e2 directions, δ is the width of the slender joints, and w1 and w2 are the half-widths of the two diamond-shaped cuts that define the tiles’
inclinations. The diagonals dv and dh and the angle γ between these two can be computed from those parameters. Finally, θ is the angle between
the red diagonal, dh, and the e1 direction. As the tile rotates from one configuration to another, this angle varies (as shown in b-c). The projected
lengths of the tile’s deformed configuration in the e1 and e2 directions are dh cos(θ) and dv sin(γ + θ), respectively. This allows us to compute the
unit cell stretches: only the rotation of one tile about a joint needs to be analyzed to determine the quasi-mechanism kinematics of the unit cell.
(a-d) Adapted from [16] by permission of The Royal Society of Chemistry.

analyzing the geometry and rotation of a single tile. We use the bottom left tile in the unit cell, such as the one boxed
in Fig. 2b-c. For a unit cell located at xα with geometry defined by φ(xα) = {l1(xα), l2(xα), δ(xα),w1(xα),w2(xα)}, the
respective lengths dh and dv of the diagonals illustrated in Fig. 2d in red and blue are

dh(φ) =

√
l21 + (l2 − 2w2 − δ)2 and dv(φ) =

√
l22 + (l1 − 2w1 − δ)2 . (1)

The angle γ between these two diagonals is given in terms of the geometric parameters φ as

γ(φ) =
π

2
− arctan

(
l2 − 2w2 − δ

l1

)
− arctan

(
2w1 + δ − l1

l2

)
. (2)

As the tile rotates about the joint, the angle θ between the diagonal dh and the e1 direction varies, as shown in
Fig. 2b-c. During this tile rotation, the projected lengths of the tile diagonals on the fixed orthogonal frame ei change,
and the unit cell will have effective stretches λ1 and λ2 of

λ1(θ) =
dh cos θ

l1
and λ2(θ) =

dv sin(γ + θ)
l2

. (3)

We can invert the function for λ1(θ) to obtain θ(λ1) as

θ(λ1) = arccos
(
λ1l1
dh

)
. (4)

Substituting (4) into the expression for λ2(θ) in (3) leads to the following explicit formula for λ2(λ1):

λ2(λ1) =
dv

l2
sin

[
γ + arccos

(
λ1l1
dh

)]
. (5)

We first derived this explicit function for the quasi-mechanism kinematics in our prior work [16]. Through trigono-
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metric identities and algebraic manipulation, this can be written in implicit form:(
l1λ1

dh

)2

+

(
l2λ2

dv

)2

− 2 sin(γ)
l1λ1

dh

l2λ2

dv
− cos2(γ) = 0 (6)

In our reference frame, the implicit function (6) can be rewritten using the components of C, since C11 = λ2
1e1 ⊗ e1

and C22 = λ2
2e2 ⊗ e2:

g(C,φ) =
l21C11

d2
h(φ)

+
l22C22

d2
v (φ)

− 2 sin
(
γ(φ)

) l1l2
dh(φ)dv(φ)

√
det C − cos2

(
γ(φ)

)
= 0 (7)

The quasi-mechanism kinematics expressed in (7) describe the unit cells’ preferred modes of local deformation
as a function of geometric parameters. We emphasize that a unit cell may not deform according to this function. For
example, this may occur if neighboring unit cells have a different geometry and cause kinematic incompatibility or if
global loading conditions make these modes of deformation energetically unfavorable. In these cases, g(C,φ) , 0.
In Section 2.3, we will model the stiffening that occurs when (7) cannot be satisfied by embedding this kinematic
description as a penalty term in our strain energy function.

2.2. Kinematics of a thin elastic plate

Our aim is to embed the quasi-mechanism behavior described by (7) into an effective continuum model. We con-
sider a thin elastic plate whose material particle positions of the mid-plane in an initially flat reference configuration
are X = xαeα. The indices α and β in this subsection relate to the mid-plane of the plate (we use the Einstein summa-
tion convention for repeated indices), and the index ‘3’ corresponds to the direction normal to the reference surface.
The coordinate frame {ei} is fixed and orthonormal. The domains for the material coordinates xα are x1 ∈ [0, a] and
x2 ∈ [0, b], where a and b are constants. The thickness t is much smaller than the other material domain dimensions,
and we seek the mid-surface mapping χ(xα):

χ(xα) =
(
xα + uα(xβ)

)
eα + w(xβ)e3, (8)

where uα and w are the in-plane and out-of-plane components of the mid-plane displacement vector, respectively. The
deformation gradient tensor F̃ = ∇χ can be expressed in terms of the gradients of uα and w. We label F as the in-plane
component of the deformation gradient tensor (F ≡ I + ∇uα). Since we have two material coordinates embedded in
three spatial dimensions, the deformation gradient assumes the following form:

F̃ =

1 + u1,1 u1,2
u2,1 1 + u2,2
w,1 w,2

 =

[
F
∇w

]
(9)

We use the right Cauchy-Green deformation tensor, C, as our measure for in-plane strain. We address moderate
deflections and use a linear bending model. In this linear setting, bending can be described using a single strain
measure, the Laplacian of the out-of-plane deflections, ∆w [52]:

C = F̃TF̃ = FTF + ∇w ⊗ ∇w, ∆w =
∂2w
∂x2

1

+
∂2w
∂x2

2

(10)

2.3. Strain energy

Now that we have an implicit function (7) describing the quasi-mechanism behavior and a formulation of thin plate
kinematics, we can construct a strain energy density function for our sheets. The first step is to attribute an energy
penalty Ψp for deviations from the quasi-mechanism behavior. For the unit cells in question, the quasi-mechanism
behavior entails the rotation of tiles about joints, so Ψp will penalize joint stretching or shearing, capturing the energy
from frustration. As discussed in Section 2.1, g(C,φ) = 0 when local deformations correspond to quasi-mechanism
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behaviors, and g(C,φ) , 0 when there is a deviation from these energetic preferences. Therefore we can write our
energy penalty Ψp as

Ψp =
1
2η

g2(C,φ) , (11)

where η is a small parameter. For our perforated sheets, g(C,φ) is given in (7). Therefore,

Ψp =
1
2η

(
l21C11

d2
h

+
l22C22

d2
v
− 2 sin(γ)

l1l2
dhdv

√
det C − cos2(γ)

)2

. (12)

For elastic bodies, deforming according to these preferential modes will still entail non-zero energy. Because
the function g assumes rigid tiles connected by perfectly flexible hinges, we must also assign a soft elastic energy
density Ψs to this scenario to capture the in-plane bending energy of the joints (this softness is relative to the energy
expense of deviating from quasi-mechanism behaviors). A compressible Neo-Hookean model provides the flexibility
to approximate our experimental data from tensile tests well while using only two material parameters. Therefore, the
total membrane strain energy density function Ψm(C,φ) = Ψp(C,φ) + Ψs(C) is

Ψm(C,φ) = Ψp(C,φ) +
µ

2
(Ī1 − 2) +

λ

2
(J − 1)2 , (13)

where J =
√

det(C), Ī1 = tr(C)J−1, µ and λ are the Lamé parameters and Ψp is given in (12). Our bending energy
density functions is

Ψb =
B(∆w)2

2
. (14)

The bending energy Ψb uses a single bending modulus B. It is equivalent to a widely used alternate expression for
the bending energy that involves two moduli and two bending strain measures, in the sense that both predict the same
net bending force in the interior of the domain. Indeed, as shown in [52], the only place where two bending moduli
are required is in the calculation of the bending force on the edge of the plate, a subtlety which is ignored here. Our
strain energy per unit thickness is the sum of Ψm and Ψb, integrated over the 2D domain spanned by the mid-plane of
the sheet, Ω:

E(u,w) =

∫
Ω

(
Ψm(C,φ) + Ψb(∆w)

)
dA (15)

All of the parameters in the energy function are either geometric or can be extracted from three simple tensile
experiments: one on a dogbone specimen of the bulk rubber with no cut patterns, and two (conducted in orthogonal
directions) on a sheet with periodic but anisotropic cuts.

To apply this modeling framework to media that are composed of other types of unit cells (e.g. generalized miura-
ori tessellations [14] or perforated sheets whose soft modes involve shear), one would first need to perform a geometric
analysis similar to what was shown in Section 2.1 to find an appropriate implicit function g that connects unit cell
geometries to their quasi-mechanism kinematics, then construct an energy function similar to (15) that appropriately
captures the elasticity of the medium.

2.4. Contact model

The non-uniformly perforated sheet shown in Fig. 1c-e buckles out of plane from an initially flat state due to
the effect of in-plane loading. This instability only occurs when the sheet rests upon an underlying rigid surface.
Otherwise, it will sag prior to in-plane loading due to the effect of gravity. In the case where the sheet lies on a rigid
surface, we wish to enforce the contact condition w ≥ 0. While techniques such as the active set method directly
impose this constraint, we opt to relax this condition and instead use a rather simple penalty-based contact model.
Thus, for problems where the sheet is lying on a flat surface, we consider a contact penalty energy for negative
out-of-plane deflections:

Ψc(w) =
P
2

(dw−)2, dw− = min(0,w + ε), (16)

6



where P is the penalty stiffness and ε > 0 is a small tolerance length. Notice that the contact energy is nonzero
only when w < −ε. This ensures that the contact condition does not interfere with the stability of the initially flat,
unbuckled plate, and only becomes active post-bifurcation. We add this contact energy onto (15) to give the total
energy functional

E(u,w) =

∫
Ω

Ψm(C,φ) + Ψb(∆w) + Ψc(w) dA. (17)

We will discuss the variations of this energy to compute equilibrium and stability in Section 3. Removing this contact
energy yields simulated buckled shapes that are similar to the results shown later in this paper, although some regions
of the sheet display a (small) negative displacement that is not possible in experiments that include a rigid substrate.

3. Finite element implementation

In this section, we present the equilibrium conditions for the system. Using a mixed formulation, we compute
the solution using standard first order Lagrange polynomial finite elements. More details for our solution procedure
and stability analysis are provided in the appendices. We implement this formulation in the deal.II open source finite
element library [53].

Fig. 3: An example of a domain and of a set of boundary conditions used in our simulations. In-plane displacements are prescribed on a portion
of the boundary and in-plane traction-free edges are observed on the remainder. Additionally, we constrain out-of-plane displacements and have
no applied moments on the entire boundary. This drawing displays the boundary conditions used to model the sheet with non-uniform cut patterns
shown in Fig 1c-e.

We consider a rectangular domain in a displacement-controlled setting. The in-plane displacements u are pre-
scribed on ∂uΩ ⊂ ∂Ω and we have in-plane traction free edges on the remainder, ∂ f Ω = ∂Ω\∂uΩ. Additionally, we
constrain out-of-plane displacements w and have moment-free edges on the entire boundary. Fig 3 shows an example
of a domain and of a set of boundary conditions used in some of our simulations. While the boundary conditions
may be altered for a more general case, the mixed formulation discussed in Subsection 3.1 may not be appropriate for
situations such as clamped boundaries.

3.1. Equilibrium and mixed formulation
The equilibrium condition is the stationarity of our energy functional from (17) in both u and w,

d
dκ

[
E(u + κδu,w + κδw)

]
κ=0

= 0 for all δu ∈ U0, δw ∈ H2
0(Ω), (18)

whereU0 is the set of kinematically admissible in-plane displacement variations

U0 =

{
u ∈

(
H1(Ω)

)2
, u = 0 on ∂uΩ

}
, (19)

and we search for solutions u ∈ U and w ∈ W where

U =

{
u ∈

(
H1(Ω)

)2
, u = u0 on ∂uΩ

}
, W =

{
w ∈ H2(Ω), w = w0 on ∂Ω

}
. (20)

A common issue for plate problems is the bi-harmonic operator on w that arises from the Gateaux derivative of the
bending energy. In this case, the weak form contains a product of the second derivative of w and its variation, so that
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the usual Galerkin finite element method with even quadratic Lagrange polynomial shape functions is not appropriate.1

Therefore, we turn to a mixed formulation that is widely used for linear biharmonic problems [54]. We introduce a
scalar function v ∈ H1

0(Ω) and set it equal to ∆w by considering an augmented energy

Ê(u,w) = sup
v∈H1

0 (Ω)

∫
Ω

Ψm(C) + Ψc(w) − B
(
∇w · ∇v +

1
2
|v|2

)
dA. (21)

Stationarity of Ê in both u and w, along with the suprema condition on v, gives the weak form of equilibrium

0 =

∫
Ω

(
2F
∂Ψm

∂C

)
: ∇δu dA ∀δu ∈ U0,

0 =

∫
Ω

(
2
∂Ψm

∂C
∇w

)
· ∇δw +

∂Ψc

∂w
δw − B∇v · ∇δw dA ∀δw ∈ H1

0(Ω),

0 =

∫
Ω

−B∇w · ∇δv − Bvδv dA ∀δv ∈ H1
0(Ω).

(22)

The first two lines in (22) are the equilibrium relations for in-plane and out-of-plane displacements, respectively. The
final line is the constraint that v = ∆w weakly. The strong form of these relations can be found in Appendix A. Notice
that (22) only contains first derivatives of the displacements and their variations. It is shown in [54] that we may now
consider w ∈ H1(Ω). Therefore, we use a Galerkin finite element formulation with p = 1 shape functions for the fields
u, w and v. We solve the nonlinear system with typical Newton-Raphson iterations. Details on the finite element
formulation and solution procedure can be found in Appendix B.

3.2. Stability analysis

To probe the stability of an equilibrium configuration, it is common practice to calculate the eigenvalues of the tan-
gent stiffness matrix. A negative eigenvalue implies an instability, and the equilibrium solution can then be perturbed
in the direction of the corresponding eigenvector to explore the buckled solution. However, the mixed formulation
complicates this procedure. To assess stability, we must restrict the eigenvectors to the subspace upon which the
constraint v = ∆w is satisfied. To this end, we consider an effective stiffness matrix on this subspace. By solving
the linear constraint explicitly, we can condense v out of the system matrix. Then, we calculate eigenvalues of this
reduced stiffness matrix to asses stability. We use the linear constraint to map the corresponding eigenvector back to
the full variable set and perturb the system. The magnitude of the perturbation is chosen to be on the same order as
the displacement increment. The direction of the perturbation is decided such that the w component at the middle of
the sheet is positive. The full details of the stability analysis can be found in Appendix C.

4. Results

In this section, we discuss the extraction of effective material model constants from experiments on sheets with
uniform cut patterns and we compare experimental and numerical results on the post-buckling behavior of sheets with
non-periodic mesostructure.

4.1. Extracting model constants from experiments on sheets with uniform cut patterns

As discussed in Section 2.3, our energy given in (17) requires the extraction of four parameters from experiments:
the Lamé moduli (λ and µ), the energy penalty parameter (η), and the bending stiffness (B). We obtained λ, µ and
η from tensile tests on the specimen with uniform cut patterns shown in Fig. 2a, where l1 = l2 = 6 mm, δ = l1/8,
w1 = (l1 − δ)/2, and w2 = 0 mm. The sheets have a thickness of t = 1.55 mm, width dimensions of 108 mm in each
direction and are made of natural rubber gum. The diamond-shape cuts were made using a laser cutter.

1Standard Lagrange polynomial shape functions have discontinuous first-derivatives at the boundaries of elements. This would result in inte-
grating the product of two Dirac delta functions, which is undefined.
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The specimen was placed on a custom apparatus that grips the edges with roller pins, thus allowing free sliding
in the direction perpendicular to the tension. To obtain λ and µ, the sheet was loaded in the direction that induces
quasi-mechanism behavior (rotation of the tiles about the elastic joints). Since the sheet’s cut pattern is uniform, no
kinematic incompatibilities arise and only the soft elastic mode is present. The values of µ = 17 kPa and λ = 0.1 kPa
provided a good fit to our data, as shown in Fig. 4. To extract η, the sheet was loaded in the perpendicular direction,
where tiles do not rotate because their diagonals are aligned in the direction of loading and the elastic joints are in
tension. We attain a good match between the effective continuum model given by (17) with experimental and fine
grain simulation data by setting η = 0.002 kPa−1 in the coarse mesh simulations. Fig. 4 shows a comparison of
effective continuum simulations of the in-plane elastic behaviors with experiments and Abaqus/Standard simulations
from prior work [16], where the mesh fully resolves the fine features of the specimen geometry.

Fig. 4: Effective stress vs. stretch for a sheet with a periodic cut pattern. The insets show four unit cells of this structure, see Fig. 2a for an image
of the entire sheet. We compare our effective continuum model (solid red and blue lines) represented by (17) to experiments (solid black lines)
and fine-grain finite element simulations (gray dashes) that fully resolve the small geometric features in our sheets. These experiments and the
fine-grain simulations (using Abaqus/Standard) were conducted in our prior work [16]). The experimental curve for the soft loading direction does
not start at λ = 1 due to the effect of gravity in a vertically loaded tensile testing machine. The inset on the bottom left of the figure shows a small
region of the mesh used in the Abaqus simulations to capture the geometry of the elastic joints. The large number of elements needed for these fine
grain simulations motivates the usage of effective continuum models. The insets in this image were adapted from [16] by permission of The Royal
Society of Chemistry.

We adjust the classic bending stiffness for a Kirchhoff-Love plate [55] by including a scaling factor α that accounts
for the reduced bending stiffness of a porous sheet [56]. Therefore, the bending stiffness of the patterned sheet can be
written in the following form:

B =
αEt2

12(1 − ν2)
. (23)

Here, E = 2 MPa is Young’s modulus (obtained from linear regime tensile tests on a 55 mm × 9.2 mm × 1.5 mm
dogbone sample of natural rubber), t is the sheet thickness, and ν = 0.5 is Poisson’s ratio. We adopt a fitted scaling
value of α = 0.25. Again, (17) is the strain energy per unit thickness, hence the scaling of B with t2.

4.2. Out-of-plane buckling of sheets with graded mesostructure

We now consider a more interesting pattern of cuts that is non-periodic, and where spatial variations in the local
quasi-mechanism behavior lead to kinematic incompatibilities. To model the behavior of these sheets, we update
the geometry vector φ(xα) = {l1(xα), l2(xα), δ(xα),w1(xα),w2(xα)}. We have three specimens of equal thickness t =

1.55 mm, but varying aspect ratios. Now, l1 = {4.5 mm, 6 mm, 7.5 mm} for the three sheets (the overall width
dimensions of the square sheets scale linearly with l1 to 162 mm, 216 mm, and 270 mm, respectively). The other
parameters are l2 = 2l1, δ = l1/8, w1 = (l1 − δ)/2, and w2(xα) = l1−δ

2

(
1 − sin πx2

18l2

)
. The non-uniform geometry is

accounted for by considering spatially varying w2(xα) in the finite element formulation. We note that although the
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geometric parameter w2(xα) is non-uniform, we still use a uniform soft elastic energy density, Ψs, because it represents
the energetic cost of the non-ideal mechanism and the joint density is still uniform.

The geometric gradation of the mesostructure leads to variations in the local quasi-mechanism behavior over the
extent of the sheet. This causes in-plane kinematic incompatibilities, which lead to out-of plane buckling after each
sheet’s critical stretch is reached, as shown in Fig. 5a-b. We show the buckled mode nucleation and the evolution
of the post-buckled height of the central point in the sheets as a function of boundary point displacement in Fig. 5c.
We compare simulations of our effective continuum model (computed using the deal.II finite element library [53] on
a 36 × 36 uniform quadrilateral mesh) to measurements of the physical samples (using a level-calibrated mounted
caliper) and see excellent agreement between the two, especially at larger boundary displacements. As expected, the
stretch at which buckling occurs is delayed by increasing the thickness-to-width ratio. The difference between the
computational predictions and experimental measurements of buckling nucleation and height at lower stretch values
can be partially attributed to the fact that our simulations do not account for friction with the table or gravity. These
two physical processes are important since the material is soft and bending is a low-energy deformation for shells with
small gaussian curvature. As the dome height increases, the structure becomes less susceptible to the effect of gravity.
A similar analysis of how the parameter δ affects the buckling response of the sheets is shown in Appendix D.

Finally, to better visualize how the post-buckling behavior evolves and is affected by the aspect ratio of the sheet,
we show laser scans of the physical specimens and deformed simulation meshes at three different boundary point
displacements in Fig. 6. Accurate quantitative comparisons are challenging due to the manual stitching process that
follows the acquisition of laser scan data patches, which introduces slight distortions and puts certain regions of the
scanned sheet at an inclined plane relative to the rest of the structure. As expected, the post-buckled domes are wider
(relative to the overall width of the sheets) for specimens that have larger thickness-to-width ratios, showing good
qualitative agreement between experiments and simulations. Furthermore, the onset of buckling occurs at greater
stretches as t/l1 increases.

Fig. 5: Buckling behavior of sheets with non-uniform cut patterns. (a) Up to a certain stretch λ, point displacements lead to in-plane deformations.
(b) Following a critical value of λ, the in-plane kinematic incompatibilities will lead to out-of-plane buckling. The scale bar represents 3 cm. (c)
Comparison of dome height between effective continuum simulations (solid lines) and experiments (dots) for sheets of three aspect ratios. Here,
hmid is the height of a sheet’s center point, λ is the stretch of the sheet’s center line in the e1 direction, t is the sheet thickness, and l1 is the length
of the unit cell grid spacing in the e1 direction.

These results show that this effective continuum modeling framework is a powerful tool for understanding the
physics of quasi-mechanisms in non-periodic media. In our previous work [16], we only captured in-plane defor-
mation mappings using standard, fine-grained finite element procedures since the large number of elements needed
to resolve the small mesostructural features (in the range between 105 and 106 elements depending on the structure
being simulated) caused the calculation of out-of-plane buckling modes to have an inviable computational cost. Using
the effective continuum approach we can get accurate results merely using a 36 × 36 uniform quadrilateral mesh, a
reduction of two to three orders of magnitude in the number of elements used. Each of the bifurcation curves in Fig 5
took roughly 5 minutes to compute running on a single core of a Intel R© Xeon R© 5218 processor. Meanwhile, we could
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Fig. 6: Post-buckling behavior of sheets with three thickness-to-width ratios. These are the same three sheets represented in Fig. 5c. Here, t is the
sheet thickness, l1 is the length of the unit cell grid spacing in the e1 direction, and λ is the applied stretch at the midpoint of the sheet edge. In each
entry of the stretch vs. aspect ratio grid, the laser scans are plotted directly above the simulated deformed meshes. As expected, we see that sheets
with higher thickness-to-width ratios will nucleate at larger stretches and will buckle into wider domes relative to the overall sheet width.

not make simulations for the post-buckling behavior of our sheets converge in a reasonable amount of time using a
standard fine-grained FEM approach. A discussion of mesh convergence is presented in Appendix E.

5. Conclusions

We present an effective continuum modeling framework for architected media that display quasi-mechanism be-
haviors and demonstrate its validity on sheets that are patterned with diamond-shaped cuts. The model incorporates
a penalty for deviations from quasi-mechanism behaviors and relies on material model parameters extracted directly
from experiments. We show that the approach correctly predicts the mechanical behavior of non-periodic media, even
when the model’s parameters are derived from experiments on periodic specimens. Our approach permits accurate
and efficient simulations of mechanical behaviors that would otherwise be impractical to model using fine-grained
simulations that fully resolve the material’s small geometric features.

We note that the implicit relation (7) does not define the function g(C,φ) uniquely, implying that other choices
of the functions Ψp from (12) and Ψm from (13) are possible. A good agreement with experiments is still attained,
suggesting that the buckling behavior of the sheet is robust with respect to the choice of the function g. In principle,
the effective elasticity parameters λ, µ, η and B are functions of the geometric parameters and would vary in space
if not for the fact that l1, l2 and δ are constant throughout the sheets, yielding a uniform spatial distribution of joints.
This allows us to determine the values of the elasticity parameters by fitting experiments. Alternatively these values
could be extracted using a homogenization approach.

There are a few limitations to this approach. First, it requires a sufficient separation of length scales between
the global deformation mode dimensions and the unit cell size. Therefore, it would not be able to capture the local
buckling modes observed in some kirigami sheets [57] or handle the dome kinking that occurs in our systems if
they are fabricated from extremely thin sheets [16]. Furthermore, although we believe that this modeling approach
could be applied to a broad range of architected media that display quasi-mechansims, extracting the material model
constants from experiments may be more challenging in other systems in comparison to the perforated sheets we have
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discussed. Finding a suitable soft elastic energy density Ψs that is appropriate for the quasi-mechanism regime also
requires the modeler to have an intuition for which constitutive models can be appropriately tailored to fit experimental
data attained from experiments on their system.

In the future, this modeling framework could be adapted to 3D media and materials with temporally varying
mechanical properties, provided that they also display quasi-mechanisms.
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Appendix A. Strong form of equilibrium

The strong form of the equilibrium relations under the mixed formulation are

−∇ ·

(
2F
∂Ψm

∂C

)
= 0 in Ω,

−∇ ·

(
2
∂Ψm

∂C
∇w

)
+
∂Ψc

∂w
+ B∆v = 0 in Ω,

B(∆w − v) = 0 in Ω,

(A.1)

with boundary conditions (
2F
∂Ψm

∂C

)
· n = 0 on ∂ f Ω,

u = u0 on ∂uΩ,

w = w0, v = 0 on ∂Ω.

(A.2)

The first two equations in (A.1) are the in-plane and out-of-plane momentum balance equations, respectively. The last
equation is the constraint that v = ∆w.

Appendix B. Finite element formulation and Solution Procedure

The fields u, w, and v are H1(Ω), so we may consider a Galerkin finite element formulation with p = 1 shape
functions for them. Therefore,

u =

nu∑
i=0

uiΦ
u
i , w =

nw∑
i=0

wiΦ
w
i , v =

nv∑
i=0

viΦ
v
i , (B.1)

where {Φu
i } is the set of vector-valued shape functions for the in-plane displacements. {Φw

i } and {Φv
i } are the scalar-

valued sets of shape functions for w and v, respectively. Because we assume homogeneous boundary conditions for
both of these fields, we can then consider {Φw

i } = {Φv
i }. Then, using these shape functions for the variations in (22),

the discrete equilibrium equations can be written asRu

Rw

Rv

 = R = 0 , (B.2)

where

Ru
i =

∫
Ω

(
2F
∂Ψm

∂C

)
: ∇Φu

i dA,

Rw
i =

∫
Ω

(
2
∂Ψm

∂C
∇w − B∇v

)
· ∇Φw

i +
∂Ψc

∂w
Φw

i dA,

Rv
i =

∫
Ω

−B v Φv
i − B∇w · ∇Φv

i dA.

(B.3)

To solve for this equilibrium, we use Newton-Raphson updates of the form

K(x)∆x = −R(x), (B.4)

where x = [u0, . . . , unu ,w0, . . . ,wnw , v0, . . . , vnv ] is the vector of degrees of freedom, ∆x are their updates, and K is the
tangent stiffness matrix

K =

Kuu Kuw 0
Kwu Kww Kwv

0 Kvw Kvv

 , (B.5)
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where

Kuu
i j =

∫
Ω

∇Φu
i :

∂2Ψm

∂F∂F
: ∇Φu

j dA,

Kww
i j =

∫
Ω

∇Φw
i ·

∂2Ψm

∂∇w∂∇w
· ∇Φw

j dA,

Kvv
i j =

∫
Ω

−B Φv
i Φ

v
j dA,

Kuw
i j = Kwu

ji =

∫
Ω

∇Φu
i :

∂2Ψm

∂F∂∇w
· ∇Φw

j dA,

Kwv
i j = Kvw

ji =

∫
Ω

−B∇Φw
i · ∇Φv

j dA.

(B.6)

The displacements u0 on the boundary are incremented, and Newton-Raphson is used to reach an equilibrium config-
uration. The previous equilibrium configuration is used as an initial guess for the subsequent iterations.

Appendix C. Stability analysis with mixed method constraint

To probe the stability of an equilibrium configuration, it is common practice to calculate the eigenvalues of the
tangent stiffness matrix. A negative eigenvalue implies an instability, and the equilibrium solution can be perturbed in
the direction of the corresponding eigenvector to explore the buckled solution. In our case, we must restrict ourselves
to eigenvectors in the subspace where the constraint v = ∆w is satisfied. To this end, we consider an effective stiffness
matrix from the quadratic form, upon which the constraint is satisfied. Consider the discrete constraint equation:

Rv = Kvww + Kvvv = 0. (C.1)

This can also be written in the following form:

v = − (Kvv)−1 Kvww. (C.2)

We can then use a reduced variable set xr under which the constraint is satisfied, as

x =

u
w
v

 =

Inu×nu 0
0 Inw×nw

0 − (Kvv)−1 Kvw


[
u
w

]
= Pxr. (C.3)

Then, the quadratic form gives
xT Kx = xT

r K̃ xr, (C.4)

where

K̃ = PT KP =

[
Kuu Kuw

Kwu
(
Kww −Kwv (Kvv)−1 Kvw

)] . (C.5)

Then to assess stability, we probe the eigenvalues of this effective stiffness matrix K̃. An eigenvalue passing through
zero along the principle deformation path implies an instability. The corresponding eigenvector can then be used to
produce a perturbation, using P to map back to the full variable set. The magnitude of the perturbation is chosen
to be on the same order as the displacement increment. The direction of the perturbation is decided such that the w
component at the middle of the sheet is positive.
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Appendix D. The effect of the parameter δ on the buckling response of the sheets

The effect of joint slenderness δ/l1 on the buckling behavior of the sheets with graded unit cell geometry is
shown in Fig. D.7. Here, l1 = 6 mm, l2 = 2l1, w1 = (l1 − δ)/2, w2(xα) = l1−δ

2

(
1 − sin πx2

18l2

)
, t/l1 = 0.260, and

δ = {l1/8, l1/10, l1/12}. Decreasing the value of δ lowers the membrane energy at a faster rate than the bending
energy, delaying buckling.

Fig. D.7: Buckling behavior of sheets with the same graded geometry shown in Fig. 1c, but with varying joint width δ. Using smaller values of δ
lowers the membrane energy at a faster rate than it affects the bending energy, thus delaying buckling.

The elasticity parameters used for these simulations were extracted from experimental data shown in the Supple-
mentary Information Fig. S8 of [16]:

• For δ/l1 = 0.125 : µ = 17 kPa, λ = 0.1 kPa, η = 0.002 kPa−1

• For δ/l1 = 0.100 : µ = 11 kPa, λ = 0.1 kPa, η = 0.002 kPa−1

• For δ/l1 = 0.083 : µ = 6 kPa, λ = 0.1 kPa, η = 0.002 kPa−1

Appendix E. Mesh convergence

Fig. E.8 shows the results of a mesh convergence analysis performed for a buckling sheet with the following
geometric parameters: l1 = 6 mm, l2 = 2l1, δ = l1/8, w1 = (l1 − δ)/2, and w2(xα) = l1−δ

2

(
1 − sin πx2

18l2

)
. Here, we

examined the energy E of the final buckled configuration at a stretch of λ = 1.17 for meshes varying from 12 × 12
to 64 × 64, and compared it to the energy Emin of the system in an identical loading scenario when using an 84 × 84
mesh.

The slope of the linear fit of log |E − Emin| plotted against log(1/H) (where H is the element length) gives us a
convergence rate of 1.54. Standard linear elasticity (for first order elements) has a convergence rate of energy with
mesh size of 2. However, estimating the convergence rate for linear biharmonic problems using mixed method when
using linear elements becomes quite complicated [58]. Attaining a rate of 1.54 for (large) deformations well into the
non-linear regime is very good.

The fully resolved simulations were obtained from [16]. The Supplementary Information from that paper states
that the error from doubling the mesh size was under 1%.
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Fig. E.8: Mesh convergence analysis. E is the energy of buckled sheet at a stretch of λ = 1.17 for meshes varying from 12 × 12 to 64 × 64. Emin is
the energy of the sheet when using an 84 × 84 mesh. H is the element length and l2 is the characteristic unit cell length. The slope of the linear fit
shown in the figure corresponds to the convergence rate.
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