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We propose an unsupervised regularized inversion
method for the reconstruction of the 3D refractive in-
dex map of a sample in Tomographic Diffractive Mi-
croscopy (TDM). It is based on the minimization of the
Generalized Stein’s Unbiased Risk Estimator (GSURE)
to automatically estimate optimal values for the hyper-
parameters of one or several regularization terms (spar-
sity, edge-preserving smoothness, Total Variation). We
evaluate the performance of our approach on simulated
and experimental limited-view data. Our results show
that GSURE is an efficient criterion to find suitable reg-
ularization weights, that is a critical task, particularly
in the context of reducing the amount of required data
to allow faster yet efficient acquisitions and reconstruc-
tions. © 2021 Optical Society of America
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1. INTRODUCTION4

Optical microscopy techniques constitute the reference tools for5

the study of biological phenomena, thanks to their capability6

of imaging living specimens. Among them, three dimensional7

(3D) imaging techniques are of great interest because they allow8

the observed specimens to keep their natural 3D structure and9

properties. In this context, advanced fluorescence nanoscopy10

methods (STED [1], PALM/STORM [2–4]) are able to achieve11

high resolved 3D images above ten times beyond the diffraction12

limit. However, they require long acquisition times which can13

be incompatible with live imaging. Moreover, the required la-14

belling of the sample is a complex and invasive technique that15

can degrade the specimen. In this case, label-free imaging tech-16

niques are preferred but must be adapted to observe transparent17

samples. Optical diffraction tomography (ODT) or Tomographic18

Diffractive Microscopy (TDM) is an emergent technique, which19

permits to image transparent specimens in 3D [5], without prepa-20

ration or staining. TDM brings a morphological information21

about the observed objects. It is less specific and less resolved22

than fluorescence-based nanoscopy techniques which focus on23

precise metabolic targets (kernels, mitochondria, etc.). However,24

this information is complementary as it can allow to register25

anatomical (TDM) and functional (fluorescence) phenomenons.26

Moreover, TDM allows for the imaging of a wider field-of-view27

at a resolution up to twice larger than the diffraction limit, and28

possibly at a very fast acquisition range. It is almost similar to29

Structured Illumination Microscopy (SIM) that also performs a30

kind of synthesis aperture of the object’s spectral content, and31

can go further than twice the diffraction limit.32

TDM is an interferometric imaging technique based on digital33

holographic measurements in tomographic mode, i.e. for multi-34

ple illuminations and/or sample orientations. Thus, acquisitions35

are performed by either a specimen rotation or an illumination36

scanning (one projection orientation per hologram). It gives37

access, by image reconstruction, to the 3D refractive index (RI)38

map of a specimen.39

Several reconstruction methods from TDM measurements40

have been proposed in the last decades. The first Born or Ry-41

tov approximation allows for a direct 3D mapping of the object42

in the Fourier space, combining each view’s 2D Fourier spec-43

trum. Thus, an isotropic exploration of the object, for example44

by combination of illumination orientations and sample rota-45

tions, leads to a fully-3D mapping of the object’s spectrum and46

allows to reach an isotropic resolution in the 100nm range [6, 7].47

However, this reconstruction quality requires a huge number48

of holograms with almost isotropic exploration. Moreover, the49

Born or Rytov inversion is limited to weakly scattering samples.50

To overcome limitations involved in classical inversion, one51

has to turn to more sophisticated approaches. The Gerchberg-52

Papoulis algorithm [8] proposes an iterative framework based53

on the alternating projections principle - similar to the so-called54

Fienup Error Reduction algorithm in 2D digital holography [9] -55

with the imposition of a positivity (or negativity) constraint on56

the RI difference map. This algorithm is a representative of what57

we call inverse problems approaches [8, 10, 11]. These last are58

mostly based on the minimization of a global penalty criterion59

constructed as a combination of two components: a so-called60

data-fidelity term measuring the error between the data and61

an image formation model, and one or several priors taking62

the form of regularization terms or bound constraints. Inverse63

approaches are more flexible because they allow for the use of64

more accurate models, e.g. multiple-scattering based approaches65
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[12–15]. Thanks to this gain of accuracy, the data information is66

better exploited. Therefore, the useful amount of measurements67

can be drastically reduced if an appropriate trade-off is found68

between the relative influences given on both the data-fidelity69

and the a priori information on the targeted object. This trade-off70

is most of the time achieved by weighting properly the regu-71

larization penalty terms in the global criterion. These scalar72

weights are called hyperparameters, and their tuning is critical73

to ensure the consistency of the inverse problem and thus its74

solution.75

The optimal hand tuning of the hyperparameters is a too76

fastidious task, so finding unsupervised tuning approaches is77

of great interest in image reconstruction. If the ground truth78

was known, the optimal hyperparameters’ values would be79

those that minimize an error between the reconstruction and the80

ground truth (e.g. the estimation Mean Square Error). Obviously81

in practice, such a ground truth being unknown, unsupervised82

tuning approaches consist in using a "blind" criterion to find83

optimal values for the hyperparameters. Popular methods in84

this context are the generalized cross-validation (GCV:[16]), the85

L-curve [17], hierarchical Bayesian strategies [18] and the Gener-86

alized Stein unbiased Risk Estimator (GSURE: [19, 20]). Lately,87

some hyperparameters-free methods have exploited neural net-88

works for learning appropriate regularizers [21, 22].89

In this work, we discuss the performance of GSURE for the90

unsupervised tuning of the regularization hyperparameters in91

the context of TDM reconstruction. The application of GSURE92

in such a context constitutes the main contribution of this work.93

Our paper is organized as follows. In Section 2 we introduce the94

TDM principle with some mathematical notations, and present95

the forward model used in our experiments. In Section 3, we96

present a regularized inverse approach for TDM reconstruc-97

tion that involves popular regularization terms (sparsity, edge-98

preserving, Total Variation), which we “plug" in a minimization99

procedure of the GSURE criterion to estimate optimal regular-100

ization hyperparameters. Finally, in Section 4, we evaluate the101

performance of our unsupervised reconstruction approach using102

GSURE, on both simulated and real data. Our datasets consist in103

realistic simulations of TDM acquisitions of a single transparent104

bead (5 and 10 µm diameter), using a Lorenz-Mie scattering105

model [23], and experimental TDM acquisitions of a Jerusalem106

artichoke pollen grain (∼ 30 µm diameter). We perform the107

reconstructions from very limited TDM views to show how the108

optimal trade-off between the data-fidelity and the regulariza-109

tion is helpful in this context. Our results tend to demonstrate110

this claim.111

2. TDM DATA ACQUISITION PRINCIPLE AND FORWARD112

MODEL113

A. Object and data models114

We consider a single object (e.g. a bead as in Fig. 1), or a distribu-115

tion of objects, immersed in a medium of RI n0. In the following,116

the object in the medium is sampled and considered as the three117

dimensional (3D) array n ∈ CK , where K is the total number of118

voxels. Each voxel value nk, for k ∈ {1, · · · , K}, is the complex119

RI difference of the object with the medium in this voxel. Hence120

each nk can be decomposed into two components Re(nk) and121

Im(nk), defining its respective real and imaginary parts such122

that nk = Re(nk) + jIm(nk). Moreover, nk = 0 means that the123

voxel k ∈ {1, · · · , K} contains only the medium.124

A TDM dataset consists in the recording, on a digital sensor of M125

pixels, of L complex holograms obtained by the diffraction and126

propagation into the sample of L respective coherent illumina-127

tion plane waves u(inc)
` that are tilted with respect to the sensor128

plane (see Fig. 1). We denote d`∗ ∈ CM the `th sampled complex129

hologram corresponding to a unique tilted view of parameter130

φ`.131

The model of the respective noisy data acquired by the cam-132

era is given as:133

d` = d∗` + η` (1)

where η` corresponds to a vector of M noise values.134

B. The hologram formation model135

In practice, the true complex holograms d`∗ ∈ CM are unknown.136

Several methods exist [14] to calculate an approximation of these137

projections as the first Born or Rytov approximation [5, 24–26],138

the beam propagation method (BPM) and similar strategies such139

the wave propagation method (WPM) [10, 27], the Lippmann-140

Schwinger model [28], etc. We denote by u`(n) the hologram141

formation model. In this work, we focus on BPM that performs142

a cascading propagation of the diffracted wave through the sam-143

ple - from the “top" to the “bottom" - decomposed in several144

slices, each one interacting successively with the upper wave145

(multiplication of the wave with the transmittance slice). This146

model is adapted to simulate multiple scattering (in the propaga-147

tion direction) into a dense volume. However, the unsupervised148

method proposed in this paper can be applied using another149

hologram formation model. The forward-model, approximating150

the true data formation process, is thus the following:151

d` ≈ u`(n) + η` (2)

Note that this model is now an approximation of the true data152

formation process in Eq. (1) because of the additional modeling153

errors.154

3. PROPOSED METHOD155

A. Regularized inverse approach156

We aim at retrieving n ∈ CK from the complex dataset157

(d`)`∈{1,...,L}. The classical inverse approach is to find n mini-158

×

x

y

z

zd

u(inc)
`

ψ`

d∗`

φ`

Fig. 1. Scheme of the TDM principle for the `-th hologram
acquisition d∗` of a sample (here a bead). The hologram

is acquired for an orientation of illumination wave u(inc)
` ,

parametrized by the angles ψ` in the (z, x) plane and φ` in
the (x, y) plane, at a distance zd from the center of the object.
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mizing the following cost function:159

f (n) =
L

∑
`=1

1
2

∥∥∥ d` − u`(n)
∥∥∥2

C
. (3)

It is equivalent to the co-log-likelihood minimization under the160

assumption that ∀` ∈ {1, . . . , L}, d` ∼ N (u`(n), σ2IdM) (i.e.161

the additive noise η` follows a centered multidimensional Gaus-162

sian distribution of diagonal covariance σ2IdM) . However, the163

minimization of the problem Eq. 3 alone can lead to strong ar-164

tifacts in the reconstruction if the problem is ill-posed: a good165

conditionment of the problem is critical to control and alleviate166

modeling errors and noise amplification in the reconstruction167

process.168

To palliate this issue, a prior term gρ is added to the problem169

Eq. 3, that can be a composition of one or several regularizers,170

and parametrized by a set of hyperparameters ρ. This set is171

composed of at least one hyperparameter per regularization172

term to weight their contribution. The reconstruction problem173

of the 3D RI map n becomes:174

n̂ ∈ arg min
n∈Ω

{
f (n) + gρ(n)

}
(4)

where Ω ⊂ CK is a set of separable bound constraints applied175

on the real and imaginary part of each element of n.176

In this work we compare two regularizations: gEP+`1 that is
the combination of an Edge Preserving smoothing prior [29] and
the `1-norm sparsity constraint (EP + `1) applied separately on
the real part Re(n) and imaginary part Im(n) of n, and gTV the
Total Variation (TV) [30]. On one hand, the EP+`1 regularization,
given by:

gEP+`1 (n) = λEP
N

∑
n=1

(√
‖Dnn‖2 + µ2 − µ

)
+ λ`1

N

∑
n=1

(|Re(nn)|+ |Im(nn)|) (5)

has the advantage of being differential (thanks to the relaxing177

parameter µ > 0) when all the voxels of n are constrained to178

have the same sign. Dn is a finite difference operator at each179

voxel n, giving a vector of six components: three gradient com-180

ponents for both the real part Re(n) and imaginary part Im(n)181

of n. Thus the squared norm ‖Dnn‖2 applied to this gradient182

vector is the sum of its six squared components. When µ tends to183

zero, the Edge Preserving Smoothing tends to TV. The `1 sparsity184

prior applied on n is there to ensure zero values outside of the185

object, thus it acts as a support constraint. In such a case of regu-186

larization, the set of hyperparameters is ρ = (λEP, µ, λ`1 ). The187

whole criterion in Eq. 4 is differentiable (smooth), so we achieve188

the minimization using the VMLM-B algorithm [31], which is a189

limited memory quasi-newton method with line search.190

On the other hand, the Total Variation, given by:191

gTV(n) = λTV
N

∑
n=1

√
‖Dnn‖2. (6)

requires only one hyperparameter, thus ρ = λTV. This regular-192

ization is not differentiable and the criterion in Eq. 4 is then a193

sum of a smooth ( f ) and a non-smooth (gTV) terms. This leads194

to the use of proximal algorithms for the minimization of the195

cost function. In this work, we use the primal-dual Condat-Vũ196

algorithm with backtracking [32–34].197

B. GSURE for unsupervised reconstruction198

An appropriate tuning of the regularization hyperparameters199

is essential to achieve a good reconstruction of the object. An200

under-regularized reconstruction will lead to a wrong estimation201

of the 3D map n. For example, the "missing cone" effect, a202

classical problem in TDM due to the limited angular coverage,203

will be exhibited by the defective closure of the object in the axial204

(z) direction. On the contrary, an over-regularized reconstruction205

can yield over-smoothing, i.e. a loss of details. The tuning of206

the hyperparameters can be achieved by finding the set ρ for207

which the reconstruction optimizes a given quality criterion, for208

example: the estimation Mean Square Error (MSE), the absolute209

error, or the prediction Mean Square Error (pMSE). These three210

quality criterions require the knowledge of the ground truth,211

unknown in practice, but the pMSE can be estimated using212

the Generalized Stein’s Unbiased Risk Estimator [19, 20] which213

requires only the knowledge of the data d`.214

We denote n̂ρ the reconstruction obtained for a given set of215

hyperparameters ρ. The pMSE is defined as follows:216

pMSE(n̂ρ) =
L

∑
`=1

E
[
‖d∗` − u`(n̂ρ)‖2

C

]
. (7)

where E stands for the expectation. Note that the use of such a217

criterion to find ρ for which the reconstructions is minimizing218

the pMSE requires an accurate image formation model. In fact,219

this criterion only "sees" the data and the modeling approxima-220

tions. If it is not accurate enough, the pMSE minimization will221

lead to a reconstruction minimizing these modeling errors at the222

expense of its accordance to the ground truth object.223

The GSURE criterion is given by:224

GSURE(n̂ρ) =
L

∑
`=1

[
1

2σ2

∥∥∥ d`−u`(n̂ρ)
∥∥∥2

C
+ 2tr

( ∂u`(n̂ρ)

∂d`

)
−M

]
.

(8)
where σ2 is the variance of the noise in the data, tr stands for225

the trace (sum of the diagonal elements) of a matrix, and M the226

number of pixel in each hologram. Since GSURE is an estimator227

of the pMSE, then228

E[GSURE(n̂ρ)] = pMSE(n̂ρ) (9)

and both criterion, as a function of ρ, achieve their minimum for229

the same argument.Hence, we can find the optimal hyperparam-230

eter set ρ̂ minimizing the pMSE, by minimizing GSURE.231

The trace term tr(∂u`(n̂ρ)/∂d`) is equal to div u`(n̂ρ) and is232

obtained with the Monte-Carlo method presented in [35]. Its233

principle is to generate a perturbed dataset dδ
` by adding a ran-234

dom deviation on the data (d`)`∈{1,...,L}, with a centered Gaus-235

sian noise of standard deviation ε. Then a reconstruction from236

dδ
` is performed to obtain a map n̂δ

ρ. From this reconstruction,237

the computation of the trace is performed from the following238

formula:239

tr
( ∂u`(n̂ρ)

∂d`

)
=

〈
dδ
` − d`, u`(n̂δ

ρ)− u`(n̂ρ)
〉

ε2 . (10)

A good choice of ε is critical to ensure GSURE is a good estimate240

of the pMSE. If chosen too small or too large, the trace will be241

underestimated or overestimated, leading to a wrong GSURE242

criterion. In this work we compute ε as the tenth of the median243

of the real part of the data, which gives a good GSURE criterion244

in practice.245
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To achieve the minimization of GSURE, the most intuitive246

method is to create a mapping of different hyperparameters247

set ρ, to proceed to the reconstruction on both datasets and248

perturbed datasets to compute GSURE for each ρ, and finally249

find on the mapping the set ρ̂ that gives the minimum of the250

obtained discretized GSURE map. However, such a method can251

become computationally intractable when the set ρ is composed252

with two or more hyperparameters. Hence, an optimization of253

the GSURE criterion is performed using a Powell method [36],254

which does not require the computation of the gradient for the255

search of the minimum.256

4. RESULTS257

In this section, we observe and discuss the performance of our258

GSURE based unsupervised method on reconstructions from259

simulated and experimental data.260

First, we consider simulated TDM measurements of a perfect261

sphere of diameter ∆, using the realistic Lorenz-Mie scattering262

model [23], that simulates the diffracted field from this kind263

of object almost perfectly. For the reconstruction, we choose264

the BPM model that fits at best the simulated one and over-265

comes the classical Born or Rytov model, particularly when the266

size of the object of interest or the RI gradient grows. More-267

over, the simplicity of the object of interest (a homogeneous268

sphere with sharp edges) corresponds exactly to the chosen269

Edge-Preserving and TV regularizers (promoting piecewise con-270

stant images) as its characteristics validate precisely such prior271

assumptions. Hence, our choices lead to a really good toy model272

and an “inverse crime"-less reconstruction, allowing the valida-273

tion of our method. We aim to prove that we can find optimal274

values of the hyperparameters in the sense of the prediction275

Mean Square Error (pMSE), under such controlled conditions.276

Second, we consider experimental TDM acquisitions of a277

Jerusalem artichoke pollen grain. We aim to validate the conclu-278

sion obtained on simulated data.279

A. Results on a simulated bead280

We aim at reconstructing independently three non-centered281

spherical beads of different diameters ∆ (see Table. 1), with282

a RI nbead = 1.45 and immersed in a medium of RI n0 = 1.519283

- mimicking a silica bead in immersion oil. For each bead, our284

datasets consist in L on-focus holograms d∗` (i.e. zd = 0µm),285

simulated from an implementation of the Lorenz-Mie model286

[23]. The incident wave orientations are displayed on Fig. 2287

u(inc)
4

z

x

y

ψ`φ`

u(inc)
1

u(inc)
2

u(inc)
3

Fig. 2. Scheme of the L projections parametrized by the angles
ψ` ∈ {0◦, 45◦, 45◦, 45◦} and φ` ∈ {0◦, 0◦, 120◦, 240◦}.

and the size of the holograms are given in Table. 1. Finally, we288

compute the data following Eq. 1, where each element ηk of the289

additive noise vector η is randomly generated using a stationary290

complex normal law CN (0, 2σ2) with σ2 = 0.1. Table. 1 summa-291
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Fig. 3. Moduli and phases of the true holograms d∗` and of the
related data d`, for ` ∈ {1, . . . , 4}, simulated with the Lorenz-
Mie model for the parameters summarized in Table. 1.
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Table 1. Summary of the beads and data properties, and list of the regularization hyperparameters obtained with the Powell mini-
mization of the GSURE criterion.

case ∆ (xbead, ybead, zbead) ψL L M N ρEP+`1 ρTV

(a) 5µm (−2.3467µm, −2.3467µm, 0µ) 45◦ 4 64× 64 64× 64× 64 (100.38, 10−0.27, 10−0.99) 10−0.67

(b) 10µm (−2.3467µm, −2.3467µm, 0µ) 45◦ 4 128× 128 128× 128× 128 (101.53, 100.44, 10−1.4) 100.49

rizes the simulations parameters. The modulus and the phase of292

the Lorenze-Mie simulations for all the incidences are displayed293

on Fig. 3 along with the modulus and the phase of the data.294

Since the difference between the Lorenze-Mie model and295

BPM is growing with the RI difference and with the size, the296

case (a) in Table 1 is an intermediate case and the case (b) is297

the harder case. We only consider L = 4 projections. More298

projections could make the task easier but we make the choice299

to show configurations where the tuning of regularizations is300

critical to get the best trade-off with the accordance to the data301

model.302

Fig. 4 presents the maps (respectively curves), of pMSE values303

and GSURE, for the EP+`1 regularization (respectively TV). First304

of all, we can see that the minimal arguments on both criteria,305

are close. In the case of EP+`1, the µ hyperparameter is fixed to306

the best hyperparameter obtained with the Powell method. For307

this regularization GSURE seems to be less sensitive to the `1308

norm, which can be problematic since the sparsity constraint is309

important to have a good support of the object, i.e. to have zero310

values outside of the object.311

Fig. 5 shows the 3D reconstructions of the bead compared to312

the ground truth in the different configurations. For each case313

and each regularization, the bead is well reconstructed. The314

reconstructions with the EP + `1 regularization seems noisier315

than with the TV regularization and the edges of the object are316

smoother. Such an observation is coherent with the assertion317

that for EP + `1 the GSURE criterion is less sensitive to the `1318

norm. In fact, since the reconstruction is under-regularized for319

the sparsity-promoting part, the values outside the support of320

the object are not sufficiently constrained to zero. Moreover,321

it leads to a smoothing of the edges along the z-axis. On the322

opposite, the edges in the reconstructions with TV are sharp,323

and the medium is uniform and noiseless. The reconstruction324

with TV is thus satisfying and seems really close to the ground325
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Fig. 4. Maps of pMSE and GSURE values for both regularizations and for each case presented in Table 1. For EP+`1, the values
of µ are fixed to those estimated (see Table. 1). The minimum of the pMSE (respectively GSURE) values are marked with a blue
(respectively red) circle.
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truths.326

An overview of under-regularized and over-regularized re-327

constructions, in the case of the TV regularization, is presented328

in Fig. 6. For the under-regularized case, the object is not well329

defined. The edges and the inner region are lost. This highlights330

the fact that the amount of data, in this simulation configuration331

and with such hyperparameters, is not sufficient to reconstruct332

the bead correctly, evidencing the need of appropriately tuned333

regularizations. For the over-regularized case, the bead is well334

defined but some artifacts are appearing.335

Overall, the GSURE criterion seems to be an effective tool to336

select automatically a good set of hyperparameters for the recon-337

struction as it manages to capture a set of optimal regularization338

weights ensuring a satisfactory solution that fits at best the data339

model and the prior constraint.340

To compare which regularization term, for the best set of341

hyperparameters estimated by GSURE, gives the best perfor-342

mances, we perform a quantitative study of the RI difference343

distribution in the reconstructed bead in Fig.7. In case (a) and344

(b), the median with EP+`1 is closer to the true RI than with TV.345

However, the interquartile range is smaller with TV than with346

EP+`1. In the end, with EP+`1, since the bead is less compact347
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Fig. 5. 3D segmented views of the ground truth and reconstructed beads obtained with optimal regularization weights minimizing
GSURE, for both regularization terms EP + `1 and TV, and each case presented in Table 1. Side views displays the xy, xz and yz
orthogonal slices through the object’s center.
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(i) (ii) (iii) (iv)

Fig. 6. Reconstructions of the bead (b) with the TV regularization for several choices of hyperparameters and with the optimal
parameter obtained with the minimization of the GSURE criterion. Case (i) and (ii) are under-regularized reconstructions, case (iii)
is the reconstruction minimizing the GSURE criterion and case (iv) is over-regularized.



Letter Journal of the Optical Society of America A 7

due to an under-regularization, the precision on the RI difference348

is worse than with TV. Yet, with TV, the average RI difference349

obtained in the bead is smaller than the ground truth. Note that350

a loss of intensity is common with TV.351

To conclude, in these simulations GSURE is effective to tune352

automatically the hyperparameters leading to reconstruction353

with a satisfying quality, a difficult task due to the low amount354

of data in this context. The reconstruction with TV gives better355

results than with EP+`1 because GSURE is less sensitive to the356

sparsity-promoting constraint. However, it suffers from a bias in357

the reconstructed RI difference in the bead. Note that this object358

has a piecewise constant gradient, thus the TV regularization is359

at ease in this context. With a more detailed object such a prior360

can be too strong and lead to the flattening of some structures.361

This is why in the following we still apply both regularizers.362

B. Results on a pollen grain sample363

We used the GSURE criterion to reconstruct the 3D index map364

of a Jerusalem artichoke pollen grain. These data are given365
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Fig. 7. Distribution of the RI difference value of the recon-
structed beads giving the best GSURE for both regularization
and each case presented in Table 1. Each blue boxes corre-
sponds to the interquartile range and the red line is the me-
dian. The red crosses represent the outliers.

with the courtesy of the IRIMAS laboratory, Mulhouse, France.366

A detailed description of the TDM setup that performed the367

measurements can be found in [7]. It is based on holographic368

measurements in off-axis configuration. In our reconstructions,369

the considered dataset is the measured complex diffracted waves370

on the sensor plane (focal plane of the setup), extracted from the371

raw off-axis measurements.372

To estimate the noise in the data, we suppose it is an homoge-373

neous Gaussian noise and estimate its variance on a patch con-374

taining only background. We proceed to the GSURE optimiza-375

tion for the reconstruction with EP+`1 and TV regularizations376

respectively, using only L = 20 projections. These projections377

are chosen by the following method. First we sort the entire set378

of 600 projections by their angles φ` and group them in 20 sub-379

sets. Thus, we ensure that the 20 subsets are covering the entire380

circle on which φ` evolves. Then, one projection is randomly381

chosen in each subset to create the dataset. Since problem Eq.4382

is non-convex due to the BPM approximation, to avoid the con-383

vergence to a local minimum [12], we initiate the reconstruction384

obtained with an unregularized inversion using the first Born385

approximation [5, 24–26]. We made the hypothesis that the ob-386

ject has no absorption (i.e Im(nk) = 0 for all k ∈ {1, . . . , N}) and387

that the object’s absolute RI values are larger than the medium388

RI value n0 (the RI difference is greater or equal to 0), leading to389

the following separable bound constraints set:390

Ω =
{

n ∈ RN | ∀k ∈ {1, . . . , N}, nk ≥ 0
}

. (11)

Figure 8 presents different views of the object reconstructed391

with a direct inversion using Rytov approximation for L = 600392

without any constraint or regularization (courtesy from IRIMAS393

team), with the Gerchberg-Papoulis (GP [8]) method includ-394

ing a non-negativity constraint for L = 600 and L = 20, and395

with the presented method for both regularization terms. The396

set of hyperparameters obtained for the reconstructions are397

ρEP+`1 = (100.61, 10−3.53, 100.84) and ρTV = 10−0.26. First, com-398

paring Rytov and GP reconstructions for L = 600, we see that399

the constraint on the sign of the RI difference improves clearly400

the contrast and, as in [8], alleviate the underestimation of RI401

values. Thus, the reconstruction with GP seems better, and this402

is why we consider it as our “ground truth" for our comparisons403

with L = 20.404

For both reconstructions using our method, the object is well405

reconstructed and the contrast is enhanced compared with GP406

for L = 20. On the TV reconstruction, even if the apparent reso-407

lution is lower than for the Rytov and GP reconstructions (for408

L = 600), we can observe the same structured features inside409

the object. For example, in Fig. 8: (a)-(c) and (e), we highlighted410

some dense regions with red arrows and kind of porosities with411

purple arrows. These features are better reconstructed with our412

methods than with GP for L = 20. However, the reconstruction413

with EP+`1 is a little smoother than the reconstruction with TV,414

leading to the loss of these small features. Finally, our methods415

deal better with the zero values outside the object (support es-416

timation). It is mainly visible in the 3D views in rows (e) and417

(g) and for the central frame (i.e. z = 256) shown on row (b).418

Furthermore, we can see on row (f) that our methods deal also419

better with the missing cone effect.420

Fig. 9 presents wrongly tuned reconstructions of the pollen421

grain with the TV regularization. We can see that in the under-422

regularized case, the contrast is slightly lighter, and some porosi-423

ties are lost in case (a) and (b). However, the reconstruction is424

close to the reconstruction obtained with GSURE even though425
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Fig. 8. Views of the Jerusalem artichoke pollen grain for the Rytov inversion and with the GP method for L = 600 projections,
and the reconstructions with the GP method and giving the best GSURE values for the EP+`1 and TV regularizations for L = 20
projections. Rows (a)-(d) represents the (x, y) slices for z ∈ {231, 256, 282, 303} and are highlighted on the (x, y, z) 3D view on row
(e) with the same colored frames. Row (f) is the (x, z) view for y = 256 and is highlighted on the (x, z, y) 3D view on row (g) with
the same colored frame.
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the hyperparameter is a lot smaller. In the over-regularized case,426

all the details are lost. The reconstruction is really different from427

the reconstruction obtained with GSURE even though the hy-428

perparameter is not far from the optimal one (in the sense of the429

pMSE).430

In conclusion, in this experimental case, when using the431

TV regularization, the optimization of the GSURE criterion432

is effective to achieve a satisfying reconstruction. In the case433

of EP+`1, some further hand tuning could help lower the434

regularization and recover the features inside the object. Thus,435

it only gives a starting set. Overall, an important point in436

these experiments is the demonstration that an appropriate437

tuning of the regularization hyperparameters can favor a better438

exploitation of the data by the model, opening the way to439

drastically reduce the amount of useful TDM projections (from440

an order of magnitude in this experiment) while preserving a441

satisfying reconstruction in terms of contrast and resolution.442

443

λTV = 10−0.26λTV = 10−3 λTV = 10

(a)

(b)

(c)

(e)

(f)

Fig. 9. Comparison of reconstructions of the pollen grain, on
the slices Fig.8-(a) to (c), (e), and (f), with the TV regularization
for different hyperparameters. From the left to the right : an
under-regularized reconstruction, the reconstruction giving
the best GSSURE value and an over-regularized reconstruc-
tion.

5. CONCLUSION444

In this work, we propose an unsupervised method for auto-445

matically tune the hyperparameters of a regularized 3D recon-446

struction method from TDM measurements using GSURE. We447

applied it with both differentiable and non-differentiable regular-448

ization terms. We prove its capability to find a good tuning of the449

regularization hyperparameters on both simulated and experi-450

mental data. This work show how an appropriate tuning of the451

hyperparameters helps to exploit at best the data information,452

which is particularly critical when the amount of measurements453

is or has to be reduced, for example for experiment or setup454

optimization purposes.455

However, this work only presents a brief application of456

GSURE and raises several perspectives. First, it would be in-457

teresting to study how GSURE behaves with other models (e.g.458

the first Born Approximation). Second, an empirical study of459

how the GSURE minimal argument varies with the number of460

projections used for the reconstruction could be useful to see if461

it is predictable. Such a case would allow us to tune the hyper-462

parameters only on a few holograms (the minimum required)463

and then perform a reconstruction with all the data (or a suffi-464

cient amount to have the best quality). Third, an optimization465

of the computational time could be done. In fact, it takes two466

reconstructions to compute one iteration of GSURE and several467

iterations are needed to converge to its minimum. Depending on468

the complexity of the hologram formation model (Born or BPM),469

it can take several hours to several days. Finally, a comparison470

with other autotunning method should be performed.471
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