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GSURE criterion for unsupervised regularized reconstruction in Tomographic Diffractive Microscopy

We propose an unsupervised regularized inversion method for the reconstruction of the 3D refractive index map of a sample in Tomographic Diffractive Microscopy (TDM). It is based on the minimization of the Generalized Stein's Unbiased Risk Estimator (GSURE) to automatically estimate optimal values for the hyperparameters of one or several regularization terms (sparsity, edge-preserving smoothness, Total Variation). We evaluate the performance of our approach on simulated and experimental limited-view data. Our results show that GSURE is an efficient criterion to find suitable regularization weights, that is a critical task, particularly in the context of reducing the amount of required data to allow faster yet efficient acquisitions and reconstructions.

tions, leads to a fully-3D mapping of the object's spectrum and 46 allows to reach an isotropic resolution in the 100nm range [START_REF] Debailleul | Holographic microscopy and diffractive microtomography of transparent samples[END_REF][START_REF] Simon | Tomographic diffractive microscopy with isotropic resolution[END_REF]. we call inverse problems approaches [START_REF] Lim | Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography[END_REF][START_REF] Kamilov | Learning approach to optical tomography[END_REF][START_REF] Berdeu | Comparative study of fully threedimensional reconstruction algorithms for lens-free microscopy[END_REF]. These last are 58 mostly based on the minimization of a global penalty criterion 59 constructed as a combination of two components: a so-called 60 data-fidelity term measuring the error between the data and 61 an image formation model, and one or several priors taking 62 the form of regularization terms or bound constraints. Inverse 63 approaches are more flexible because they allow for the use of 64 more accurate models, e.g. multiple-scattering based approaches [START_REF] Kamilov | Optical Tomographic Image Reconstruction Based on Beam Propagation and Sparse Regularization[END_REF][START_REF] Liu | Compressive imaging with iterative forward models[END_REF][START_REF] Eckert | Modeling Light Propagation in 3d Phase Objects[END_REF][START_REF] Pham | Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering[END_REF]. Thanks to this gain of accuracy, the data information is better exploited. Therefore, the useful amount of measurements can be drastically reduced if an appropriate trade-off is found between the relative influences given on both the data-fidelity and the a priori information on the targeted object. This trade-off is most of the time achieved by weighting properly the regularization penalty terms in the global criterion. These scalar weights are called hyperparameters, and their tuning is critical to ensure the consistency of the inverse problem and thus its solution.

The optimal hand tuning of the hyperparameters is a too fastidious task, so finding unsupervised tuning approaches is of great interest in image reconstruction. If the ground truth was known, the optimal hyperparameters' values would be those that minimize an error between the reconstruction and the ground truth (e.g. the estimation Mean Square Error). Obviously in practice, such a ground truth being unknown, unsupervised tuning approaches consist in using a "blind" criterion to find optimal values for the hyperparameters. Popular methods in this context are the generalized cross-validation (GCV: [START_REF] Golub | Generalized cross-validation as a method for choosing a good ridge parameter[END_REF]), the L-curve [START_REF] Hansen | The use of the l-curve in the regularization of discrete ill-posed problems[END_REF], hierarchical Bayesian strategies [START_REF] Molina | On the hierarchical bayesian approach to image restoration: applications to astronomical images[END_REF] and the Generalized Stein unbiased Risk Estimator (GSURE: [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF][START_REF] Eldar | Generalized sure for exponential families: Applications to regularization[END_REF]). Lately, some hyperparameters-free methods have exploited neural networks for learning appropriate regularizers [START_REF] Yang | Deeplearning projector for optical diffraction tomography[END_REF][START_REF] Zhou | Diffraction tomography with a deep image prior[END_REF].

In this work, we discuss the performance of GSURE for the unsupervised tuning of the regularization hyperparameters in the context of TDM reconstruction. The application of GSURE in such a context constitutes the main contribution of this work.

Our paper is organized as follows. In Section 2 we introduce the TDM principle with some mathematical notations, and present the forward model used in our experiments. In Section 3, we present a regularized inverse approach for TDM reconstruction that involves popular regularization terms (sparsity, edgepreserving, Total Variation), which we "plug" in a minimization procedure of the GSURE criterion to estimate optimal regularization hyperparameters. Finally, in Section 4, we evaluate the performance of our unsupervised reconstruction approach using GSURE, on both simulated and real data. Our datasets consist in realistic simulations of TDM acquisitions of a single transparent bead (5 and 10 µm diameter), using a Lorenz-Mie scattering model [START_REF] Slimani | Near-field lorenzmie theory and its application to microholography[END_REF], and experimental TDM acquisitions of a Jerusalem artichoke pollen grain (∼ 30 µm diameter). We perform the reconstructions from very limited TDM views to show how the optimal trade-off between the data-fidelity and the regularization is helpful in this context. Our results tend to demonstrate this claim.

TDM DATA ACQUISITION PRINCIPLE AND FORWARD MODEL A. Object and data models

We consider a single object (e.g. a bead as in Fig. 1), or a distribution of objects, immersed in a medium of RI n 0 . In the following, the object in the medium is sampled and considered as the three 131

The model of the respective noisy data acquired by the cam-132 era is given as:

133 d = d * + η (1)
where η corresponds to a vector of M noise values. 136 Several methods exist [START_REF] Eckert | Modeling Light Propagation in 3d Phase Objects[END_REF] to calculate an approximation of these 137 projections as the first Born or Rytov approximation [START_REF] Haeberlé | Tomographic diffractive microscopy: basics, techniques and perspectives[END_REF][START_REF] Wolf | Three-dimensional structure determination of semitransparent objects from holographic data[END_REF][START_REF] Devaney | Inverse-scattering theory within the Rytov approximation[END_REF][START_REF] Sung | Optical diffraction tomography for high resolution live cell imaging[END_REF],

138 the beam propagation method (BPM) and similar strategies such 139 the wave propagation method (WPM) [START_REF] Kamilov | Learning approach to optical tomography[END_REF][START_REF] Ma | Optical tomographic reconstruction based 566 on multi-slice wave propagation method[END_REF], the Lippmann-

140
Schwinger model [START_REF] Pham | Three-Dimensional Optical Diffraction Tomography With Lippmann-570 Schwinger Model[END_REF], etc. We denote by u (n) the true data formation process, is thus the following:

151 d ≈ u (n) + η (2)
Note that this model is now an approximation of the true data 

n ∈ arg min n∈Ω f (n) + g ρ (n) (4) 
where Ω ⊂ C K is a set of separable bound constraints applied 175 on the real and imaginary part of each element of n.

176

In this work we compare two regularizations: g EP+ 1 that is the combination of an Edge Preserving smoothing prior [START_REF] Charbonnier | Deter-574 ministic edge-preserving regularization in computed imaging[END_REF] and the 1 -norm sparsity constraint (EP + 1 ) applied separately on the real part Re(n) and imaginary part Im(n) of n, and g TV the Total Variation (TV) [START_REF] Rudin | Nonlinear total variation based 577 noise removal algorithms[END_REF]. On one hand, the EP+ 1 regularization, given by:

g EP+ 1 (n) = λ EP N ∑ n=1 D n n 2 + µ 2 -µ + λ 1 N ∑ n=1 (|Re(n n )| + |Im(n n )|) (5) 
has the advantage of being differential (thanks to the relaxing parameter µ > 0) when all the voxels of n are constrained to ). The 187 whole criterion in Eq. 4 is differentiable (smooth), so we achieve 188 the minimization using the VMLM-B algorithm [START_REF] Thiébaut | Optimization issues in blind deconvolution algorithms[END_REF], which is a 189 limited memory quasi-newton method with line search.

190

On the other hand, the Total Variation, given by:

191 g TV (n) = λ TV N ∑ n=1 D n n 2 . ( 6 
)
requires only one hyperparameter, thus ρ = λ TV . This regular- We denote n ρ the reconstruction obtained for a given set of 215 hyperparameters ρ. The pMSE is defined as follows:

216 pMSE( n ρ ) = L ∑ =1 E d * -u ( n ρ ) 2 C . ( 7 
)
where E stands for the expectation. Note that the use of such a 217 criterion to find ρ for which the reconstructions is minimizing 

223

The GSURE criterion is given by: 

224 GSURE( n ρ ) = L ∑ =1 1 2σ 2 d -u ( n ρ ) 2 C + 2tr ∂u ( n ρ ) ∂d -M . (8 
E[GSURE( n ρ )] = pMSE( n ρ ) (9) 
and both criterion, as a function of ρ, achieve their minimum for 229 the same argument.Hence, we can find the optimal hyperparam-230 eter set ρ minimizing the pMSE, by minimizing GSURE.

231

The trace term tr(∂u ( n ρ )/∂d ) is equal to div u ( n ρ ) and is 232 obtained with the Monte-Carlo method presented in [START_REF] Ramani | Monte-Carlo Sure: A Black-Box 592 Optimization of Regularization Parameters for General Denoising Algo-593 rithms[END_REF]. Its 

239 tr ∂u ( n ρ ) ∂d = d δ -d , u ( n δ ρ ) -u ( n ρ ) ε 2 . ( 10 
)
A good choice of ε is critical to ensure GSURE is a good estimate To achieve the minimization of GSURE, the most intuitive method is to create a mapping of different hyperparameters set ρ, to proceed to the reconstruction on both datasets and perturbed datasets to compute GSURE for each ρ, and finally find on the mapping the set ρ that gives the minimum of the obtained discretized GSURE map. However, such a method can become computationally intractable when the set ρ is composed with two or more hyperparameters. Hence, an optimization of the GSURE criterion is performed using a Powell method [START_REF] Powell | The newuoa software for unconstrained optimization 595 without derivatives[END_REF],

which does not require the computation of the gradient for the search of the minimum.

RESULTS

In this section, we observe and discuss the performance of our GSURE based unsupervised method on reconstructions from simulated and experimental data. rizes the simulations parameters. The modulus and the phase of the Lorenze-Mie simulations for all the incidences are displayed on Fig. 3 along with the modulus and the phase of the data.

Since the difference between the Lorenze-Mie model and BPM is growing with the RI difference and with the size, the case (a) in Table 1 is an intermediate case and the case (b) is the harder case. We only consider L = 4 projections. More projections could make the task easier but we make the choice to show configurations where the tuning of regularizations is critical to get the best trade-off with the accordance to the data model. 

GSURE values pMSE values

• •

λ EP λ EP λ 1 λ 1 Total Variation λ TV (b) 10µm
Fig. 4. Maps of pMSE and GSURE values for both regularizations and for each case presented in Table 1. For EP+ 1 , the values of µ are fixed to those estimated (see Table . 1). The minimum of the pMSE (respectively GSURE) values are marked with a blue (respectively red) circle.

truths.

An overview of under-regularized and over-regularized reconstructions, in the case of the TV regularization, is presented in Fig. 6. For the under-regularized case, the object is not well defined. The edges and the inner region are lost. This highlights the fact that the amount of data, in this simulation configuration and with such hyperparameters, is not sufficient to reconstruct the bead correctly, evidencing the need of appropriately tuned regularizations. For the over-regularized case, the bead is well defined but some artifacts are appearing.

Overall, the GSURE criterion seems to be an effective tool to select automatically a good set of hyperparameters for the recon- 3D segmented views of the ground truth and reconstructed beads obtained with optimal regularization weights minimizing GSURE, for both regularization terms EP + 1 and TV, and each case presented in Table 1. Side views displays the xy, xz and yz orthogonal slices through the object's center.

λ TV = 10 -1 λ TV = 10 0 λ TV = 10 0.49 λ TV = 10 1 x y z x y z x y z x y z (i) (ii) (iii) (iv)
Fig. 6. Reconstructions of the bead (b) with the TV regularization for several choices of hyperparameters and with the optimal parameter obtained with the minimization of the GSURE criterion. Case (i) and (ii) are under-regularized reconstructions, case (iii) is the reconstruction minimizing the GSURE criterion and case (iv) is over-regularized.

due to an under-regularization, the precision on the RI difference 1. Each blue boxes corresponds to the interquartile range and the red line is the median. The red crosses represent the outliers.

with the courtesy of the IRIMAS laboratory, Mulhouse, France.
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A detailed description of the TDM setup that performed the 367 measurements can be found in [START_REF] Simon | Tomographic diffractive microscopy with isotropic resolution[END_REF]. It is based on holographic 368 measurements in off-axis configuration. In our reconstructions, 369 the considered dataset is the measured complex diffracted waves 370 on the sensor plane (focal plane of the setup), extracted from the 371 raw off-axis measurements.

372

To estimate the noise in the data, we suppose it is an homoge-373 neous Gaussian noise and estimate its variance on a patch con-374 taining only background. We proceed to the GSURE optimiza- values. Thus, the reconstruction with GP seems better, and this 402 is why we consider it as our "ground truth" for our comparisons 403 with L = 20.

Ω = n ∈ R N | ∀k ∈ {1, . . . , N}, n k ≥ 0 . (11) 

404

For both reconstructions using our method, the object is well 

CONCLUSION 444

In this work, we propose an unsupervised method for auto-445 matically tune the hyperparameters of a regularized 3D recon-446 struction method from TDM measurements using GSURE. We 447 applied it with both differentiable and non-differentiable regular-

  possibly at a very fast acquisition range. It is almost similar to 29 Structured Illumination Microscopy (SIM) that also performs a 30 kind of synthesis aperture of the object's spectral content, and 31 can go further than twice the diffraction limit.

32 TDM

 32 is an interferometric imaging technique based on digital 33 holographic measurements in tomographic mode, i.e. for multi-34 ple illuminations and/or sample orientations. Thus, acquisitions 35 are performed by either a specimen rotation or an illumination 36 scanning (one projection orientation per hologram). It gives 37 access, by image reconstruction, to the 3D refractive index (RI) 38 map of a specimen. 39 Several reconstruction methods from TDM measurements 40 have been proposed in the last decades. The first Born or Ry-41 tov approximation allows for a direct 3D mapping of the object 42 in the Fourier space, combining each view's 2D Fourier spec-43 trum. Thus, an isotropic exploration of the object, for example 44 by combination of illumination orientations and sample rota-

  45

47

  However, this reconstruction quality requires a huge number 48 of holograms with almost isotropic exploration. Moreover, the 49 Born or Rytov inversion is limited to weakly scattering samples. 50 To overcome limitations involved in classical inversion, one 51 has to turn to more sophisticated approaches. The Gerchberg-52 Papoulis algorithm [8] proposes an iterative framework based 53 on the alternating projections principle -similar to the so-called 54 Fienup Error Reduction algorithm in 2D digital holography [9] -55 with the imposition of a positivity (or negativity) constraint on 56 the RI difference map. This algorithm is a representative of what 57

  dimensional (3D) array n ∈ C K , where K is the total number of voxels. Each voxel value n k , for k ∈ {1, • • • , K}, is the complex RI difference of the object with the medium in this voxel. Hence each n k can be decomposed into two components Re(n k ) and Im(n k ), defining its respective real and imaginary parts such that n k = Re(n k ) + jIm(n k ). Moreover, n k = 0 means that the voxel k ∈ {1, • • • , K} contains only the medium. A TDM dataset consists in the recording, on a digital sensor of M pixels, of L complex holograms obtained by the diffraction and propagation into the sample of L respective coherent illumina-127 tion plane waves u (inc) that are tilted with respect to the sensor 128 plane (see Fig. 1). We denote d * ∈ C M the th sampled complex 129 hologram corresponding to a unique tilted view of parameter 130 φ .

134B. The hologram formation model 135

 135 In practice, the true complex holograms d * ∈ C M are unknown.

156Fig. 1 .

 1 Fig. 1. Scheme of the TDM principle for the -th hologram acquisition d * of a sample (here a bead). The hologram is acquired for an orientation of illumination wave u (inc) , parametrized by the angles ψ in the (z, x) plane and φ in the (x, y) plane, at a distance z d from the center of the object.

178

  have the same sign. D n is a finite difference operator at each 179 voxel n, giving a vector of six components: three gradient com-180 ponents for both the real part Re(n) and imaginary part Im(n) 181 of n. Thus the squared norm D n n 2 applied to this gradient 182 vector is the sum of its six squared components. When µ tends to 183 zero, the Edge Preserving Smoothing tends to TV. The 1 sparsity 184 prior applied on n is there to ensure zero values outside of the 185 object, thus it acts as a support constraint. In such a case of regu-186 larization, the set of hyperparameters is ρ = (λ EP , µ, λ 1

192

  ization is not differentiable and the criterion in Eq. 4 is then a 193 sum of a smooth ( f ) and a non-smooth (g TV ) terms. This leads 194 to the use of proximal algorithms for the minimization of the 195 cost function. In this work, we use the primal-dual Condat-V ũ 196 algorithm with backtracking [32-34]. 197 B. GSURE for unsupervised reconstruction 198 An appropriate tuning of the regularization hyperparameters 199 is essential to achieve a good reconstruction of the object. An 200 under-regularized reconstruction will lead to a wrong estimation 201 of the 3D map n. For example, the "missing cone" effect, a 202 classical problem in TDM due to the limited angular coverage, 203 will be exhibited by the defective closure of the object in the axial 204 (z) direction. On the contrary, an over-regularized reconstruction 205 can yield over-smoothing, i.e. a loss of details. The tuning of 206 the hyperparameters can be achieved by finding the set ρ for 207 which the reconstruction optimizes a given quality criterion, for 208 example: the estimation Mean Square Error (MSE), the absolute 209 error, or the prediction Mean Square Error (pMSE). These three 210 quality criterions require the knowledge of the ground truth, 211 unknown in practice, but the pMSE can be estimated using 212 the Generalized Stein's Unbiased Risk Estimator [19, 20] which 213 requires only the knowledge of the data d .

  214

  218the pMSE requires an accurate image formation model. In fact, 219 this criterion only "sees" the data and the modeling approxima-220 tions. If it is not accurate enough, the pMSE minimization will 221 lead to a reconstruction minimizing these modeling errors at the 222 expense of its accordance to the ground truth object.

  ) where σ 2 is the variance of the noise in the data, tr stands for 225 the trace (sum of the diagonal elements) of a matrix, and M the 226 number of pixel in each hologram. Since GSURE is an estimator 227 of the pMSE, then

  228

233

  principle is to generate a perturbed dataset d δ by adding a ran-234 dom deviation on the data (d ) ∈{1,...,L} , with a centered Gaus-235 sian noise of standard deviation ε. Then a reconstruction from 236 d δ is performed to obtain a map n δ ρ . From this reconstruction, 237 the computation of the trace is performed from the following 238 formula:

240

  of the pMSE. If chosen too small or too large, the trace will be 241 underestimated or overestimated, leading to a wrong GSURE 242 criterion. In this work we compute ε as the tenth of the median 243 of the real part of the data, which gives a good GSURE criterion 244 in practice.

First, we consider

  simulated TDM measurements of a perfect sphere of diameter ∆, using the realistic Lorenz-Mie scattering model[START_REF] Slimani | Near-field lorenzmie theory and its application to microholography[END_REF], that simulates the diffracted field from this kind of object almost perfectly. For the reconstruction, we choose the BPM model that fits at best the simulated one and overcomes the classical Born or Rytov model, particularly when the size of the object of interest or the RI gradient grows. Moreover, the simplicity of the object of interest (a homogeneous sphere with sharp edges) corresponds exactly to the chosen Edge-Preserving and TV regularizers (promoting piecewise constant images) as its characteristics validate precisely such prior assumptions. Hence, our choices lead to a really good toy model and an "inverse crime"-less reconstruction, allowing the validation of our method. We aim to prove that we can find optimal values of the hyperparameters in the sense of the prediction Mean Square Error (pMSE), under such controlled conditions. Second, we consider experimental TDM acquisitions of a Jerusalem artichoke pollen grain. We aim to validate the conclusion obtained on simulated data.A. Results on a simulated beadWe aim at reconstructing independently three non-centered spherical beads of different diameters ∆ (see Table.

2 uFig. 2 .

 22 Fig. 2. Scheme of the L projections parametrized by the angles ψ ∈ {0 • , 45 • , 45 • , 45 • } and φ ∈ {0 • , 0 • , 120 • , 240 • }.

  and the size of the holograms are given in Table.1. Finally, we 288 compute the data following Eq. 1, where each element η k of the 289 additive noise vector η is randomly generated using a stationary 290 complex normal law CN (0, 2σ 2 ) with σ 2 = 0.1. Table.

Fig. 3 .

 3 Fig. 3. Moduli and phases of the true holograms d * and of the related data d , for ∈ {1, . . . , 4}, simulated with the Lorenz-Mie model for the parameters summarized in Table.1.

Fig. 4 Fig. 5 Edge

 45 Fig.4presents the maps (respectively curves), of pMSE values and GSURE, for the EP+ 1 regularization (respectively TV). First of all, we can see that the minimal arguments on both criteria, are close. In the case of EP+ 1 , the µ hyperparameter is fixed to the best hyperparameter obtained with the Powell method. For this regularization GSURE seems to be less sensitive to the 1

337EP+ 1 .(

 1 Fig.5. 3D segmented views of the ground truth and reconstructed beads obtained with optimal regularization weights minimizing GSURE, for both regularization terms EP + 1 and TV, and each case presented in Table1. Side views displays the xy, xz and yz orthogonal slices through the object's center.

375

  tion for the reconstruction with EP+ 1 and TV regularizations 376 respectively, using only L = 20 projections. These projections 377 are chosen by the following method. First we sort the entire set 378 of 600 projections by their angles φ and group them in 20 sub-379 sets. Thus, we ensure that the 20 subsets are covering the entire 380 circle on which φ evolves. Then, one projection is randomly 381 chosen in each subset to create the dataset. Since problem Eq.4 382 is non-convex due to the BPM approximation, to avoid the con-383 vergence to a local minimum [12], we initiate the reconstruction 384 obtained with an unregularized inversion using the first Born 385 approximation [5, 24-26]. We made the hypothesis that the ob-386 ject has no absorption (i.e Im(n k ) = 0 for all k ∈ {1, . . . , N}) and 387 that the object's absolute RI values are larger than the medium 388 RI value n 0 (the RI difference is greater or equal to 0), leading to 389 the following separable bound constraints set:

  390

Figure 8

 8 Figure 8 presents different views of the object reconstructed

405EP+ 1 Fig. 8 .Fig. 9 .

 189 Fig.9presents wrongly tuned reconstructions of the pollen

Table 1 .

 1 Summary of the beads and data properties, and list of the regularization hyperparameters obtained with the Powell minimization of the GSURE criterion. -2.3467µm, 0µ) 45 • 4 128 × 128 128 × 128 × 128 (10 1.53 , 10 0.44 , 10 -1.4 ) 10 0.49

	case	∆	(x bead , y bead , z bead )	ψ L	L	M	N	ρ EP+ 1	ρ TV
	(a)	5µm	(-2.3467µm, -2.3467µm, 0µ) 45 • 4	64 × 64	64 × 64 × 64	(10 0.38 , 10 -0.27 , 10 -0.99 ) 10 -0.67
	(b)	10µm (-2.3467µm,						

1. 

  Distribution of the RI difference value of the reconstructed beads giving the best GSURE for both regularization and each case presented in Table

	348		
	349	is worse than with TV. Yet, with TV, the average RI difference
	350	obtained in the bead is smaller than the ground truth. Note that
	351	a loss of intensity is common with TV.
	352	To conclude, in these simulations GSURE is effective to tune
	353	automatically the hyperparameters leading to reconstruction
	354	with a satisfying quality, a difficult task due to the low amount
	355	of data in this context. The reconstruction with TV gives better
	356	results than with EP+ 1 because GSURE is less sensitive to the
	357	sparsity-promoting constraint. However, it suffers from a bias in
	358	the reconstructed RI difference in the bead. Note that this object
	359	has a piecewise constant gradient, thus the TV regularization is
	360	at ease in this context. With a more detailed object such a prior
	361	can be too strong and lead to the flattening of some structures.
	362	This is why in the following we still apply both regularizers.
	363	B. Results on a pollen grain sample
	364	We used the GSURE criterion to reconstruct the 3D index map
	365	of a Jerusalem artichoke pollen grain. These data are given
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ization terms. We prove its capability to find a good tuning of the