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Reweighting the RCT for generalization: finite sample error and

variable selection

Bénédicte Colnet ∗ Julie Josse† Gaël Varoquaux‡ Erwan Scornet §

November 4, 2022

Abstract

Randomized Controlled Trials (RCTs) may suffer from limited scope. In particular, samples may be un-
representative: some RCTs over- or under- sample individuals with certain characteristics compared to the
target population, for which one wants conclusions on treatment effectiveness. Re-weighting trial individuals
to match the target population can improve the treatment effect estimation. In this work, we establish the
exact expressions of the bias and variance of such reweighting procedures - also called Inverse Propensity of
Sampling Weighting (IPSW) - in presence of categorical covariates for any sample size. Such results allow us
to compare the theoretical performance of different versions of IPSW estimates. Besides, our results show
how the performance (bias, variance, and quadratic risk) of IPSW estimates depends on the two sample
sizes (RCT and target population). A by-product of our work is the proof of consistency of IPSW estimates.
Results also reveal that IPSW performances are improved when the trial probability to be treated is esti-
mated (rather than using its oracle counterpart). In addition, we study choice of variables: how including
covariates that are not necessary for identifiability of the causal effect may impact the asymptotic variance.
Including covariates that are shifted between the two samples but not treatment effect modifiers increases
the variance while non-shifted but treatment effect modifiers do not. We illustrate all the takeaways in a
didactic example, and on a semi-synthetic simulation inspired from critical care medicine.

Keywords: Average treatment effect (ATE); Sampling bias; External validity; Transportability; Distribu-
tional shift; IPSW.

1 Introduction

Motivation Modern evidence-based medicine puts Randomized Controlled Trial (RCT) at the core of clinical
evidence. Indeed, randomization enables to estimate the average treatment effect (called ATE) by avoiding
confounding effects of spurious or undesirable associated factors. But more recently, concerns have been raised
on the limited scope of RCTs: stringent eligibility criteria, unrealistic real-world compliance, short timeframe,
limited sample size, etc. All these possible limitations threaten the external validity of RCT studies to other
situations or populations (Rothwell, 2007; Gatsonis and Sally, 2017; Deaton and Cartwright, 2018). The usage
of complementary non-randomized data, referred to as observational or from the real world, brings promises as
additional sources of evidence, in particular combined to trials (Kallus et al., 2018; Athey et al., 2020; Liu et al.,
2021). For example, assume policy makers are studying an RCT which comes with great promises about a new
treatment. But when reading the report, they may discover that the RCT is composed of substancially younger
people than the target population of interest. Such a situation can be uncovered from the so-called Table 1 of
this newly published trial, which summarizes the demographics of the study population. In case of treatment
effect heterogeneities, e.g. if the younger individuals respond better to the treatment, the ATE estimated from
the trial is over-estimated and then biased. Now, assume these policy makers have also at disposal a sample of
the actual patients in the district, being a representative sample of the true distribution of age in this population
(typically without information on the outcome or the treatment). Can they use this representative sample of the
target population of interest to re-weight or to generalize the trial’s findings? The answer is yes: the strategy
has been formalized and popularized lately (Stuart et al., 2011; Pearl and Bareinboim, 2011; Bareinboim and
Pearl, 2012a,b; Tipton, 2013; O’Muircheartaigh and Hedges, 2013; Hartman et al., 2015; Kern et al., 2016;
Dahabreh et al., 2020) (reviewed in Colnet et al. (2020); Degtiar and Rose (2022)) and can come under many
variants named generalization, transportability, recoverability, and data-fusion. In fact, the idea of re-weighting
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a trial can be traced back before the 2010’s. Several epidemiology books had already presented the core idea
under the name standardization (Rothman and Greenland, 2000; Rothman, 2011).
In this work, we focus on one estimator used to generalize RCTs: the Inverse Propensity of Sampling Weighting
(IPSW) (Cole and Stuart, 2010; Stuart et al., 2011), also named Inverse Odds of Sampling Weights (IOSW)
(Westreich et al., 2017; Josey et al., 2021) or Inverse probability of participation weighting (IPPW) (Degtiar and
Rose, 2022). Despite an increasing literature on generalization, important practical questions remain open (Kern
et al., 2016; Tipton et al., 2016; Stuart and Rhodes, 2017; Ling et al., 2022). For instance, which covariates –
for e.g. age, and others – should be used to build the weights? Are some covariates increasing or lowering the
overall precision? What is the impact of the size of the two samples (trial and representative sample) on the
IPSW’s properties?

Outline We start by illustrating the principles of trial re-weighting and some key results of this article on a toy
example (Section 2). Section 2 ends with related works. Then Section 3 introduces the mathematical notations,
assumptions, and the precise definition of the IPSW estimator. In particular, we present several versions of the
IPSW estimator: whether the covariates probability of the trial or the target population are estimated from
the data or assumed as an oracle. This links our results to classic work in causal inference and epidemiology.
Section 4 contains all the theoretical results, such as finite sample bias, variance, bounds on the risk, consistency,
and large sample variance. We also detail why another version of the IPSW, where the probability of treatment
assignment in the trial is also estimated, has a lower variance. Finally, we discuss in Section 4 how additional
and non-necessary covariates can either improve or damage variance, depending on their status: whether they
are only shifted between the two populations or only treatment-effect modifiers. Section 5 completes the toy
example and illustrates all theoretical results on an extensive semi-synthetic example inspired from the medical
domain. Finally, Section 6 summarizes all practical takeaways for this research and discusses it.

2 Problem setting

2.1 Toy example

2.1.1 Context and intuitive estimation strategy

Figure 1: Treatment effect estimates (ab-
solute difference) measured on a simulated
trial of size n = 150 sampled according to
the trial population PR. On the left the esti-
mate on all individuals, and on the right
the two estimate stratified (X = 0 and
X = 1) showing treatment effect hetero-
geneities along the genetic mutation X.

Assume that we would like to measure the average effect of a treat-
ment (ATE) A on a outcome Y in a target population of interest PT

(for target), and that an existing Randomized Controlled Trial (RCT)
had already been conducted on n = 150 individuals, sampled from a
population PR (for randomized), to assess the average effect of A on
Y . Usually, the average treatment effect is estimated from a trial via
an Horvitz-Thomson estimator (Horvitz and Thompson, 1952),

τ̂HT,n =
1

n

∑
i∈Trial

(
YiAi

π
− Yi(1−Ai)

1− π

)
, (1)

where π is the probability of treatment allocation in the trial (in most
applications, π = 0.5). Figure 1 presents results of a simulated trial
with an average treatment effect around 8.2. In addition, assume that
the trial provides evidence that the treatment effect is heterogeneous
with respect to a certain genetic mutation denoted X (with X = 1
for the mutation, and X = 0 if no mutation). More specifically, the
average treatment effect conditional to X is larger for individuals with
X = 1 than for those with X = 0. This situation is illustrated on
Figure 1 where the average effect per strata X is also represented. We
have at hand a representative sample of m = 1000 individuals from
the target population we are interest in (for example from an existing
observational database). We observe that individuals with the genetic mutation (X = 1) are over-represented in
the trial compared to the target population of interest (see Figure 2). As a consequence, the trial overestimates
the target population’s ATE we are interested in.

Figure 2: Covariate shift along the genetic mutation X between
the trial population PR and target population PT, highlighting the
distributional shift between the two data sources. Such population’s
difference questions what is named the external validity of a trial.

Target (PT) Trial (PR)

X = 1 30% 75%

X = 0 70% 25%
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Fortunately, the representative sample of the target population can be used to learn weights, and re-weight the
trial data in the following way,

τ̂n,m =
1

n

∑
i∈Trial

ŵn,m(Xi)︸ ︷︷ ︸
Weights

(
YiAi

π
− Yi(1−Ai)

1− π

)
︸ ︷︷ ︸

Horvitz-Thomson

. (2)

As detailed later on, the weights ŵn,m aims at estimating the probability ratio pT(x)
pR(x) , where pT (x) (resp. pR (x))

is the probability of observing an individual with characteristics X = x in the target (resp. randomized)
population. The weights ŵn,m depend on the sizes of the randomized and observational data sets, namely n
and m. Consequently, the ATE estimator τ̂n,m depends on the size of two data sets, raising questions on how
this estimator behaves (bias and variance) as function of n and m.

2.1.2 Simulations and first observations

To investigate empirically how τ̂n,m behaves, we run simulations following the Data Generative Process (DGP)
described in Section 2.1.1 and represented in Figure 3a. Figure 3b shows the different estimators in action,
showing that the re-weighted trial compensates for the distribution shift as expected.
Figure 3b also shows that estimating π from the data and plugging it in Equation 2 leads to a clear gain
in variance. This phenomenon is linked to seminal works in causal inference, and is further demonstrated in
Section 4.2. Finally, Figure 3c shows that if m remains small compared to n or if n remains small compared
to m, then the asymptotic variance regime differs (see Corollary 2 for a formal statement, and Figure 6 for an

Y(0)

Y(1) | X = 0

Y(1) | X = 1

0 5 10 15
Y

D
en

si
ty

(a) Toy example’s data generative
model: where individuals with X =
1 have a higher average treatment
effect compared to individuals with
X = 0. The baseline, centered on
0, is the same for both stratum.
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(b) Re-weighting in action: Simulations’s results with a trial of size n = 150, a
target sample of size m = 1, 000 with 1, 000 repetitions, where the naive trial estimate
corresponds Equation 1, and re-weighted trial to Equation 2. As expected re-weighting
allows to recover the ATE of the target population (red dashed line). It is also possible
to estimate π from the data, giving another re-weighting estimator with lower variance
(later introduced in Definition 10).

50 2000

250 500 1000 2000 250 500 1000 2000

5

6

7

8

Trial sample's size (n)

AT
E

Target sample size (m) 50 2000

(c) Two data sets leading to two asymptotic regimes: where two situations are considered, one with a large
target sample (m = 2000) or a small target sample (n = 50). Then, increasing n leads to a variance stagnation
if m is small, while increasing n allows to further gain in precision if n ≤ m.

Figure 3: Toy example’s simulations - Minimal adjustment set.
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illustration of the theoretical results).

For correct trial generalization, all shifted treatment effect modifier baseline covariates (see Definition 11 and
12, Section 4.3), such as the genetic mutation X, are necessary (Stuart et al., 2011). But, in practice one may
be tempted to add as many covariates V as available to account for all possible sources of external validity bias.
Doing so, we may add covariates V that are not needed to properly estimates the weights. This is the case if (i)
V is shifted between the two data sets, but in reality is not a treatment effect modifier or if (ii) V is a treatment
effect modifier, but not shifted between the two data sets. Figure 4a shows that in (i), the covariate V should
not be added, as it can considerably inflate the variance and therefore damage the precision (see Corollary 4 for
a formal statement); while in (ii), Figure 4b highlights that the covariate V should be added as the precision
can be augmented by adding such covariates (see Corollary 5 for a formal statement).
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(a) Adding shifted covariate that is not a treatment effect modi-
fier leads to a variance inflation. Simulation represents the situation
of a binary shifted covariate V added or not in the adjustment set.
The y-axis represents how much the variance with the minimal set
is multiplied compared to a situation with this additional shifted
covariate. The plain lines comes from the Theory (see Corollary 4)
while dots are empirical variance (obtained from 1, 000 repetitions
with n = 150 and m = 1, 000). The more shifted the covariate, the
higher the inflation. The phenomenon is amplified if the covariate
is imbalanced in the trial (in opposition with a balanced).
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(b) Adding non-shifted treatment
effect modifier leads to a gain in pre-
cision compared to a situation with
only the necessary covariate. In this
plot DGP from Figure 3a is adapted
to add one non-shifted treatment ef-
fect modifier. Adding such covariate
(extended set) compared to an ad-
justment set with only X (minimal
set) lowers the variance.

Figure 4: Toy example’s simulations - Extended adjustment set.

In Section 4, we prove these phenomenons, deriving explicit finite sample and asymptotic results to characterize
the re-weighting process.

2.2 Related work

The estimator τ̂n,m introduced in the toy example (Equation 2) is an exact implementation of the so-called
Inverse Propensity of Sampling Weighting (IPSW) where the word sampling comes from the popular habit of
modeling the problem as the one of a randomized trial suffering from selection bias (Cole and Stuart, 2010;
Bareinboim and Pearl, 2012a; Tipton, 2013; Dahabreh et al., 2019). Note that the estimator introduced in
Equation 2 can also be linked to post-stratification (Imbens, 2011; Miratrix et al., 2013), where post-stratification
belongs to the family of adjustment methods on a single RCT. Note that beyond trial re-weighting, other
estimation strategies can be chosen when it comes to generalization, for example stratification (Tipton, 2013;
O’Muircheartaigh and Hedges, 2013), modeling the response (G-formula or Outcome Modeling) (Kern et al.,
2016; Dahabreh et al., 2019), using both strategies in a so-called doubly-robust approach (AIPSW) (Dahabreh
et al., 2019, 2020), or entropy balancing (Josey et al., 2021; Lee et al., 2021).

Link with IPW The IPSW can be related – to a certain extent – to the well-known Inverse Propensity
Weighting (IPW) estimator in the context of a single observational data set (Hirano et al., 2003). Indeed, this
corresponds to a mirroring situation, where the weights are no longer the probability ratio, but the probability
to be treated (propensity score, Rosenbaum and Rubin, 1983). Robins et al. (1992); Hahn (1998); Hirano et al.
(2003) showed that IPW is more efficient when weights are estimated, rather than relying on oracle weights.
This curious phenomenon can even be found in other areas of statistics (Efron and Hinkley, 1978). Beyond
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efficient estimation with a minimal adjustment set, it is known that additional and non-necessary baseline co-
variates in the adjustment set of the IPW can either increase the variance (the so-called instruments) (Velentgas
et al., 2013; Schnitzer et al., 2015; Wooldridge, 2016), while another class of covariates (the ones linked only
to the outcome – and also called outcome-related covariates or risk factors or precision covariates) improves
precision (Hahn, 2004; Lunceford and Davidian, 2004; Brookhart et al., 2006; Lefebvre et al., 2008; Witte and
Didelez, 2018). A recent crash-course about good and bad controls recalls this phenomenon (Cinelli et al., 2022).
Finally, another very recent line of research consists in determining – given a Directed Acyclic Graph (DAG) –
the asymptotically-efficient adjustment set for ATE estimation. This is also named ‘optimal’ valid adjustment
set (O-set), corresponding to the adjustment set ensuring the smallest asymptotic variance compared to other
adjustment sets. Henckel et al. (2022) propose a result for linear model, and Rotnitzky and Smucler (2020)
extend this work for any non-parametrically adjusted estimator. Such methods are meant for complex DAGs
where several possible adjustment sets can be used.

Theoretical results on IPSW Expression of the variance has been proposed for an estimator related to
the IPSW: the stratification estimator (O’Muircheartaigh and Hedges, 2013; Tipton, 2013). These results only
consider the situation of an infinite target sample. Similar expressions can also be found in Rothman and Green-
land (2000), also assuming an infinite target sample compared to the trial sample size. Buchanan et al. (2018)
propose theoretical properties such as asymptotic variance of a variant of IPSW under a parametric model,
using M-estimation methods for the proof (Stefanski and Boos, 2002). Why a variant? Because their proof is
under the situation of a so-called nested design, that is a trial embedded in a larger observational population,
so that there is only one single data set to consider and not two. In addition, we have found no discussion -
neither empirical nor theoretical - about the impact of adding non-necessary covariates on the IPSW (or any
other generalization’s estimator) properties (e.g., bias, variance). Egami and Hartman (2021) propose a method
to estimate a separating set – i.e. a set of variables affecting both the sampling mechanism and treatment effect
heterogeneity – and in particular when the trial contains many more covariates than the target population
sample. However, their work focus on identification. Huitfeldt et al. (2019) also consider covariate selection
for generalization, but focus on which covariates are necessary depending on the causal measure chosen (ratio,
difference, or other). Yang et al. (2020) addresses a similar problem (for non-probability sample and mean
estimation), where they advocate selecting all variables, even instrumental variables, for robustness, although
it may come at the cost of drop in efficiency. Note that some existing practical recommendations advocate to
add as many covariates as possible (Stuart and Rhodes, 2017).

Contributions This work considers several variants of the IPSW, whether or not the weights are oracle, semi-
oracle, or estimated. In this context, we derive the asymptotic variance of all the variants of IPSW and we show
that several asymptotic regimes exist, depending on the relative size of the RCT compared to the target sample.
We also provide finite sample expression of the bias and variance for all the IPSW variants introduced, allowing
to bound the risk on this estimator for any samples sizes (trial and target population). From these theoretical
results, we explain why the addition of some additional but non-necessary covariates in the adjustment set has a
large impact on precision, for the best or the worst. Indeed, while non-shifted treatment effect modifiers improve
precision by lowering the variance, adding shifted covariates that are not predictive of the outcome considerably
reduces the statistical power of the analysis by inflating the variance. For this latter situation, we provide an
explicit formula of the variance inflation when the additional covariate set is independent of the necessary one.
These results have important consequences for practitioners because they allow to give precise recommendations
about how to select covariates. Note that we link our work to seminal works in causal inference, showing that
semi-oracle estimation outperforms a completely oracle estimation, while the exact result on IPW on efficient
estimation can not be completely extended to the case of generalization.

All our results assume neither a parametric form of the outcome nor the sampling process, but are established
at the cost of restricting the scope to categorical covariates for adjustment. Within the medical domain, scores
or categories are often used to characterize individuals, which justifies this approach.
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3 Notations and assumptions for causal identifiability

3.1 Notations

3.1.1 Problem setting

The notations and assumptions used in this work are grounded in the potential outcome framework (Imbens
and Rubin, 2015). We assume to have at hand two data sets:

A randomized controlled trial denoted R (for randomized), assessing the efficacy of a binary treatment A
on an outcome Y (ordinal, binary, or continuous) conducted on n iid observations. Each observation
i is labelled from 1 to n and can be modelled as sampled from a distribution PR(X,Y (1), Y (0), A) ∈
X×R2×{0, 1}, where X is a categorical support. For any observation i, Ai denotes the binary treatment

assignment (with Ai = 0 if no treatment and Ai = 1 if treated), and Y
(a)
i is the outcome had the subject

been given treatment a (for a ∈ {0, 1}), which is assumed to be squared integrable. Yi denotes the observed

outcome, defined as Yi = Ai Y
(1)
i + (1−Ai)Y

(0)
i . In addition, this trial is assumed to be a Bernoulli trial

with a constant probability of treatment assignment for all units and independence of treatment allocation
between units (see in appendix Definition 13)1. We denote PR [Ai = 1] = π. Xi is a p-dimensional vector
of categorical covariates accounting for individual characteristics on the observation i;

A sample of the target population of interest denoted T (for target), containing m iid individuals sam-
ples drawn from a distribution PT(X,Y (1), Y (0), A) ∈ X × R2 × {0, 1}, labelled from n + 1 to n +m. In
this data set, we only observe individual categorical characteristics Xi. For simplicity, we further use the
notation PT(X) for the marginal of X on distribution PT.

Finally, the probability of X in the target population (resp. trial population) is denoted pT(x) (resp. pR(x)).
Mathematically, a covariate shift between the two populations occurs when there exists x ∈ X such that
pR(x) ̸= pT(x). The setting and notations are summarized on Figure 5.

Figure 5: Summary of the data at hand: on
the left, a randomized controlled trial R of size
n sampled according to PR and informing about
the effect of a treatment A on the outcome Y .
On the right, a sample T of sizem sampled from
the target population of interest PT, containing
only information on covariates X. As suggested
on the drawing, n is often smaller than m, as tri-
als are usually of limited size compared to large
national data base or cohort.

Comments on the notations Note that a large part of the literature models the problem with a sampling
mechanism from a super population. Doing so, the target and the trial samples are assumed sampled from this
super population, with different mechanisms leading to a distributional shift of the trial (e.g. the framing in
Stuart et al., 2011; Hartman, 2021). Still, as soon as we are not working with a nested trial (that is a trial
embedded in the target sample) and if only baseline covariates are considered for adjustment, the framing with
a sampling model is equivalent to the problem setting introduced above (Colnet et al., 2020; Westreich et al.,
2017). Note that the literature is increasing adopting the framing that we use here (Kern et al., 2016; Nie et al.,
2021; Chattopadhyay et al., 2022).

3.1.2 Target quantity of interest

Recall that two distributions, indexed by R and T are involved in our problem setting (Section 3.1.1). There-
fore, we will use these indices to denote quantities (expectations, probabilities) taken with respect to these
distributions, for example ER [.] (resp. ET [.]) for an expectation over PR (resp. PT).
We define the target population average treatment effect ATE (sometimes called TATE for Target):

τ := ET

[
Y (1) − Y (0)

]
. (3)

1For a review of trial designs, in particular explaining the difference between a Bernoulli and a completely randomized design,
we refer the reader to Chapter 2 of Imbens and Rubin (2015).
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Because the randomized controlled data R are not sampled from the target population of interest, the sample
average treatment effect τR (sometimes called SATE for Sample) estimated from this population,

τR := ER

[
Y (1) − Y (0)

]
,

may be biased, that is τR ̸= τ . While not being the target quantity of interest, we also introduce the so-called
Conditional Average Treatment Effect (CATE), as

∀x ∈ X, τ(x) := ET

[
Y (1) − Y (0) | X = x

]
.

3.2 Identification assumptions

Assumptions are needed to be able to generalize the findings from the population data PR toward the population
PT.

Assumptions on the trial We first need validity of the trial, also called internal validity. These assumptions
are the usual ones formulated in causal inference, and in particular for randomized controlled trials within the
potential outcomes framework (Imbens and Rubin, 2015; Hernan, 2020).

Assumption 1 (Representativity of the randomized data). For all i ∈ R, Xi ∼ PR(X) where PR is the popu-
lation distribution from which the RCT was sampled.

Assumption 2 (Trial’s internal validity). The RCT at hand R is assumed to be internaly valid, such that

(i) Consistency and no interference hold, that is: ∀i ∈ R, Yi = Ai Y
(1)
i + (1−Ai)Y

(0)
i –an assumption often

termed SUTVA (stable unit treatment value);

(ii) Treatment randomization holds, that is: ∀i ∈ R,
{
Y

(1)
i , Y

(0)
i

}
⊥ Ai;

(iii) Positivity of trial treatment assignment holds, that is: 0 < π < 1 (usually π = 0.5).

Assumptions for generalization The two following assumptions are specific to generalization or trans-
portability.

Assumption 3 (Transportability). ∀x ∈ X, PR(Y
(1) − Y (0) | X = x) = PT(Y

(1) − Y (0) | X = x).

The transportability assumption (Stuart et al., 2011; Pearl and Bareinboim, 2011), also called sample ignorability
for treatment effects (Kern et al., 2016) or Conditional Ignorability (Hartman, 2021), is probably the most
important assumption to generalize or transport the trial findings to the target population, as this requires to
have access to all shifted covariates being treatment modifiers. In other words, it assumes that all the systematic
variations in the treatment effect are captured by the covariates X (O’Muircheartaigh and Hedges, 2013). The
covariates X are usually named the adjustment or separating set. Note that the concept of treatment effect
modifiers depends on the causal measure chosen; in this paper, we only consider the absolute difference most
common for a continuous outcome as detailed in Equation 3. Would we have chosen the log-odd-ratio, for
instance, then the covariates being treatment effect modifiers could be different. Finally, note that Pearl and
Bareinboim (2011) introduces selection diagram to formalize this assumption relying on causal diagrams. Pearl
(2015) details why diagrams can contain more identification scenarii. But in this work, we only consider baseline
covariates for the transportability assumption (i.e no front-door adjustment).

Assumption 4 (Support inclusion). ∀x ∈ X, pR(x) > 0, and supp(PT (X)) ∈ supp(PR(X)).

Note that this last assumption is sometimes referred as the positivity of trial participation and can also be
viewed as a sampling process with non-zero probability for all individuals.

3.3 Estimators

In this work, we denote any estimator targeting a quantity τ as τ̂n,m where the the index n or m is employed
to characterise which data were used in the estimation strategy. For example, an estimator τ̂n (resp. τ̂m) only
uses the trial data (resp. observational data) whereas τ̂n,m uses both data sets.
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3.3.1 Within-trial estimators of ATE

Two classical estimators targeting τR from trial data are the Horvitz-Thomson and Difference-in-means estima-
tors.

Definition 1 (Horvitz-Thomson - Horvitz and Thompson (1952)). The Horvitz-Thomson estimator is denoted
τ̂HT,n and defined as,

τ̂HT,n =
1

n

n∑
i=1

(
AiYi

π
− (1−Ai)Yi

1− π

)
.

Under a Bernoulli design (constant and independent probability to be treated π) the Horvitz-Thomson estimator
τ̂HT,n is an unbiased and consistent estimator of τR, and its variance satisfies, for all n,

nVar [τ̂HT,n] = ER

[(
Y (1)

)2
π

]
+ ER

[(
Y (0)

)2
1− π

]
− τ2R := VHT. (4)

Definition 2 (Difference-in-means - Neyman (1923) and its English translation Splawa-Neyman et al. (1990)).
The Difference-in-means estimator is denoted τ̂DM,n and defined as

τ̂DM,n =
1

n1

∑
Ai=1

Yi −
1

n0

∑
Ai=0

Yi, where na =

n∑
i=1

1Ai=a.

The Difference-in-means is also referred to as the simple difference estimator for e.g. in Miratrix et al. (2013)
or difference in the sample means of the observed outcome variable between the treated and control groups for
e.g. in Imai et al. (2008). Under a Bernoulli design, the difference-in-means estimator is a consistent estimator
of τR, and its finite sample variance is bounded by

nVar [τ̂DM,n] ≤
Var

[
Y (1)

]
π

+
Var

[
Y (0)

]
1− π

+O
(
n−1/2

)
, (5)

and its large sample variance satisfies,

lim
n→∞

nVar [τ̂DM,n] =
Var

[
Y

(1)
i

]
π

+
Var

[
Y

(0)
i

]
1− π

:= VDM,∞. (6)

An explicit expression of the finite sample bias and variance of τ̂DM,n are given in appendix (see Lemma 2).
What will be used later on, is the fact that the Difference-in-Means estimator can be viewed as a variant of the
Horvitz-Thomson estimator, where the probability to be treated π (or propensity score) is estimated, that is,

τ̂DM,n =
1

n

n∑
i=1

(
Ai Yi

π̂
− (1−Ai)Yi

1− π̂

)
, where π̂ =

∑n
i=1 Ai

n
.

Counter-intuitively, the benefit of estimating π is to lower the variance. Even if the true probability is π = 0.5,
the actual treatment allocation in the sample can be different (e.g., π̂ = 0.48), and using π̂ rather than π leads
to a smaller large sample variance by adjusting to the exact observed probability to be treated in the trial. In
particular, it is possible to be convinced of this phenomenon when comparing the two variances,

VDM,∞ = VHT −

(√
1− π

π
ER[Y

(1)] +

√
π

1− π
ER[Y

(0)]

)2

≤ VHT. (7)

Appendix D recalls derivations to obtain (4) to (7). Other estimators of τR exist, and rely on prognostic covariates
(also called adjustement) such as outcome-modeling or post-stratification. Below (Section 4.2), we introduce the
post-stratification estimator, corresponding to the Horvitz-Thomson estimator where π is estimated according
to different stratum.

3.3.2 Re-weighting estimator for generalizing the trial findings

As mentioned in Subsection 2.2, in this work we focus on the reweighting strategy, that is the Inverse Propensity
of Sampling Weighting (IPSW) estimator (Cole and Stuart, 2010; Stuart et al., 2011).

Definition 3 (Completely oracle IPSW). The completely oracle IPSW estimator is denoted τ̂∗π,T, R,n, and defined
as

τ̂∗π,T,R,n =
1

n

n∑
i=1

pT(Xi)

pR(Xi)
Yi

(
Ai

π
− 1−Ai

1− π

)
, (8)

where pT(Xi)
pR(Xi)

are called the weights or the nuisance components.
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Definition 3 corresponds to a completely oracle IPSW, where pT, pR, and the trial allocation probability π are
known.

3.3.3 Probability ratio estimation

In practice neither pR nor pT are known, and therefore one needs to estimate these probabilities. As explained
in Subsection 3.1.1, we consider the case where X is composed of categorial covariates only. In such a situation,
a practical IPSW estimator can be built from Definition 3 by estimating each probability pT and pR by their
empirical counterpart (that is counting how many observations fall in each categories in the trial and target
samples).

Definition 4 (Probability estimation). Under the setting defined in Subsection 3.1.1,

∀x ∈ X , p̂T,m(x) :=
1

m

∑
i∈T

1Xi=x and, p̂R,n(x) :=
1

n

∑
i∈R

1Xi=x.

Having defined a method for probability estimation, one can build practical IPSW variants.

Definition 5 (Semi-oracle IPSW). The semi-oracle IPSW estimator τ̂∗π,T,n is defined as

τ̂∗π,T,n =
1

n

n∑
i=1

pT(Xi)

p̂R,n(Xi)
Yi

(
Ai

π
− 1−Ai

1− π

)
, (9)

where p̂R,n is estimated according to Definition 4.

Note that this semi-oracle estimator corresponds to the so-called standardization procedure described in Roth-
man and Greenland (2000).

Definition 6 (IPSW). The (estimated) IPSW estimator τ̂π,n,m is defined as

τ̂π,n,m =
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)
Yi

(
Ai

π
− 1−Ai

1− π

)
, (10)

where p̂R,n and p̂T,m are estimated according to Definition 4.

Definition 6 corresponds to the classical implementation of the IPSW since, practically, the probabilities p̂R,n

and p̂T,m are not known and must be estimated.

Another interpretation of IPSW Note that the IPSW can be understood differently, thanks to the fact
that covariates used to adjust are categorical. Indeed, it is possible to re-write the IPSW estimator from
Definition 6 as,

τ̂π,n,m =
∑
x∈X

mx

m

n∑
i=1

1Xi=x
1

nx

(
AiY

(1)
i

π
− (1−Ai)Y

(1)
i

1− π

)
=
∑
x∈X

mx

m
τ̂HT,nx

,

where mx =
∑m

i=n+1 1Xi=x and nx =
∑n

i=1 1Xi=x. This corresponds to a procedure where stratum average
treatment effects are estimated with an Horvitz-Thomson procedure, and then aggregated with weights cor-
responding to the target sample proportions. Miratrix et al. (2013) also discusses a similar approach in their
section 5, but where the sample proportions corresponds to the true target population of interest. In a way, our
work extends this situation to a more general case, considering the noise due to the sampling process from two
populations.

Comment about oracle and semi-oracle interest The completely-oracle and the semi-oracle estimators
are not used in practice, as usually none of the true probabilities are known. Still, they both correspond to
some asymptotic situations that are of interest to understand the IPSW. For instance:

• Studying τ̂∗π,T,R,n allows us to observe the effect of averaging over the trial sampleR, without the variability
due to covariates probabilities estimation (p̂R,n and p̂T,m);

• Studying τ̂∗π,T,n allows to understand the situation where the target sample T is infinite (m → ∞).
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In addition, studying these estimators allows us to link our results with seminal works in causal inference
showing that the estimated propensity score can lead to better properties than an oracle one (Robins et al.,
1992; Hahn, 1998; Hirano et al., 2003). Note that we could introduce another semi-oracle estimator, where pR

is known but not pT. This specific estimator does not correspond to a limit situation helping to figuring out
the results, as it is as if the covariates probabilities in the trial are learned on a infinite data sample, but where
the treatment effect estimate is still averaged on a finite sample. Finally, since all covariates are assumed to
be categorical in our framework, trial and observational densities (continuous covariates) turn into trial and
observational probabilities (categorical covariates). Oracles and semi-oracles will be different when considering
continuous covariates as the weights will be replaced by density estimation or estimation of the probability of
being in the target population (instead of the experimental sample) (e.g. see Kern et al., 2016; Nie et al., 2021)),
sometimes directly estimating the ratio by binding the two data sources and therefore making the notion of
semi-oracle outdated.

4 Theoretical results

4.1 Bias and variance of IPSW variants in finite-sample regime

In this section, we expose our main theoretical results on the three variants of the IPSW estimator (Definition 3,
5 and 6). The following results rely on the variance of the Horvitz-Thomson estimator on a given strata x (see
Definition 1), denoted VHT(x), and defined as ,

VHT(x) := ER

[(
Y (1)

)2
π

| X = x

]
+ ER

[(
Y (0)

)2
1− π

| X = x

]
− τ(x)2. (11)

In this equation, we removed the index R of τ(x) as τR(x) = τT(x) = τ(x), thanks to Assumption 3. Removing
the index on the two conditional expectations would require to go beyond the classical transportability assump-
tion, by assuming that

∀a ∈ {0, 1}, PR(Y
(a) | X = x) = PT(Y

(a) | X = x),

i.e. X contains all the covariates being shifted and predictive of the outcome, which is stronger than Assump-
tion 3.

4.1.1 Properties of the completely oracle IPSW

The following result establishes consistency and finite sample bias and variance for the oracle IPSW, which
extends the preceding results from Egami and Hartman (2021) (see their appendix, Section SM-2).

Theorem 1 (Properties of the completely oracle IPSW). Under the general setting defined in Subsection 3.1.1,
granting Assumptions 1-4, the completely oracle IPSW is unbiased and has an explicit variance expression, that
is, for all n,

E
[
τ̂∗π,T,R,n

]
= τ, and Var

[
τ̂∗π,T,R,n

]
=

Vo

n
, where Vo := VarR

[
pT(X)

pR(X)
τ(X)

]
+ ER

[(
pT(X)

pR(X)

)2

VHT(X)

]
.

As a consequence, for all n, the quadratic risk of the completely oracle IPSW is given by,

E
[(
τ̂∗π,T,R,n − τ

)2]
=

Vo

n
,

which implies its L2-consistency as n tends to infinity, that is,

τ̂∗π,T,R,n
L2

−→ τ.

The finite-sample variance Vo depends on the probability ratio, the amplitude of the heterogeneity of treatment
effect (through τ(x)), and variances of the potential outcomes. In particular if for some category x, the pT(x) and
pR(x) are very different implies a large variance when generalizing the trial’s findings. Note that the convergence
rate is a usual one in ∝ 1

n . Although it is not our main contribution, Theorem 1 is of primary importance for
comparing the impact of sample sizes on the performances of the different IPSW variants. Appendix A.1
provides a detailed proof of Theorem 1 and sheds light on the technical tools used for more complex IPSW
variants.
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4.1.2 Properties of the semi-oracle IPSW

In this section, we study the behaviour of the semi-oracle IPSW (Definition 5), for which the probability pT is
known but the probability pR is estimated. One can obtain for a certain x, p̂R,n(x) = 0 for some x ∈ X, even if
the true probability is non-negative pR(x) > 0. This phenomenon, occurring when no observations in the trial
correspond to the covariate vector x, induces a finite sample bias of the IPSW estimate. The performance of
the semi-oracle IPSW estimate is thus closely related to 1Zn(x)>0 where Zn(x) =

∑n
i=1 1Xi=x, as stated in our

next results.

Proposition 1. Under the general setting defined in Subsection 3.1.1, granting Assumptions 1-4, the bias of
the semi-oracle IPSW satisfies, for all n,

E
[
τ̂∗π,T,n

]
− τ = −

∑
x∈X

pT(x) (1− pR(x))
n
τ(x),

and

∣∣∣∣E [τ̂∗π,T,n]− τ

∣∣∣∣ ≤ (1−min
x

pR(x)
)n

ET [|τ(X)|] .

Moreover, under the same set of assumptions, the variance of the semi-oracle IPSW satisfies, for all n,

nVar
[
τ̂∗π,T,n

]
=
∑
x∈X

pT (x)
2
VHT(x)ER

[
1Zn(x)>0

p̂R,n(x)

]
+ nVar

[
ET

[
τ(X)1Zn(X)=0|Xn

]]
,

and Var
[
τ̂∗π,T,n

]
≤ 2Vso

n+ 1
+

(
1−min

x∈X
pR(x)

)n

ET

[
τ(X)2

]
,

with Vso :=ER

[(
pT(X)

pR(X)

)2

VHT(X)

]
.

The proof is detailed in Subsection A.2.1. Proposition 1 establishes the exact finite-sample bias and variance
of the semi-oracle IPSW estimate. Unlike the completely oracle IPSW, the semi-oracle IPSW is biased for
small trials (i.e. small n), which can be understood by undercoverage of some categories in the trial. Indeed,
for small trials, the probability that a category is not represented at all in the RCT may not be negligible.
Fortunately, as shown in Proposition 1, this bias converges to zero exponentially with the trial size n. Note
that, as soon as τ(x) is of constant sign, the sign of the bias is known and opposite to that of τ(x). In fact,
because of potentially empty categories in the trial, the expectation of the semi-oracle IPSW estimate E

[
τ̂∗π,T,n

]
is pushed toward zero, if τ(x) is of constant sign. Proposition 1 also gives the exact finite-sample expression
of the variance for the semi-oracle IPSW estimate. Corollary 1 provides asymptotic results derived from these
finite-sample expressions:

Corollary 1 (Asymptotics). Under the same assumptions as in Proposition 1, the semi-oracle IPSW is asymp-
totically unbiased, and its asymptotic variance satisfies,

lim
n→∞

E
[
τ̂∗π,T,n

]
= τ, and lim

n→∞
nVar

[
τ̂∗π,T,n

]
= Vso.

The proof is detailed in Subsection A.2.2. The quantity Vso already exist in the literature, for example in
Rothman and Greenland (2000), where a form of semi-oracle IPSW was introduced under the name standard-
ization. Here, we clarify the fact that this formula is valid only for large sample and we provide detailed
derivations. Therefore, Corollary 1 is the first theoretical result establishing the asymptotic variance of the
semi-oracle IPSW. One can observe from the explicit derivations that the semi-oracle estimator τ̂∗π,T,n has a
lower asymptotic variance than the oracle IPSW τ̂∗π,T,R,n recalled in Theorem 1. In particular,

Vso = Vo − VarR

[
pT(X)
pR(X)τ(X)

]
.

Always positive

This phenomenon has similar explanations2 with the common (and often surprising) result stating that an
estimated propensity score lowers the variance when re-weighting observational data compared to an estimator
relying on oracle propensity score (see Robins et al., 1992; Hahn, 1998; Hirano et al., 2003; Lunceford and
Davidian, 2004, regarding IPW estimator). Intuitively, we only need to generalize from the actual sample to
the target population, and not from a source trial population to a target population.

2In fact, similar considerations appear outside causal inference, for example Efron and Hinkley (1978) argued that the observed
information rather than the expected Fisher information should be used to characterize the distribution of maximum-likelihood
estimates.
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The semi oracle estimate has a lower asymptotic variance compared to the estimated IPSW but is also biased.
One can thus wonder how the risk of the two estimates compare. Theorem 2 upper bounds the risk of the
semi-oracle estimate:

Theorem 2 (Properties of the semi-oracle IPSW). Under the general setting defined in Subsection 3.1.1,
granting Assumptions 1-4, the quadratic risk of the completely oracle IPSW satisfies,

E
[(
τ̂∗π,T,n − τ

)2] ≤ 2Vso

n+ 1
+ 2

(
1−min

x
pR

)n
ET

[
τ(X)2

]
,

which implies its L2-consistency as n goes to infinity, that is,

τ̂∗π,T,n
L2

−→ τ.

Subsection A.2.3 details the proof. The second term in the upper bound of Theorem 2 decreases exponentially
with n, whereas the first term decreases at rate 1/n. At first, it is not easy to compare this upper bound to the
risk of the completely oracle IPSW, due to the factor two before Vso. Close inspection of the proof of Theorem 2
reveals that the factor 2 can be replaced by (1 + ε), for all ε, assuming that n is large enough (see Lemma 3).
The bound presented here is valid for all n and can be improved if n is taken large enough. Therefore, for all
n large enough, the first term in the upper bound is close to Vso/(n+ 1) which is smaller than Vo/(n+ 1) (see
above), which makes the risk of the semi-oracle smaller than that of the completely oracle, for n large enough.
This bound opens the doors to guarantees even on small sample size. Also note that, unlike Vo, Vso can be
estimated with the data.

4.1.3 Properties of the (estimated) IPSW

Previous results on IPSW are valid when the size of the target population goes to infinity. In this subsection,
we establish theoretical guarantees for the estimated IPSW in a more complex setting: we consider finite trial
and target population datasets and establish bounds depending on both sample sizes (n and m).

Proposition 2. Under the general setting defined in Subsection 3.1.1, granting Assumptions 1-4, the bias of
the estimated IPSW is the same as that of the semi-oracle IPSW, that is, for all n,m,

E [τ̂π,n,m]− τ = −
∑
x∈X

pT(x) (1− pR(x))
n τ(x).

Moreover, under the same set of assumptions, the variance of the estimated IPSW satisfies, for all n,m,

Var [τ̂π,n,m] = Var
[
τ̂∗π,T,n

]
+

1

m

(
VarT

[
τ(X)1Zn(X) ̸=0

]
−Var

[
ET

[
τ(X)1Zn(X)=0|Xn

]])
+

1

nm

∑
x∈X

VHT(x) pT(x) (1− pT(x))E
[
1Zn(x)̸=0

p̂R,n (x)

]

and Var [τ̂π,n,m] ≤ 2Vso

n+ 1
+

VarT [τ(X)]

m
+

2

m (n+ 1)
ER

[
pT (X) (1− pT (X))

pR (X)
2 VHT(X)

]

+
(
1−min

x
pR(x)

)n/2
ET

[
τ(X)2

](
1 +

4

m

)
. (12)

A proof is given in Subsection A.3.1. Note that the term VarT [τ(X)] can be replaced by Var [τ(X)] thanks to
Assumption 3. Proposition 2 is the first result to establish the bias and variance of the estimated IPSW in a
finite-sample setting. A first observation is that the bias of the (estimated) IPSW is the same as that of the
semi-oracle, showing that only a limited trial sample size can explain a finite sample bias. On the other side,
the variance terms differ, due to the additional estimation of the target probability pT in the estimated IPSW.
All additional terms compared to the variance of the semi-oracle τ̂T,π,n therefore depend on m. The explicit
expression of the variance shows that n and m must go to infinity for the variance to go to zero.

In this setting, the variance is dominated by the first two terms in inequality 12. If m ≫ n, the variance
is dominated by the first term, which is the dominant term of the semi-oracle variance. Following this idea,
Corollary 2 establishes the asymptotic bias and variance of the estimated IPSW in different sample size regimes.
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Corollary 2. Under the same assumptions as in Proposition 2, the estimated IPSW is asymptotically unbiased
when n tends to infinity, that is

lim
n→∞

E [τ̂π,n,m] = τ.

Besides, letting lim
n,m→∞

m/n = λ ∈ [0,∞], the asymptotic variance of the estimated IPSW satisfies

lim
n,m→∞

min(n,m)Var [τ̂π,n,m] = min(1, λ)

(
Var [τ(X)]

λ
+ Vso

)
.

Figure 6: Illustration of Corollary 2

A proof is detailed in Subsection A.3.2.

As highlighted in Corollary 2, there is not a unique asymptotic variance for
the estimated IPSW. Its asymptotic variance depends on how the sample
sizes n and m compare to each other asymptotically. For example,

• If m/n → ∞, (i.e., λ = ∞) then the asymptotic variance of the esti-
mated IPSW corresponds to the semi-oracle’s one;

• If we consider an asymptotic regime where the observational sample
is about ten times bigger than the trial (λ = 10), then the asymptotic
variance is equal to lim

n,m→∞
nVar [τ̂π,n,m] = Var [τ(X)] /10+Vso > Vso;

• Finally, if m/n → 0, (i.e., λ = 0) then the asymptotic variance of the
estimated IPSW has no more link to that of the semi-oracle IPSW,
and lim

n,m→∞
mVar [τ̂π,n,m] = Var [τ(X)].

This formula can be used to guide data collection. For example, and us-
ing the formula, one could say that at some point gathering N additional
individuals information in the target population (which has a cost) could
lead to less gain in precision than gathering a bit more data on the trial (if
possible). This phenomenon is illustrated on Figure 6.

Upper bound on the risk of the estimated IPSW can be established, based on Proposition 2.

Theorem 3 (Properties of the IPSW). Under the general setting defined in Subsection 3.1.1, granting Assump-
tions 1-4, the quadratic risk of the estimated IPSW satisfies,

E
[
(τ̂π,n,m − τ)

2
]
≤ 2Vso

n+ 1
+

Var [τ(X)]

m
+

2

m(n+ 1)
ER

[
pT (X) (1− pT (X))

pR (X)
2 VHT(X)

]

+ 2
(
1−min

x
pR (x)

)n
ET[τ(X)2]

(
1 +

2

m

)
, (13)

which implies its L2-consistency as m,n tends to infinity, that is,

τ̂π,n,m
L2

−→ τ.

Proof is detailed in Subsection A.3.3. The first and fourth terms in inequality (13) correspond to the bound of
the semi-oracle estimator (see Theorem 2). Following the intuition, the bound on the risk of the estimated IPSW
is larger than the one of the semi-oracle. This is due to the cost of estimating pT from a finite sample of size m.
However, when m ≫ n, the dominant terms in the risk of the estimated and semi-oracle IPSW are the same.
Indeen, consistency of the (estimated) IPSW for continuous covariates has been proven in the literature, for e.g.
Buchanan et al. (2018) demonstrate consistency and asymptotic normality under a nested-design and assuming
a parametric selection process. Colnet et al. (2021) demonstrate consistency assuming uniform convergence of
the probability ratio under a cross-fitting procedure and no parametric assumption. Our results are the first to
establish the bias and the variance of the estimated IPSW in finite and asymptotic regimes, with an explicit
dependence on both sample sizes.

What if the probability to be treated depends on x? In some trials, the probability to receive treatment
depends on the strata (for e.g. for ethical reason). If so, all the previous results are kept unchanged, replacing
π by π(x), and the proofs are written with π(x), even if the main results are reported with a constant π for
briefness. In particular, all the covariates used to stratify the propensity to receive treatment in the trial should
be used in the IPSW.
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4.2 Estimating the probability to be treated in the trial?

So far, we have considered an estimation procedure where π, the probability to be treated in the trial, is plugged
in the formula. Still, one may want to estimate it for the purpose of precision. This idea follows the same spirit
of what can be done with the Horvitz-Thomson (Definition 1) and the Difference-in-means (Definition 2), where
the large-sample gain in variance is recalled in Equation (7). To our knowledge, different version of IPSW are
currently present in the literature, with or without an estimated π (see Table 1 in appendix for a non-exhaustive
review). In our work, we propose to estimate π per strata, and then adapt the semi-oracle IPSW (Definition 5)
and the estimated IPSW (Definition 6).

Definition 7 (Estimation of π̂ for each strata). Under the setting defined in Subsection 3.1.1,

∀x ∈ X, π̂n(x) =

∑
i∈R 1Xi=x1Ai=1∑

i∈R 1Xi=x
.

Strange as it may seem, estimating π per strata and not on the whole sample can also be beneficial in RCTs to
improve precision. Imbens (2011); Miratrix et al. (2013) introduce the post-stratification procedure, a technique
aiming to use covariate information for precision when estimating the ATE from a single trial. These two research
works detail why a so-called post-stratification estimator yields a lower variance compared to the Difference-in-
Means – and therefore a Horvitz-Thomson – as soon as the covariates used for stratification are predictive of
the outcome. More particularly, the post-stratification estimator on a single trial is defined as follows.

Definition 8 (Post-stratification - Imbens (2011); Miratrix et al. (2013)). The post-stratification estimator is
denoted τ̂PS,n and defined as,

τ̂PS,n =
1

n

n∑
i=1

AiYi

π̂n(x)
− (1−Ai)Yi

1− π̂n(x)
,

where π is estimated according to Definition 7.

The different displays of the post-stratification estimator τ̂PS,n in literature are recalled in Section D. The gain
in efficiency of an IPSW version with estimated π follows this intuition.

Definition 9 (Semi-oracle IPSW with π̂). The semi-oracle IPSW estimator τ̂∗T,n with estimated propensity
scores π̂n is defined as

τ̂∗T,n =
1

n

n∑
i=1

pT(Xi)

p̂R,n(Xi)
Yi

(
Ai

π̂n(Xi)
− 1−Ai

1− π̂n(Xi)

)
, (14)

with p̂R,n(x) and π̂n(x) defined in Definitions 4 and 7.

Definition 10 (IPSW with π̂). The completely-estimated IPSW estimator τ̂n,m with estimated propensity scores
π̂n is defined as

τ̂n,m =
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)
Yi

(
Ai

π̂n(Xi)
− 1−Ai

1− π̂n(Xi)

)
, (15)

where p̂T,m(x), p̂R,n(x), and π̂n(x) defined in Definitions 4 and 7.

Before stating the formal results, and following the spirit of what was done with the variance of the Horvitz-
Thomson per strata (11), we introduce VDM,n(x):

VDM,n(x) = nVarR [τ̂DM,n|X = x] . (16)

The explicit variance of the Difference-in-Means under a Bernoulli design is provided in Appendix (see Lemma 2),
and not displayed here for conciseness.

Proposition 3 (IPSW’s properties when also estimating π). Under the general setting defined in Subsec-
tion 3.1.1, granting Assumptions 1-4, the bias of the estimated IPSW with estimated π̂n (see Definition 7) is
given by

E [τ̂n,m]− τ =
∑
x∈X

pT(x)E
[
Y (0) | X = x

](
1− pR(x) (1− π(x))

)n

−
∑
x∈X

pT(x)E
[
Y (1) | X = x

] (
1− pR(x)π(x)

)n
.
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Besides, the variance of the estimated IPSW with estimated π̂n satisfies, for all n

Var [τ̂n,m] =
1

m
Var [τ(X)− Cn(X)] +

(
1− 1

m

)
Var [E [Cn(X)|Xn]]

+
∑
x∈X

(
pT(x)(1− pT(x))

m
+ p2T(x)

)
E
[
1Zn(x)>0

Zn(x)

]
VDM,n(x),

where Cn(X) = E
[
Y (1) | X

]
(1− π(X))Zn(X) − E

[
Y (0) | X

]
π(X)Zn(X).

Furthermore, Var [τ̂n,m] ≤ 2 Ṽso

n+ 1
+

Var [τ(X)]

m
+

2

(n+ 1)m
ER

[
pT (X) (1− pT (X))

pR (X)
2 VDM(X)

]

+ 2

(
1 +

3

m

)(
1−min

x

(
(1− π̃(x)2)pR(x)

))n/2
E
[
(Y (1))2 + (Y (0))2

]
,

where π̃(x) = max (π(x), 1− π(x)) and Ṽso := ER

[(
pT (X)

pR (X)

)2

VDM,n(X)

]
.

Proof is detailed in Subsection A.4.1. Note that the bias takes a simpler form in the most usual case if π(x) = 1/2,

E [τ̂n,m]− τ = −
∑
x∈X

pT(x)τ(x)

(
1− pR(x)

2

)n

.

In this case, the bias of the estimated IPSW with estimated π̂n is larger than the one of all three previous
IPSW (completely oracle, semi-oracle and estimated with oracle π), but still decreases exponentially with n.
Another difference comes from the fact that the sign and magnitude of the bias no longer depends on the sign
and magnitude of τ(x) but also of E[Y (0)] and E[Y (1)]. The bound on the variance of τ̂n,m is very close to the
one of τ̂π,n,m, and in particular for any fixed m,

Var [τ̂n,m] ≤ 2 Ṽso

n+ 1
+

Var [τ(X)]

m
+

2

(n+ 1)m
ER

[
pT (X) (1− pT (X))

pR (X)
2 VDM(X)

]
+ o

(
1

n

)
,

where the main difference comes from Ṽso that contains VDM,n(X) rather than VHT(X). Combining (6) and (7)
allows to have

nVar [τ̂DM,n] ≤ VHT(x) +O
(
n−1/2

)
,

which allows to conclude that for all n large enough, the bound on the variance of τ̂n,m is tighter than the
bound on the variance of τ̂π,n,m. This can also be observed on the large sample variance.

Corollary 3. Under the same assumptions as in Proposition 3, the completely estimated IPSW is asymptotically
unbiased when n tends to infinity, that is

lim
n→∞

E [τ̂n,m] = τ.

Besides, letting lim
n,m→∞

m/n = λ ∈ [0,∞], the asymptotic variance of completely estimated IPSW satisfies

lim
n,m→∞

min(n,m)Var [τ̂n,m] = min(1, λ)

(
Var [τ(X)]

λ
+ Ṽso,∞

)
,

where Ṽso,∞ :=ER

[(
pT (X)

pR (X)

)2

VDM,∞(X)

]
,

and VDM,∞(x) :=
VarR

[
Y (1) | X = x

]
π

+
VarR

[
Y (0) | X = x

]
1− π

.

Proof is detailed in Subsection A.4.2. Because ∀x ∈ X, VDM,∞(x) ≤ VHT(x), then Ṽso,∞ ≤ Vso, so that the large
sample variance of the semi-oracle and completely estimated IPSW are smaller than with an oracle π, regardless
of the regime at which n and m tend to infinity. Similarly to the result on τ̂π,n,m, upper bound on the risk of
the completely estimated IPSW can be established, based on Proposition 3.
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Theorem 4 (Properties of the IPSW). Under the general setting defined in Subsection 3.1.1, granting Assump-
tions 1-4, the quadratic risk of the completely estimated IPSW with estimated π̂ satisfies,

E
[
(τ̂n,m − τ)

2
]
≤ 2Ṽso

n+ 1
+

Var [τ(X)]

m
+

2

m(n+ 1)
ER

[
pT (X) (1− pT (X))

pR (X)
2 VDM(X)

]

+ 2

(
2 +

3

m

)(
1−min

x
((1− π̃(x))pR(x))

)n/2
E
[
(Y (1))2 + (Y (0))2

]
. (17)

Consequently, the estimator τ̂n,m is L2-consistent as m,n tends to infinity, that is,

τ̂n,m
L2

−→ τ.

Proof is detailed in Subsection A.4.3. For the risk, and for the same arguments than for the bound on the
variance, it can be shown that for a reasonable n, the bound on the risk of τ̂n,m is tighter than for τ̂π,n,m.
All the previous results establish theoretical guidance explaining why an estimator also estimating π per strata
should be preferred in practice, at least for a reasonable trial sample size n. To our knowledge we have not
found work explicitly stating that estimating π in the IPSW should be preferred, even if Dahabreh et al. (2020)
uses a logistic regression to estimate the propensity to receive treatment in the trial.

4.3 Extended adjustment set: when using extra covariates

In this section, we detail the impact of adding covariates that are not necessary for adjustment – for example
being only shifted or only treatment effect modifiers – on the IPSW performances. Indeed, in the literature, one
of the natural approach is to adjust on all shifted covariates, also named the sampling set (Cole and Stuart, 2010;
Tipton, 2013). Another adjustment set is also possible, being the heterogeneity set comprising all the treatment
effect modifiers (Hartman, 2021), even if, knowing which covariate is treatment effect modifier is harder. As
mentioned in the related work (Subsection 2.2), there is an important literature about optimal adjustment set
for precision in the causal inference literature, but to our knowledge the topic has not been tackled yet when
it comes to efficiency in generalization. Egami and Hartman (2021) discuss extensively the usage of these two
sets for identification but do not study their impact on the asymptotic variance.

In this section the theoretical results hold for a specific regime, where the target sample is bigger than the trial
sample, that is m ≫ n. In other word, this situation is equivalent as considering the semi-oracle IPSW with
estimated π (Definition 9).

Formalization Consider that the user has at disposal an external set of baseline categorical covariates denoted
V . We assume that Assumptions 3 and 4 are preserved when adding V to the adjustment set X previously
considered3. As mentioned above, this external covariates set can be of two different natures.

Definition 11 (V is not a treatment effect modifier). V does not modulate treatment effect modifier, that is

∀v ∈ V, ∀s ∈ {T,R}, Ps(Y
(1) − Y (0) | X = x, V = v) = Ps(Y

(1) − Y (0) | X = x).

Definition 12 (V is not shifted). V is not shifted, that is

∀v ∈ V, pT(v) = pR(v).

To distinguish estimator using the set X or the extended set X,V , we denote τ̂(X) and τ̂(X,V ) the two
estimations strategies. One can show that adding only shifted covariates V leads to a loss of precision, when
the set V is independent of the set X.

Corollary 4 (Adding shifted and independent covariates). Consider the semi-oracle IPSW estimator τ̂∗T,n
(Definition 9), and a set of additional shifted covariates V (Definition 11) independent of X, which are not
treatment effect modifiers. Then,

lim
n→∞

nVarR
[
τ̂∗T,n(X,V )

]
=

(∑
v∈V

pT(v)
2

pR(v)

)
lim
n→∞

nVarR
[
τ̂∗T,n(X)

]
.

3Note that if preserving transportability is pretty straitghforward as V is a baseline covariate too (for e.g. no collider bias),
the support inclusion’s assumption can be more challenging when adding too many covariates (see D’Amour et al. (2017) for a
discussion).
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Proof is detailed in Subsection B.1. This results states that the asymptotic variance of the semi-oracle estimator
is always bigger if an additional independent shifted covariate set V is added in the adjustment. Moreover,
the stronger the shift, the bigger the variance inflation. Note that this specific rule was retrieved in the toy
example, where the plain line (corresponding to Corollary 4) matches the empirical dots on Figure 4a.

On the contrary, adding an additional treatment effect modifier covariate set leads to a gain in precision.

Corollary 5 (Adding non-shifted treatment effect modifiers). Consider the semi-oracle IPSW estimator τ̂∗T,n
(Definition 9). Consider an additional non-shifted treatment effect modifier set (Definition 12) independent of
X. Then,

lim
n→∞

nVarR
[
τ̂∗T,n(X,V )

]
= lim

n→∞
nVarR

[
τ̂∗T,n(X)

]
− ER

[
pT(X)

pR(X)
Var [τ(X,V ) | X]

]
.

In particular, lim
n→∞

nVarR
[
τ̂∗T,n(X,V )

]
≤ lim

n→∞
nVarR

[
τ̂∗T,n(X)

]
.

Proof is detailed in Subsection B.2. This result follows a similar spirit as Rotnitzky and Smucler (2020) due to
the comparison of two asymptotic variances, even though the context and the theoretical tools are different.

5 Synthetic and semi-synthetic simulations

In this section, one additional analysis based on the toy example is provided to illustrate the different asymptotic
regimes from Section 4. In addition, results are also illustrated on a semi-synthetic simulation aiming to mimic
a medical scenario. The code to reproduce the simulations and the different figures is available on Github4.

5.1 Synthetic: additional experiment from the toy example

While most of the results are illustrated at the beginning of the article through the toy example, here we more
thoroughly investigate empirically the different asymptotic regimes of the IPSW and its variants. In particular
we complete Figure 3c that highlights the phenomenon of different asymptotic regimes, with a complete visual-
ization of risks and variances allowing to more precisely illustrate the theoretical results, and in particular Corol-
lary 2. More precisely, the quadratic risk is depicted in Figure 7b, while the variance via min(n,m)Var [τ̂n,m] is
displayed in Figure 7a. In both figures, different estimators (oracle or not) are considered with different regimes
for m, as n grows to infinity. In particular, this simulation confirms that

(i) all IPSW variants are consistent, even though their convergence speeds depend on the regime (Figure 7b),

(ii) the completely oracle IPSW has a bigger variance than the semi-oracle IPSW (Figure 7a),

(iii) the asymptotic variance depends on the asymptotic regime (Figure 7a),

(iv) the completely estimated IPSW reaches the variance of the semi-oracle one if the target population sample
is bigger than the trial (Figure 7a).

5.2 Semi-synthetic

In the semi-synthetic simulation, the data are taken from an application in critical care medicine, and only the
outcome generative model is simulated, such that the covariate distribution and in particular the distribution
shift between populations is inherited from a real situation.

5.2.1 Design

Two data-sets are used to generate two sources:

1. A randomized controlled trial (RCT), called CRASH-3 (Dewan et al., 2012), aiming to measure the effect of
Tranexamic Acide (TXA) to prevent death from Traumatic Brain Injury (TBI). A total of 175 hospitals in
29 different countries participated to the RCT, where adults with TBI suffering from intracranial bleeding
were randomly administrated TXA (CRASH-3, 2019). The inclusion criteria of the trial are patients with
a Glasgow Coma Scale (GCS)5 score of 12 or lower or any intracranial bleeding on CT scan, and no major
extracranial bleeding.

4BenedicteColnet/IPSW-categorical.
5The Glasgow Coma Scale (GCS) is a neurological scale which aims to assess a person’s consciousness. The lower the score, the

higher the gravity of the trauma.
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(a) Asymptotic variance (b) Quadratic-error or Risk

Figure 7: Risks and different asymptotic regimes: Based on the toy example simulation (see Section 2 and data-generative
process from Figure 3a) where empirical variance from either the completely oracle (Definition 3), the semi-oracle (Definition 5)
or the estimated IPSW (Definition 6) are estimated repeating 6, 000 times each simulation for each trial sample size (x-axis).
Simulations cover different regimes of size n and m. On the y-axis the empirical variance min(n,m)Var [τ̂n,m] is plotted (with
the exception of min(n,m) = n for completely- and semi- oracle variants, represented in plain lines). Each color represents
one specific estimator and regime.

2. An observational cohort, called Traumabase, comprising 23 French Trauma centers, collects detailed clin-
ical data from the scene of the accident to the release from the hospital. The resulting database, called
the Traumabase, comprises 23,000 trauma admissions to date, and is continually updated, representing a
fair, almost-exhaustive data base about actual individuals taken in charge in France and suffering from
trauma.

These two data sources are turned into two source populations representing a real-world situation with six
covariates so that the distribution structure and, in particular, the distributional shift mimics a real-world
situation. The six covariates kept in common are: GCS (categorical), gender (categorical), pupil reactivity
(categorical), age (continuous), systolic blood pressure (continuous), and time-to-treatment (TTT) (continuous).
The continuous covariates are then turned into categories. Additional details about data preparation are
available in Appendix (see Section C). In this semi-synthetic simulation, only the outcome model is completely
synthetic, and follows

Y := f(GCS, Gender) +Aτ(TTT, Blood Pressure) + ϵTTT, (18)

where f and τ are two functions of the covariates, and ϵTTT is a gaussian noise such that E[ϵTTT | X] = 0, but
where heteroscedasticity is observed along the covariate TTT. The higher the time-to-treatment, the higher
Var [ϵTTT | TTT], and so the noise on Y (see Section C for the detailed generated function). This outcome model
is such that only time-to-treatment (TTT) and blood pressure are effect modifiers, while other covariates only
affects the baseline value or have no impact. Each time a simulation is conducted observations are sampled
from the two populations with replacement, and the outcome is created following equation (18). The trial is
such that π = 0.5.

5.2.2 Results

Minimal adjustment set is sufficient to generalize The minimal adjustment set to generalize the trial
results is constituted of the time-to-treatment(TTT) and the systolic blood pressure (blood). Using only these
two covariates, the simulations illustrate how the re-weighting procedure allows to correct for the population
shift between the trial and the target population as presented on Figure 8 (1, 000 repetitions).

Estimating π lowers the variance Simulations also illustrate the fact that estimating π (Definition 10)
compared to not estimating it (Definition 6) lowers the variance, as shown on Figure 8. This is expected from
Corollary 3.

The generalized (or re-weighted) estimate is not necessarily noisier than the trial’s estimate Note
that the variance of the IPSW - with estimation of π or not - has a similar variance as the estimates coming
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Figure 8: IPSW estimating π or
not: Simulations with n = 500,
m = 10 000 where the IPSW esti-
mator from Definitions 6 and 10 are
compared to the estimates of the
non-reweighted trials (Definitions 1
and 2) showing that the IPSW allow
to recover the true ATE on the tar-
get population represented by the
red dashed line (illustrating consis-
tency from Theorem 3). Estimat-
ing π leads to a lower variance as
expected (Corollary 3).

from the RCT only (Horvitz-Thomson or difference-in-means). This is due to the presence of heteroscedasticity
in the generative model (see equation (18)). Indeed, we would like to emphasize that re-weighting the trial
does not necessarily lead to wider confidence intervals. This somehow challenges a common and intuitive idea
present in the literature and stating that a re-weighted trial always has a larger variance than the trial itself
(Gatsonis and Sally, 2017; Ling et al., 2022). This intuition comes from the multiplication of weights that can
take large values (in particular if, for some x, pR(x) ≪ pT(x)), making this idea valid as soon as the outcome
noise is homoscedastic. However, the asymptotic variance of the semi-oracle IPSW from Corollary 1 highlights
that this intuitive and reasonable idea is not necessarily true, as soon as there is heteroscedascity, which occurs
if some categories for which potential outcomes have higher uncertainty (larger noise) are more represented in
the trial than in the target population:

Vso =
∑
x∈X

p2
T(x)

pR(x)

(
Var[Y (1)|X=x]

π +
Var[Y (0)|X=x]

1−π

)Weights

Can be small for some x with high weights
p2T(x)

pR(x)

In particular in this simulation, having a variance of the IPSW estimate smaller than that of the treatment
effect estimator on the trial is possible because individuals treated earlier have less uncertainty in the response
than individuals with high TTT (encoded in ϵTTT), and the simulation is made such that in the target population
such individuals are more present than in the trial.

Shifted and not treatment effect modifier covariate increases variance: the example of Glasgow
score (GCS) It is possible to illustrate the results from Section 4.3 with the semi-synthetic simulation. For
example, the Glasgow score (GCS) can be added to the minimal adjustment set previously used (see Figure 8),
and leads to a loss of precision as this covariate is relatively strongly shifted between the two data sets and is
not a treatment effect modifier (even if in the simulation this covariate has an impact on the outcome). The
increase in variance can be observed on Figure 9, where the green boxplot on the left represents such situation.

Figure 9: Effect of non-necessary co-
variates on the variance: IPSW (Defini-
tion 10) with n = 3000 and m = 10 000
showing that the addition of the covariate
GCS (shifted covariate not being a treat-
ment effect modifier) increases the vari-
ance of the IPSW, while the addition of
a non-shifted treatment effect modifier
(here simulated as no covariates from the
actual data base where not shited) leads
to an improvement in variance, compared
to the minimal set. Simulations are re-
peated 1, 000 times.
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While a non-shifted but treatment effect modifier lowers the variance To illustrate a gain in precision
due to the addition of a non-shifted treatment effect modifier, it was not possible to use the natural covariates
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from the two original data sets as a distributional shift was always present in all covariates. To model such a
situation, we added a categorical covariate X sup (5 levels), independent with all other covariates and without
shift, in the data generative model to represent such a situation:

Y := f(GCS, Gender) +Aτ(TTT, Blood Pressure, X sup) + ϵTTT. (19)

Doing so, it is possible to illustrate that adding X sup in the adjustment set allows to lower the variance, and
Figure 9 presents such situation with the purple boxplot on the right.

6 Conclusion and future work

In this work, we establish finite-sample and asymptotic results on different versions of the so-called Inverse
Propensity Sampling Weights estimator, when the adjustment set is constituted of categorical covariates. We
give the explicit expressions of the biases and variances for all estimates, together with their quadratic risk.
Our detailed analysis allows us to compare this different estimate in differente finite-sample regimes. Indeed,
to the best of our knowledge, our work is the first to study the impact of finite trial and observational data
sets on IPSW performance in the context of generalization, by providing rate of convergence for several IPSW
estimates. By doing so, we link these results with previous results in epidemiology where one data source was
considered infinite, and also explain how certain observations can be seen through the eyes of seminal work in
causal inference (efficient estimation with IPW).

Which covariate to include? This work also reveals that care should be taken when selecting the covariates
to generalize. From applied literature, we have noticed that practitioners usually select almost all available
covariates to build the weights, which is encouraged by the fear of missing an important shifted treatment effect
modifier. We show that inclusion of many covariates comes with the risk of adjusting on shifted covariates that
are not treatment effect modifiers, which can drastically damage the precision. On the contrary, even though
adding some non-shifted covariates may sound counterintuitive, we show that such practice improves asymptotic
precision, as soon as the non-shifted additional covariate set modulates treatment effect. Still, adding too many
covariates endangers overlap and therefore can lead to finite sample bias. In light of these theoretical results,
we believe that physicians and epidemiologists have an important role to play in selecting a limited number of
covariates when generalizing trial’s findings.

Future work Studying only categorical covariates is probably the main restriction of this work, as data can
be hybrid and composed of continuous and categorical information. However, even when facing a hybrid set of
covariates - continuous and categorical - the user can still create bins for continuous covariates. Even if such
data-processing is not necessarily recommended, for a limited number of covariates this should allow to extend
the analysis. Indeed, binning covariate leads to within-stratum confounding, that is a residual confounding
due to rough bins, and therefore to an asymptotic bias due to factors that are poorly controlled on. To avoid
within-stratum residual confounding, it is desirable to create more bins and split the data into more strata, but
stratifying too finely with a finite sample may lead to (i) a variance inflation and (ii) the support inclusion
assumption’s invalidity. Indeed, the performances of the IPSW in a high-dimensional setting can be limited.
For example, if all input variables are binary, the finite-sample bias and variance can be rewritten as a function
of n/2d (where d is the number of input variables) and can thus spin out of control if the sample sizes are too
small compared to the dimension of the problem. Future work should investigate how our conclusion on the
different asymptotic regimes and the covariates selection’s impact on variance can be extended to settings with
mixed-type covariates (for e.g. a smoother version of IPSW with density ratio estimation).

In practice, the limitation due to categorical covariates is balanced by the fact that within the medical field,
clinical indicators and covariates are often scores and categories. For example, Berkowitz et al. (2018) apply the
IPSW to generalize the effect of blood pressure control relying on many categorical covariates such as health
insurance status (insured, uninsured), tobacco smoking status (never, current, former), and so on. When facing
continuous covariates in practice, and having in mind the current theoretical understanding of the different
generalization estimators, this IPSW version has interests. A solution would be found at the crossroads be-
tween identification bias (due to imprecise bins) and variance inflation or finite sample bias (due to numerous
bins). Quantifying such a tradeoff in specific settings would definitely help the practitioners by providing clear
guidelines.
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Henckel, L., E. Perković, and M. H. Maathuis (2022, April). Graphical criteria for efficient total effect estimation
via adjustment in causal linear models. Journal of the Royal Statistical Society Series B 84 (2), 579–599.

Hernan, MA Robins, J. (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.

Hirano, K., G. Imbens, and G. Ridder (2003, 02). Efficient estimation of average treatment effects using the
estimated propensity score. Econometrica 71, 1161–1189.

Horvitz, D. G. and D. J. Thompson (1952). A generalization of sampling without replacement from a finite
universe. Journal of the American Statistical Association 47 (260), 663–685.

Huang, M. (2022). Sensitivity analysis in the generalization of experimental results.

Huitfeldt, A., S. Swanson, M. Stensrud, and E. Suzuki (2019, 12). Effect heterogeneity and variable selection
for standardizing causal effects to a target population. European Journal of Epidemiology 34.

Imai, K., G. King, and E. A. Stuart (2008). Misunderstandings between experimentalists and observationalists
about causal inference. Journal of the Royal Statistical Society: Series A (Statistics in Society) 171 (2),
481–502.

Imbens, G. W. (2011). Experimental design for unit and cluster randomid trials. International Initiative for
Impact Evaluation Paper .

Imbens, G. W. and D. B. Rubin (2015). Causal Inference in Statistics, Social, and Biomedical Sciences.
Cambridge UK: Cambridge University Press.

Josey, K. P., S. A. Berkowitz, D. Ghosh, and S. Raghavan (2021). Transporting experimental results with
entropy balancing. Statistics in Medicine 40 (19), 4310–4326.

Kallus, N., A. M. Puli, and U. Shalit (2018). Removing hidden confounding by experimental grounding. In
Advances in neural information processing systems, pp. 10888–10897.

22



Kern, H. L., E. A. Stuart, J. Hill, and D. P. Green (2016). Assessing methods for generalizing experimental
impact estimates to target populations. Journal of research on educational effectiveness 9 (1), 103–127.

Lee, D., S. Yang, L. Dong, X. Wang, D. Zeng, and J. Cai (2021, 12). Improving trial generalizability using
observational studies. Biometrics.

Lefebvre, G., J. Delaney, and R. Platt (2008, 08). Impact of mis-specification of the treatment model on
estimates from a marginal structural model. Statistics in medicine 27, 3629–42.

Ling, A. Y., M. E. Montez-Rath, P. Carita, K. Chandross, L. Lucats, Z. Meng, B. Sebastien, K. Kapphahn, and
M. Desai (2022). A critical review of methods for real-world applications to generalize or transport clinical
trial findings to target populations of interest.

Liu, R., S. Rizzo, S. Whipple, N. Pal, A. Lopez Pineda, M. Lu, B. Arnieri, Y. Lu, W. Capra, R. Copping, and
J. Zou (2021, 04). Evaluating eligibility criteria of oncology trials using real-world data and ai. Nature 592.

Lunceford, J. K. and M. Davidian (2004). Stratification and weighting via the propensity score in estimation
of causal treatment effects: A comparative study. In Statistics in Medicine, pp. 2937–2960.

Miratrix, L. W., J. S. Sekhon, and B. Yu (2013). Adjusting treatment effect estimates by post-stratification in
randomized experiments. Journal of the Royal Statistical Society Series B 75, 369–396.

Nie, X., G. Imbens, and S. Wager (2021). Covariate balancing sensitivity analysis for extrapolating randomized
trials across locations.

O’Muircheartaigh, C. and L. Hedges (2013, 11). Generalizing from unrepresentative experiments: A stratified
propensity score approach. Journal of the Royal Statistical Society: Series C (Applied Statistics) 63.

Pearl, J. (2015). Generalizing experimental findings. Journal of Causal Inference 3 (2), 259–266.

Pearl, J. and E. Bareinboim (2011). Transportability of causal and statistical relations: A formal approach. In
Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI’11, pp. 247–254. AAAI
Press.

Robins, J. M., S. D. Mark, and W. Newey (1992). Estimating exposure effects by modelling the expectation of
exposure conditional on confounders. Biometrics 48 2, 479–95.

Rosenbaum, P. R. and D. B. Rubin (1983). The central role of the propensity score in observational studies for
causal effects. Biometrika 70 (1), 41–55.

Rothman, K. J. (2011). Epidemiology: an introduction (2 ed.). Oxford University Press.

Rothman, K. J. and S. Greenland (2000). Modern Epidemiology (2 ed.). Lippincott Williams and Wilkins.

Rothwell, P. (2007, 01). External validity of randomised controlled trials: “to whom do the results of this trial
apply?”. Lancet 365, 82–93.

Rotnitzky, A. and E. Smucler (2020). Efficient adjustment sets for population average causal treatment effect
estimation in graphical models. Journal of Machine Learning Research 21 (188), 1–86.

Schnitzer, M., J. Lok, and S. Gruber (2015, 07). Variable selection for confounder control, flexible modeling
and collaborative targeted minimum loss-based estimation in causal inference. The international journal of
biostatistics 12.

Splawa-Neyman, J., D. M. Dabrowska, and T. P. Speed (1990). On the Application of Probability Theory to
Agricultural Experiments. Essay on Principles. Section 9. Statistical Science 5 (4), 465 – 472.

Stefanski, L. A. and D. D. Boos (2002). The calculus of m-estimation. The American Statistician 56 (1), 29–38.

Stuart, E. A., S. R. Cole, C. P. Bradshaw, and P. J. Leaf (2011). The use of propensity scores to assess the
generalizability of results from randomized trials. Journal of the Royal Statistical Society: Series A (Statistics
in Society) 174, 369–386.

Stuart, E. A. and A. Rhodes (2017). Generalizing treatment effect estimates from sample to population: A case
study in the difficulties of finding sufficient data. Evaluation Review 41 (4), 357–388. PMID: 27491758.

Tipton, E. (2013). Improving generalizations from experiments using propensity score subclassification: As-
sumptions, properties, and contexts. Journal of Educational and Behavioral Statistics 38, 239–266.

23



Tipton, E., K. Hallberg, L. Hedges, and W. Chan (2016, 07). Implications of small samples for generalization:
Adjustments and rules of thumb. Evaluation Review 41.

Velentgas, P., N. A. Dreyer, P. Nourjah, S. R. Smith, and M. Torchia (2013). Developing a protocol for
observational comparative effectiveness research: A user’s guide.

Westreich, D., J. Edwards, C. Lesko, E. Stuart, and S. Cole (2017, 05). Transportability of trial results using
inverse odds of sampling weights. American journal of epidemiology 186.

Witte, J. and V. Didelez (2018, 10). Covariate selection strategies for causal inference: Classification and
comparison. Biometrical Journal 61.

Wooldridge, J. (2016). Should instrumental variables be used as matching variables? Research in Eco-
nomics 70 (2), 232–237.

Yang, S., J. K. Kim, and R. Song (2020). Doubly robust inference when combining probability and non-
probability samples with high dimensional data. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 82.

24



APPENDIX

A Main proofs

A.1 Proof of Theorem 1 - Completely oracle estimator τ̂ ∗π,T,R,n

We first recall the expression of the completely oracle estimator introduced in Definition 3,

τ̂∗π,T,R,n =
1

n

n∑
i=1

pT (Xi)

pR (Xi)

(
YiAi

π
− Yi(1−Ai)

1− π

)
.

This estimator can be rewritten as,

τ̂∗π,T,R,n =
∑
x∈X

pT(x)

pR(x)

(
1

n

n∑
i=1

1Xi=x

(
YiAi

π
− Yi(1−Ai)

1− π

))
,

since Xi take values in a categorical set X. This rewriting is extensively used in the proof.

Bias

Recall that, for all x ∈ X, pR(x) and pT(x) are not random variables. We have

E
[
τ̂∗π,T,R,n

]
= E

[∑
x∈X

pT(x)

pR(x)

1

n

n∑
i=1

1Xi=x

(
YiAi

π
− Yi(1−Ai)

1− π

)]
By definition

=
∑
x∈X

E

[
pT(x)

pR(x)

1

n

n∑
i=1

1Xi=x

(
YiAi

π
− Yi(1−Ai)

1− π

)]
Linearity of E[.]

=
∑
x∈X

pT(x)

pR(x)
E

[
1

n

n∑
i=1

1Xi=x

(
YiAi

π
− Yi(1−Ai)

1− π

)]
pR(x) and pT(x) are not random

=
∑
x∈X

pT(x)

pR(x)
ER

[
1Xi=x

(
YiAi

π
− Yi(1−Ai)

1− π

)]
Linearity & iid trial

=
∑
x∈X

pT(x)

pR(x)
ER

[
1Xi=x

(
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π

)]
SUTVA (see Assumption 2).

Noting that,

pR(x) = PR[X = x] = PR[Xi = x] = ER [1Xi=x] ,

one can condition on the random variable Xi, yielding

ER

[
1Xi=x

(
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π

)]
= ER

[
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π
| Xi = x

]
ER [1Xi=x]︸ ︷︷ ︸

=pR(x)

.
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Then,

E
[
τ̂∗π,T,R,n

]
=
∑
x∈X

pT(x)ER

[
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π
| Xi = x

]
From previous derivations

=
∑
x∈X

pT(x)

ER

[
Y

(1)
i Ai | Xi = x

]
π

−
ER

[
Y

(0)
i (1−Ai) | Xi = x

]
1− π

 Linearity of E[.] and π is constant

=
∑
x∈X

pT(x)

(
ER

[
Y

(1)
i | Xi = x

]
ER [Ai | Xi = x]

π

−
ER

[
Y

(0)
i | Xi = x

]
ER [(1−Ai) | Xi = x]

1− π

)
Randomization (see Assumption 2)

=
∑
x∈X

pT(x)
(
ER

[
Y

(1)
i | Xi = x

]
− ER

[
Y

(0)
i | Xi = x

])
ER [Ai | Xi = x] = π

=
∑
x∈X

pT(x)ER

[
Y

(1)
i − Y

(0)
i | Xi = x

]
Linearity of E[.]

=
∑
x∈X

pT(x)ET

[
Y

(1)
i − Y

(0)
i | Xi = x

]
Transportability (see Assumption 3)

= τ, Law of total probability

which concludes the first part of the proof.

Note that the previous derivations, relying on iid, Assumption 2 (Trial internal validity with SUTVA, definition
of π, and randomization), Assumption 3, and the law of total probability, lead to the following intermediary
result,

ER

[
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π
| Xi = x

]
= ET

[
Y

(1)
i − Y

(0)
i | Xi = x

]
= τ(x). (20)

(20) will be used in other proofs.
Variance

To shorten notation, we denote by Xn ∈ Xn the vector composed of the n observations in the trial. We then
use the law of total variance, conditioning on Xn,

Var
[
τ̂∗π,T,R,n

]
= Var

[
E
[
τ̂∗π,T,R,n | Xn

]]
+ E

[
Var

[
τ̂∗π,T,R,n | Xn

]]
. (21)

Considering the first term in the right-hand side of (21),

E
[
τ̂∗π,T,R,n | Xn

]
= E

[∑
x∈X

pT(x)

pR(x)

1

n

n∑
i=1

1Xi=x

(
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π

)
| Xn

]
By definition (and SUTVA)

=
∑
x∈X

pT(x)

pR(x)

1

n
E

[
n∑

i=1

1Xi=x

(
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π

)
| Xn

]
. Linearity of E[.]

Note that this last derivation also uses the fact that neither pT(x) nor pR(x) are random variables.

E
[
τ̂∗π,T,R,n | Xn

]
=
∑
x∈X

pT(x)

pR(x)

n∑
i=1

1Xi=x

n
E

[
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π
| Xi

]
iid individuals

=
∑
x∈X

pT(x)

pR(x)

n∑
i=1

1Xi=x

n
τ(Xi)

=
1

n

∑
x∈X

pT(x)

pR(x)
τ(x)

n∑
i=1

1Xi=x Transportability (see Assumption 3)
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Now, this last term can be written as a unique sum on i ∈ {1, . . . , n}, that is,

1

n

∑
x∈X

pT(x)

pR(x)
τ(x)

n∑
i=1

1Xi=x =
1

n

n∑
i=1

pT(Xi)

pR(Xi)
τ(Xi).

Taking the variance of this term leads to,

Var
[
ER

[
τ̂∗π,T,R,n | Xn

]]
= Var

[
1

n

n∑
i=1

pT(Xi)

pR(Xi)
τ(Xi)

]

=
1

n
VarR

[
pT(X)

pR(X)
τ(X)

]
. iid observations on trial (Assumption 2) (22)

Regarding the second term,

Var
[
τ̂∗π,T,R,n | Xn

]
= VarR

[
1

n

n∑
i=1

pT (Xi)

pR (Xi)

(
YiAi

π
− Yi(1−Ai)

1− π

)
| Xn

]

=
1

n2

n∑
i=1

(
pT (Xi)

pR (Xi)

)2

VarR

[(
YiAi

π
− Yi(1−Ai)

1− π

)
| Xn

]

=
1

n2

n∑
i=1

(
pT (Xi)

pR (Xi)

)2

VarR

[(
YiAi

π
− Yi(1−Ai)

1− π

)
| Xi

]
. (23)

Recall that the variance of the Horvitz-Thomson estimator (see Definition 1) conditioned on Xi is given by

VarR [τ̂HT,n | Xi] =
1

n
VarR

[(
YiAi

π
− Yi(1−Ai)

1− π

)
| Xi

]
. (24)

Then, one can use Lemma ?? (see Section D) to have

nVar [τ̂HT,n | Xi] = ER

[(
Y (1)

)2
π

| Xi

]
+ ER

[(
Y (0)

)2
1− π

| Xi

]
− τ(Xi)

2 := VHT(Xi). (25)

Then, coming back to (23),

ER

[
Var

[
τ̂∗π,T,R,n | Xn

]]
= ER

[
1

n2

n∑
i=1

(
pT (Xi)

pR (Xi)

)2

VHT(Xi)

]

= ER

[
1

n2

n∑
i=1

(∑
x∈X

1Xi=x

)(
pT (Xi)

pR (Xi)

)2

VHT(Xi)

]

= ER

[∑
x∈X

1

n2

(
pT (x)

pR (x)

)2

VHT(x)

n∑
i=1

1Xi=x

]

=
∑
x∈X

1

n2

(
pT (x)

pR (x)

)2

VHT(x)ER

[
n∑

i=1

1Xi=x

]

=
∑
x∈X

1

n

(
pT (x)

pR (x)

)2

VHT(x)ER

[∑n
i=1 1Xi=x

n

]

=
∑
x∈X

1

n

(
pT (x)

pR (x)

)2

VHT(x)pR (x) Assumption 1

=
∑
x∈X

1

n

p2T (x)

pR (x)
VHT(x)

=
1

n

∑
x∈X

p2T (x)

pR (x)

(
ER

[(
Y (1)

)2
π

| X = x

]
+ ER

[(
Y (0)

)2
1− π

| X = x

]
− τ(x)2

)
, (26)

(27)

Combining (26) and (22) into (21) leads to, for all n,

Var
[
τ̂∗π,T,R,n

]
=

Vo

n
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where

Vo = Var

[
pT(Xi)

pR(Xi)
τ(Xi)

]
+
∑
x∈X

p2T (x)

pR (x)
VHT(x).

Note that it is also possible to write the result such as,

Vo = Var

[
pT(X)

pR(X)
τ(X)

]
+ ER

[
p2T (X)

p2R (X)
VHT(X)

]
,

noting that ∑
x∈X

p2T (x)

pR (x)
VHT(x) = ER

[
p2T (X)

p2R (X)
VHT(X)

]
Quadratic risk and consistency

For any estimate τ̂ , we have

E
[
(τ̂ − τ)

2
]
= (E [τ̂ ]− τ)

2
+Var [τ̂ ] .

Therefore, the risk of the completely oracle IPSW estimate satisfies

E
[
(τ̂ − τ)

2
]
=

Vo

n
.

The L2 consistency holds by letting n tend to infinity.

A.2 Proofs for the semi-oracle IPSW τ̂ ∗π,T,n

A.2.1 Proof of Proposition 1

Proof. We first recall the definition of the semi-oracle estimator introduced in Definition 5:

τ̂∗π,T,n =
1

n

n∑
i=1

pT (Xi)

p̂R,n(Xi)

(
YiAi

π
− Yi(1−Ai)

1− π

)
,

where, for all x ∈ X,

p̂R,n (x) =

∑n
i=1 1Xi=x

n
. (28)

Similarly to the completely oracle estimator, the semi-oracle estimator can be written as,

τ̂∗π,T,n =
∑
x∈X

pT(x)

p̂R,n(x)

(
1

n

n∑
i=1

1Xi=x

(
YiAi

π
− Yi(1−Ai)

1− π

))
,

since Xi take values in a categorical set X.

Bias

To shorten notation, we denote the full vector of covariatesXn ∈ Xn, comprising the n observationsX1, X2, . . . Xn ∈
X in the trial. We have

E
[
τ̂∗π,T,n

]
= E

[∑
x∈X

pT(x)

p̂R,n(x)

(
1

n

n∑
i=1

1Xi=x

(
YiAi

π
− Yi(1−Ai)

1− π

))]
By definition

=
∑
x∈X

E

[
pT(x)

p̂R,n(x)

(
1

n

n∑
i=1

1Xi=x

(
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π

))]
Linearity and SUTVA

=
∑
x∈X

E

[
E

[
pT(x)

p̂R,n(x)

(
1

n

n∑
i=1

1Xi=x

(
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π

))
| Xn

]]
Law of total expect.

=
∑
x∈X

E

[
pT(x)E

[
1

p̂R,n(x)

(
1

n

n∑
i=1

1Xi=x

(
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π

))
| Xn

]]
pT(x) is deterministic

=
∑
x∈X

E

[
pT(x)

p̂R,n(x)
E

[(
1

n

n∑
i=1

1Xi=x

(
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π

))
| Xn

]]

=
∑
x∈X

E

[
pT(x)

p̂R,n(x)

1

n

n∑
i=1

1Xi=xE

[
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π
| Xn

]]
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This last line uses the fact that
∑n

i=1 1Xi=x

n is measurable with respect to Xn. Then, note that,

1Xi=xE

[
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π
| Xn

]
= 1Xi=xE

[
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π
| Xi

]
iid observations.

Then, recall from the proof in Subsection A.1, and in particular from (20) that

1Xi=xE

[
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π
| Xn

]
= 1Xi=xE

[
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π
| X = x

]
Indicator forcing X = x.

= 1Xi=xτ(x) Transportability.

Therefore,

E
[
τ̂∗π,T,n

]
=
∑
x∈X

E
[

pT(x)

p̂R,n(x)

∑n
i=1 1Xi=x

n
τ(x)

]

=
∑
x∈X

E

[
pT(x)∑n
i=1 1Xi=x

n

∑n
i=1 1Xi=x

n
τ(x)

]
Estimation procedure - Equation 28

Let Zn(x) =
∑n

i=1 1Xi=x distributed as B(n, pR(x)). Note that, by convention, the term inside the expectation
is null if Zn(x) = 0. 6 This leads to the following equality,

E
[
τ̂∗π,T,n

]
=
∑
x∈X

E
[
pT(x)τ(x)1Zn(x)>0

]
=
∑
x∈X

pT(x)τ(x)E
[
1Zn(x)>0

]
=
∑
x∈X

pT(x)τ(x) (1− (1− pR(x))
n
).

Upper bound of the bias.

If pR(x) = 0, then pT(x) = 0 (due to the support inclusion assumption, see Assumption 4). Therefore, for all
x ∈ X, 0 < pR(x). Then, it is possible to bound the bias for any sample size n, noting that,

|E
[
τ̂∗π,T,n

]
− τ | =

∣∣∣∣∣∑
x∈X

pT(x)τ(x) (1− (1− pR(x))
n
)− τ

∣∣∣∣∣
=

∣∣∣∣∣∑
x∈X

pT(x)τ(x) (1− (1− pR(x))
n)−

∑
x∈X

pT(x)τ(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
x∈X

pT(x)τ(x) (1− pR(x))
n

∣∣∣∣∣
≤
(
1−min

x
pR(x)

)n ∑
x∈X

pT(x) |τ(x)|

≤
(
1−min

x
pR(x)

)n
ET [|τ(X)|] .

Variance

The proof follows the same track as that of the completely oracle IPSW, conditioning on Xn, and using the law
of total variance,

Var
[
τ̂∗π,T,n

]
= Var

[
E
[
τ̂∗π,T,n | Xn

]]
+ E

[
Var

[
τ̂∗π,T,n | Xn

]]
. (29)

6Note that to be clearer we could have introduced the multiplication by 1Zn(x)>0in the formula summing over the categories
from the beginning. Indeed, this was implicit as it is the re-writing of a sum on the trial’s observations. But this also leads to
heavy notations.
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For the first inside term,

E
[
τ̂∗π,T,n | Xn

]
= E

[∑
x∈X

pT(x)

p̂R,n(x)

1

n

n∑
i=1

1Xi=x

(
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π

)
| Xn

]
By definition (and SUTVA)

=
∑
x∈X

pT(x)

p̂R,n(x)

1

n

n∑
i=1

1Xi=xE

[(
Y

(1)
i Ai

π
− Y

(0)
i (1−Ai)

1− π

)
| Xn

]
Linearity of E[.]

=
∑
x∈X

pT(x)

p̂R,n(x)

1

n

n∑
i=1

1Xi=xτ(Xi)

=
∑
x∈X

pT(x)τ(x)1Zn(x)>0 Equation 28

= ET

[
τ(X)1Zn(X)>0|Xn

]
Re-writing the sum as expectancy.

Note that

Var
[
ET

[
τ(X)1Zn(X)>0|Xn

]]
= Var

[
ET [τ(X)]− ET

[
τ(X)1Zn(X)=0|Xn

]]
= Var

[
τ − ET

[
τ(X)1Zn(X)=0|Xn

]]
= Var

[
ET

[
τ(X)1Zn(X)=0|Xn

]]
, (30)

as the only source of randomness comes from ET

[
τ(X)1Zn(X)=0|Xn

]
.

Therefore, the first inside term of (29) corresponds to,

Var
[
E
[
τ̂∗π,T,n | Xn

]]
= Var

[
ET

[
τ(X)1Zn(X)=0|Xn

]]
. (31)

On the other hand,

Var
[
τ̂∗π,T,n | Xn

]
= Var

[
1

n

n∑
i=1

pT (Xi)

p̂R,n (Xi)

(
YiAi

π
− Yi(1−Ai)

1− π

)
| Xn

]

=
1

n2

n∑
i=1

(
pT (Xi)

p̂R,n (Xi)

)2

Var

[(
YiAi

π
− Yi(1−Ai)

1− π

)
| Xn

]

=
1

n2

n∑
i=1

(
pT (Xi)

p̂R,n (Xi)

)2

Var

[(
YiAi

π
− Yi(1−Ai)

1− π

)
| Xi

]

=
1

n2

n∑
i=1

(
pT (Xi)

p̂R,n (Xi)

)2

VHT(Xi),

where the last row comes from intermediary results in the completely oracle proof (see equation (25)), with

VHT(x) := ER

[(
Y (1)

)2
π

| Xi

]
+ ER

[(
Y (0)

)2
1− π

| Xi

]
− τ(X)2.

Then,

E
[
Var

[
τ̂∗π,T,n | Xn

]]
= E

[
1

n2

n∑
i=1

(
pT (Xi)

p̂R,n (Xi)

)2

VHT(Xi)

]
From previous derivations

= E

[∑
x∈X

(
1

n2

n∑
i=1

1Xi=x

(
pT (Xi)

p̂R,n (Xi)

)2

VHT(Xi)

)]
Categorical X

= E

[∑
x∈X

1

n2

(
pT (x)

p̂R,n (x)

)2

VHT(x)

(
n∑

i=1

1Xi=x

)]

=
∑
x∈X

1

n2
pT (x)

2
VHT(x)E

[(
1

p̂R,n (x)

)2
(

n∑
i=1

1Xi=x

)]
.

Replacing p̂R,n (x) by its explicit expression,

E
[
Var

[
τ̂∗π,T,n | Xn

]]
=

1

n

∑
x∈X

pT (x)
2
VHT(x)E

[(
1

1
n

∑n
i=1 1Xi=x

)2
(
1

n

n∑
i=1

1Xi=x

)]
. (32)
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As in the study of the bias, we introduce Zn(x) =
∑n

i=1 1Xi=x, distributed as B(n, p). One can then write,

E
[
Var

[
τ̂∗π,T,n | Xn

]]
=

1

n

∑
x∈X

pT (x)
2
VHT(x)ER

[
1Zn(x)>0

1
n

∑n
i=1 1Xi=x

]
.

Recalling (29) and (31), we have

Var
[
τ̂∗π,T,n

]
= Var

[
E
[
τ̂∗π,T,n | Xn

]]
+ E

[
Var

[
τ̂∗π,T,n | Xn

]]
= Var

[
ET

[
τ(X)1Zn(X)=0|Xn

]]
+

1

n

∑
x∈X

pT (x)
2
VHT(x)E

[
1Zn(x)>0

1
n

∑n
i=1 1Xi=x

]
. (33)

Upper bound on the variance

According to Arnould et al. (2021) (see page 27), since Zn(x) is distributed as B(n, pR(x)), we have

∀x ∈ X, E
[
1Zn(x) ̸=0

Zn(x)

]
≤ 2

(n+ 1)pR (x)
.

Besides,

Var
[
ET

[
τ(X)1Zn(X)=0|Xn

]]
≤ ET

[
τ(X)21Zn(X)=0

]
≤ ET

[
τ(X)2 (1− pR(X))

n]
≤ ET

[
τ(X)2

](
1−min

x∈X
pR(x)

)n

.

Combining these inequalities with (33) yields, for all n,

Var
[
τ̂∗π,T,n

]
≤ ET

[
τ(X)2

](
1−min

x∈X
pR(x)

)n

+
2

n+ 1

∑
x∈X

pT (x)
2

pR (x)
VHT(x).

This expression can be further simplified in,

Var
[
τ̂∗π,T,n

]
≤ 2Vso

n+ 1
+

(
1−min

x∈X
pR(x)

)n

ET

[
τ(X)2

]
,

where

Vso :=
∑
x∈X

pT (x)
2

pR (x)
VHT(x) = ET

[(
pT(X)

pR(X)

)2

VHT(X)

]
.

A.2.2 Proof of Corollary 1

Proof. Asymptotically unbiased

Recall the expression of the semi-oracle IPSW bias from Proposition 1.

E
[
τ̂∗π,T,n

]
=
∑
x∈X

pT(x)τ(x) (1− (1− pR(x))
n
).

According to Assumption 4, we have ∀x ∈ X, 0 < pR(x) < 1. As a consequence,

lim
n→∞

(1− (1− pR(x))
n
= 1,

which leads to

lim
n→∞

E
[
τ̂∗π,T,n

]
= τ.

Asymptotic variance

Recall the expression of the variance of the semi-oracle IPSW from Proposition 1:
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nVar
[
τ̂∗π,T,n

]
= nVar

[
E
[
τ̂∗π,T,n | Xn

]]
+
∑
x∈X

pT (x)
2
VHT(x)ER

[
1Zn(x)>0

1
n

∑n
i=1 1Xi=x

]
. (34)

Note that the first term tends to zero since

0 ≤ nVar
[
E
[
τ̂∗π,T,n | Xn

]]
≤ ET

[
τ(X)2

](
1−min

x∈X
pR(x)

)n

.

Therefore,

lim
n→∞

nVar
[
τ̂∗π,T,n

]
= lim

n→∞

∑
x∈X

pT (x)
2
VHT(x)ER

[
1Zn(x)>0

1
n

∑n
i=1 1Xi=x

]
. (35)

The next part of the proof consists in characterizing how the term ER

[
1Zn(x)>0

Zn(x)/n

]
converges. Let ε > 0. Since,

for all x, pR(x) > 0, we have

E

[
1Zn(x)>0

Zn(x)
n

]
= E

[
1Zn(x)>0

Zn(x)
n

1|Zn(x)
n −pR(x)|≥ε

]
+ E

[
1Zn(x)>0

Zn(x)
n

1|Zn(x)
n −pR(x)|<ε

]
. (36)

Regarding the first term in (36), we have

E

[
1Zn(x)>0

Zn(x)
n

1|Zn(x)
n −pR(x)|≥ε

]
≤ nP

[
|Zn(x)

n
− pR(x)| ≥ ε

]
,

since, on the event Zn(x) > 0, Zn(x) ≥ 1. Now, by Chernoff’s inequality,

P
[
|Zn(x)

n
− pR(x)| ≥ ε

]
≤ 2 exp

(
−2ε2n

)
,

which yields

E

[
1Zn(x)>0

Zn(x)
n

1|Zn(x)
n −pR(x)|≥ε

]
≤ 2n exp

(
−2ε2n

)
. (37)

Regarding the second term in equation (36), since

1Zn(x)>0

Zn(x)
n

1|Zn(x)
n −pR(x)|<ε

is bounded above, for ε < pR(x)/2 and converges in probability to 1/pR(x), we have

E

[
1Zn(x)>0

Zn(x)
n

1|Zn(x)
n −pR(x)|<ε

]
→ 1

pR(x)
, as n → ∞. (38)

Combining (37) and (38), we have

E
[
1Zn(x)>0

Zn(x)/n

]
→ 1

pR(x)
, as n → ∞.

Using equation (35), we finally obtain

lim
n→∞

nVar
[
τ̂∗π,T,n

]
=
∑
x∈X

pT (x)
2

pR (x)
VHT(x) = E

[(
pT (X)

pR (X)

)2

VHT(X)

]
:= Vso.

A.2.3 Proof of Theorem 2

Proof. For any estimate τ̂ , we have

E
[
(τ̂ − τ)

2
]
= (E [τ̂ ]− τ)

2
+Var [τ̂ ] .
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Therefore, the risk of the semi-oracle IPSW estimate can be bounded using results from Subsection A.2.1 (or
Proposition 1), and in particular the bounds on the variance and the bias,

E
[
(τ̂ − τ)

2
]
≤
(
1−min

x
pR(x)

)2n
ET [|τ(X)|]2 + 2Vso

n+ 1
+

(
1−min

x∈X
pR(x)

)n

ET

[
τ(X)2

]
≤ 2Vso

n+ 1
+ 2

(
1−min

x∈X
pR(x)

)n

ET

[
τ(X)2

]
,

In particular thanks to the fact that,

VarT [|τ(X)|] = ET

[
τ(X)2

]
− ET [|τ(X)|]2 ,

so that,

ET [|τ(X)|]2 ≤ ET

[
τ(X)2

]
.

The L2 consistency holds by letting n tend to infinity.

A.3 Proofs for (estimated) IPSW τ̂π,n,m

We first recall the definition of a fully estimated estimator introduced in Definition 6.

τ̂π,n,m =
1

n

n∑
i=1

p̂T,m (Xi)

p̂R,n(Xi)

(
YiAi

π
− Yi(1−Ai)

1− π

)
,

where, for all x ∈ X,

p̂R,n (x) =

∑n
i=1 1Xi=x

n
, and p̂T,m (x) =

∑n+m
i=n+1 1Xi=x

m
. (39)

Similar to the completely oracle estimator, this estimated IPSW can be written as,

τ̂π,n,m =
∑
x∈X

p̂T,m (x)

p̂R,n(x)

(
1

n

n∑
i=1

1Xi=x

(
YiAi

π
− Yi(1−Ai)

1− π

))
.

All the proofs below rely on this decomposition.

A.3.1 Proof of Proposition 2

Proof. Expression of the bias

Using the exact same derivations as in Subsection A.2.1 (Bias), but using the law of total expectation when
conditioning on Xn+m ∈ Xn+m (i.e. comprising the n and m observations X1, X2, . . . Xn, Xn+1 . . . Xn+m ∈ X
in the trial and target population, one has,

E [τ̂π,n,m] =
∑
x∈X

E
[
p̂T,m(x)

p̂R,n(x)

∑n
i=1 1Xi=x

n
τ(x)

]

=
∑
x∈X

E

[
p̂T,m(x)∑n
i=1 1Xi=x

n

∑n
i=1 1Xi=x

n
τ(x)

]
Estimation procedure - Equation 39

=
∑
x∈X

E
[
p̂T,m(x)τ(x)1Zn(x)̸=0

]
.

Note that Zn(x) only depend on the trial sample R and p̂T,m(x) on the observational sample. In addition, τ(x)
is deterministic, therefore

E [τ̂π,n,m] =
∑
x∈X

τ(x)E [p̂T,m(x)]E
[
1Zn(x)̸=0

]
.

Note that E [p̂T,m(x)] = pT(x). Besides, according to the proof of the semi-oracle IPSW,

E
[
1Zn(x)̸=0

]
= (1− (1− pR(x))

n
).
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Therefore,

E [τ̂π,n,m] =
∑
x∈X

pT(x)τ(x) (1− (1− pR(x))
n
),

that is

E [τ̂π,n,m]− τ = −
∑
x∈X

pT(x)τ(x) (1− pR(x))
n
.

Upper bound on the bias

It is possible to bound the bias for any sample size n, using the exact same derivations than for the semi-oracle
IPSW.

Expression of the variance

The proof follows a similar spirit as the proof for the completely oracle estimator, conditioning on all observations
Xn+m.

Var [τ̂π,n,m] = Var [E [τ̂π,n,m | Xn+m]] + E [Var [τ̂π,n,m | Xn+m]] . (40)

E [τ̂π,n,m | Xn+m] = E

[∑
x∈X

p̂T,m (x)

p̂R,n(x)

(
1

n

n∑
i=1

1Xi=x

(
YiAi

π
− Yi(1−Ai)

1− π

))
| Xn+m

]

=
∑
x∈X

E

[
p̂T,m (x)

p̂R,n(x)

(
1

n

n∑
i=1

1Xi=x

(
YiAi

π
− Yi(1−Ai)

1− π

))
| Xn+m

]
Linearity of E[.]

=
∑
x∈X

p̂T,m (x)

p̂R,n(x)
E

[
1

n

n∑
i=1

1Xi=x

(
YiAi

π
− Yi(1−Ai)

1− π

)
| Xn+m

]
.

Indeed, p̂R,n(x) and p̂T,m(x) are measurable with respect to Xn+m.
Pursuing the computation, we have

E [τ̂π,n,m | Xn+m] =
∑
x∈X

p̂T,m (x)

p̂R,n(x)
E

[
1

n

n∑
i=1

1Xi=x

(
YiAi

π
− Yi(1−Ai)

1− π

)
| Xn+m

]

=
∑
x∈X

p̂T,m (x)

p̂R,n(x)

1

n

n∑
i=1

E
[
1Xi=x

(
YiAi

π
− Yi(1−Ai)

1− π

)
| Xn+m

]
Linearity of E[.]

=
∑
x∈X

p̂T,m (x)

p̂R,n(x)

1

n

n∑
i=1

1Xi=xE
[(

YiAi

π
− Yi(1−Ai)

1− π

)
| Xn+m

]
Conditioning on Xn

=
∑
x∈X

p̂T,m (x)

p̂R,n(x)
τ(x)

1

n

n∑
i=1

1Xi=x Transportability

=
∑
x∈X

p̂T,m (x) τ(x)1Zn(x)̸=0,

where Zn(x) =
∑n

i=1 1Xi=x. Then,

Var [E [τ̂π,n,m | Xn+m]] = Var

[∑
x∈X

p̂T,m (x) τ(x)1Zn(x)̸=0

]

= Var

[∑
x∈X

∑n+m
i=n+1 1Xi=x

m
τ(x)1Zn(x)̸=0

]

= Var

[
1

m

n+m∑
i=n+1

τ(Xi)1Zn(Xi )̸=0

]

Note that, contrary to the semi-oracle IPSW, this term is non-null due to estimation of p̂T,m. By the law of
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total variance,

Var

[
1

m

n+m∑
i=n+1

τ(Xi)1Zn(Xi )̸=0

]
= E

[
Var

[
1

m

n+m∑
i=n+1

τ(Xi)1Zn(Xi )̸=0|Xn

]]

+Var

[
E

[
1

m

n+m∑
i=n+1

τ(Xi)1Zn(Xi) ̸=0|Xn

]]

=
1

m
E
[
Var

[
τ(X)1Zn(X) ̸=0|Xn

]]
+Var

[
E
[
τ(X)1Zn(X) ̸=0|Xn

]]
=

1

m
Var

[
τ(X)1Zn(X) ̸=0

]
+

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X )̸=0|Xn

]]
,

where the last line comes from the law of total variance applied to Var
[
τ(X)1Zn(X) ̸=0

]
. Recalling similar

derivations from the semi-oracle IPSW proof, and in particular (30), one has

Var
[
E
[
τ(X)1Zn(X )̸=0|Xn

]]
= Var

[
ET

[
τ(X)1Zn(X)=0|Xn

]]
,

so that

Var [E [τ̂π,n,m | Xn]] =
1

m
Var

[
τ(X)1Zn(X) ̸=0

]
+

(
1− 1

m

)
Var

[
ET

[
τ(X)1Zn(X)=0|Xn

]]
. (41)

For the other term of (40),

Var [τ̂π,n,m | Xn+m] = Var

[
1

n

n∑
i=1

p̂T,m (Xi)

p̂R,n (Xi)

(
YiAi

π
− Yi(1−Ai)

1− π

)
| Xn+m

]

=
1

n2

n∑
i=1

(
p̂T,m (Xi)

p̂R,n (Xi)

)2

VHT(Xi).

Derivations are very similar to the semi-oracle estimator, using the fact that p̂R,n(x) and p̂T,m(x) are measurable
with respect to Xn+m. We have

E [Var [τ̂π,n,m | Xn+m]] = E

[
1

n2

n∑
i=1

(
p̂T,m (Xi)

p̂R,n (Xi)

)2

VHT(Xi)

]
From previous derivations

= E

[∑
x∈X

(
1

n2

n∑
i=1

1Xi=x

(
p̂T,m (Xi)

p̂R,n (Xi)

)2

VHT(Xi)

)]
Categorical X

= E

[∑
x∈X

1

n2

(
p̂T,m (x)

p̂R,n (x)

)2

VHT(x)

(
n∑

i=1

1Xi=x

)]

=
∑
x∈X

1

n2
VHT(x)E

[(
p̂T,m (x)

p̂R,n (x)

)2
(

n∑
i=1

1Xi=x

)]

=
∑
x∈X

1

n
VHT(x)ER

[
(p̂T,m (x))

2

p̂R,n (x)
1Zn(x) ̸=0

]
.

In particular, the last term can be simplified in

E [Var [τ̂π,n,m | Xn+m]] =
∑
x∈X

1

n
VHT(x)E

[
(p̂T,m (x))

2
]
E
[
1Zn(x)̸=0

p̂R,n (x)

]
. (42)

This last derivation is possible because p̂T,m (x), which depends on T , and p̂R,n (x), which depends on R, are
independent. The difference from the semi-oracle estimator comes from the term

E
[
(p̂T,m (x))

2
]
= E

[(∑m
i=n+1 1Xi=x

m

)2
]

=
1

m2
E

( m∑
i=n+1

1Xi=x

)2


=
1

m2

(
mpT(x)(1− pT)(x) +m2p2T(x)

)
=

pT(x)(1− pT(x))

m
+ p2T(x). (43)
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Using (41) and (43) in (40), we have

Var [τ̂π,n,m] = Var [E [τ̂π,n,m | Xn+m]] + E [Var [τ̂π,n,m | Xn+m]]

=
1

m
VarT

[
τ(X)1Zn(X) ̸=0

]
+

(
1− 1

m

)
Var

[
ET

[
τ(X)1Zn(X)=0|Xn

]]
+

1

n

∑
x∈X

VHT(x)
pT(x)(1− pT(x))

m
E
[
1Zn(x) ̸=0

p̂R,n (x)

]
+

1

n

∑
x∈X

VHT(x)p
2
T(x)E

[
1Zn(x)̸=0

p̂R,n (x)

]
=

1

m

(
VarT

[
τ(X)1Zn(X )̸=0

]
−Var

[
ET

[
τ(X)1Zn(X)=0|Xn

]])
+Var

[
τ̂∗π,T,n

]
+

1

nm

∑
x∈X

VHT(x)pT(x)(1− pT(x))E
[
1Zn(x) ̸=0

p̂R,n (x)

]
. (44)

Upper bound on the variance.

We first bound (41), corresponding to

Var [E [τ̂π,n,m | Xn+m]] =
1

m
VarT

[
τ(X)1Zn(X) ̸=0

]
+

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn+m

]]
.

We have

VarT
[
τ(X)1Zn(X )̸=0

]
= VarT

[
τ(X)− τ(X)1Zn(X)=0

]
= VarT [τ(X)]− 2CovT(τ(X), τ(X)1Zn(X)=0) + VarT

[
τ(X)1Zn(X)=0

]
≤ VarT [τ(X)] + 2

(
VarT[τ(X)] VarT

[
τ(X)1Zn(X)=0

])1/2
+VarT

[
τ(X)1Zn(X)=0

]
,

with

VarT
[
τ(X)1Zn(X)=0

]
≤ E

[
τ(X)21Zn(X)=0

]
≤ E

[
τ(X)2E

[
1Zn(X)=0 | X

]]
≤ E

[
τ(X)2(1− pR(X))n

]
≤
(
1−min

x
pR(x)

)n
ET

[
τ(X)2

]
.

Consequently,

VarT
[
τ(X)1Zn(X) ̸=0

]
≤ VarT [τ(X)] + 2ET

[
τ(X)2

] (
1−min

x
pR(x)

)n/2
+
(
1−min

x
pR(x)

)n
ET

[
τ(X)2

]
≤ VarT [τ(X)] + 4ET

[
τ(X)2

] (
1−min

x
pR(x)

)n/2
.

One can also bound the other term of (41) following the same derivations as the semi-oracle IPSW,

Var
[
E
[
τ(X)1Zn(X)=0|Xn+m

]]
≤ E

[
τ(X)21Zn(X)=0

]
= E

[
τ(X)2E

[
1Zn(X)=0|X

]]
= E

[
τ(X)2P [Zn(X) = 0|X]

]
≤ E

[
τ(X)2

] (
1−min

x
pR(x)

)n
. (45)

The first bound is obtained using the fact that the variance of a random variable is bounded by the expectancy
of the squared random variables, and either the law of total variance or Jensen inequality.
Then, using the fact that 1− 1

m ≤ 1,

Var [ET [τ̂π,n,m | Xn+m]] ≤ VarT [τ(X)]

m
+

4ET

[
τ(X)2

]
m

(
1−min

x
pR(x)

)n/2
+ ET

[
τ(X)2

] (
1−min

x
pR(x)

)n
≤ VarT [τ(X)]

m
+ ET

[
τ(X)2

]( 4

m
+ 1

)(
1−min

x
pR(x)

)n/2
. (46)

Then, for the other term of the asymptotic variance, one can use the results from Arnould et al. (2021) (see
page 27) to bound the variance, which leads to
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E [Var [τ̂π,n,m | Xn+m]] =
∑
x∈X

1

n
g(x)E

[
(p̂T,m (x))

2
]
E

[
1Zn(x)̸=0

Zn(x)
n

]

≤
∑
x∈X

g(x)E
[
(p̂T,m (x))

2
] 2

(n+ 1)pR (x)
Arnould et al. (2021) (p.27)

=
∑
x∈X

g(x)

(
pT (x) (1− pT (x))

m
+ pT (x)

2

)
2

(n+ 1)pR (x)

Finally, using (46), and (44),

Var [τ̂π,n,m] ≤ VarT [τ(X)]

m
+ ET

[
τ(X)2

]( 4

m
+ 1

)(
1−min

x
pR(x)

)n/2
+

2

n+ 1

(
ER

[(
pT (X)

pR (X)

)2

VHT(X)

]
+

1

m
ER

[
pT (X) (1− pT (X))

pR (X)
2 VHT(X)

])
. (47)

A.3.2 Proof of Corollary 2

Asymptotic bias

The proof is exactly the same as for the semi-oracle IPSW, see Subsection A.2.2.

Asymptotic variance

We recall that the explicit expression of the variance is

Var [τ̂π,n,m] =
1

m
VarT

[
τ(X)1Zn(X) ̸=0

]
+

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]
+

1

n

∑
x∈X

VHT(x)
pT(x)(1− pT(x))

m
E
[
1Zn(x)̸=0

p̂R,n (x)

]
+Var

[
τ̂∗π,T,n

]
.

Let’s consider a slightly different quantity, multiplying by min(n,m),

min(n,m)Var [τ̂π,n,m] =
min(n,m)

m
VarT

[
τ(X)1Zn(X )̸=0

]
+min(n,m)

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]
+

min(n,m)

nm

∑
x∈X

VHT(x)pT(x)(1− pT(x))E
[
1Zn(x)̸=0

p̂R,n (x)

]
+min(n,m)Var

[
τ̂∗π,T,n

]
.

Now, we study an asymptotic regime where n and m can grow toward infinity but at different paces. Let
lim

n,m→∞
m
n = λ ∈ [0,∞],where λ characterizes the regime.

Case 1: If λ ∈ [1,∞], one can replace min(n,m) by n, so that

lim
n,m→∞

nVar [τ̂π,n,m] = lim
n,m→∞

 n

m︸︷︷︸
1
λ

VarT
[
τ(X)1Zn(X )̸=0

]
+ n

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]


+ lim
n,m→∞

(
1

m

∑
x∈X

VHT(x)pT(x)(1− pT(x))E
[
1Zn(x)̸=0

p̂R,n (x)

])
︸ ︷︷ ︸

=0

+ lim
n,m→∞

(
nVar

[
τ̂∗π,T,n

])
︸ ︷︷ ︸

=Vso

, Corollary 1

where we also used from former proof, (37) and (38) stating that

E
[
1Zn(x)>0

Zn(x)/n

]
→ 1

pR(x)
, as n → ∞.
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Recalling (45),

0 ≤ Var
[
E
[
τ(X)1Zn(X)=0|Xn

]]
≤ τ

(
1−min

x
pR(x)

)2n
,

due to the exponential convergence one has,

lim
n→∞

nVar
[
E
[
τ(X)1Zn(X)=0|Xn

]]
= 0,

and therefore,

lim
n,m→∞

n

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]
= 0. (48)

Besides,

lim
n→∞

VarT
[
τ(X)1Zn(X )̸=0

]
= VarT [τ(X)] ,

To summarize, if λ ∈ [1,∞], one can conclude that

lim
n,m→∞

nVar [τ̂π,n,m] =
Var [τ(X)]

λ
+ Vso. (49)

Case 2: If λ ∈ [0, 1], one can replace min(n,m) by m, so that

lim
n,m→∞

mVar [τ̂π,n,m] = lim
n,m→∞

VarT
[
τ(X)1Zn(X )̸=0

]
+ lim

n,m→∞
m

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]
+ lim

n,m→∞

1

n

∑
x∈X

VHT(x)pT(x)(1− pT(x))E
[
1Zn(x) ̸=0

p̂R,n (x)

]
+ lim

n,m→∞
λ
∑
x∈X

VHT(x)p
2
T(x)E

[
1Zn(x)̸=0

p̂R,n (x)

]
.

In particular,

lim
n,m→∞

VarT
[
τ(X)1Zn(X) ̸=0

]
= VarT [τ(X)] .

As above, we have

lim
n,m→∞

m

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]
= 0,

because,

0 ≤ m

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]
≤ n

(
1− 1

m

)
Var

[
E
[
τ(X)1Zn(X)=0|Xn

]]
.

In addition, (37) and (38) ensure that

lim
n,m→∞

λ
∑
x∈X

VHT(x)p
2
T(x)E

[
1Zn(x) ̸=0

p̂R,n (x)

]
= λVso.

As an intermediary conclusion, if λ ∈ [0, 1],

lim
n,m→∞

min(n,m)Var [τ̂π,n,m] = Var [τ(X)] + λVso (50)

General conclusion: It is possible to gather equations (49) and (50) in one single conclusion. Therefore,
letting lim

n,m→∞
m/n = λ ∈ [0,∞], the asymptotic variance of estimated IPSW satisfies

lim
n,m→∞

min(n,m)Var [τ̂π,n,m] = min(1, λ)

(
Var [τ(X)]

λ
+ Vso

)
.

38



A.3.3 Proof of Theorem 3

Proof. For any estimate τ̂ , we have

E
[
(τ̂ − τ)

2
]
= (E [τ̂ ]− τ)

2
+Var [τ̂ ] .

Therefore, the risk of the (estimated) IPSW estimate can be bounded using results from Subsection A.3.1 (or
Proposition 2), and in particular the bounds on the variance and the bias,

E
[
(τ̂ − τ)

2
]
≤ (1−min

x
pR(x))

2nET[τ(X)2] +
VarT [τ(X)]

m
+
(
1−min

x
pR(x)

)n/2(4ET

[
τ(X)2

]
m

+ τ

)

+
2

n+ 1

(
ER

[(
pT (X)

pR (X)

)2

VHT(X)

]
+

1

m
ER

[
pT (X) (1− pT (X))

pR (X)
2 VHT(X)

])

≤ 2Vso

n+ 1
+

VarT [τ(X)]

m
+

2

m(n+ 1)
ER

[
pT (X) (1− pT (X))

pR (X)
2 VHT(X)

]

+
(
1−min

x
pR (x)

)n/2(
1 + ET[τ(X)2] +

4ET

[
τ(X)2

]
m

)
.

The L2 consistency holds by letting n and m tend to infinity.

A.4 Estimated IPSW with estimated π̂n(x)

A.4.1 Proof of Proposition 3

Proof. Bias

We start by computing the bias of

E [τ̂n,m] = E

[
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)
Yi

(
Ai

π̂n(Xi)
− 1−Ai

1− π̂n(Xi)

)]

=
1

n
E

[
E

[∑
x∈X

p̂T,m(x)

p̂R,n(x)

n∑
i=1

1Xi=xYi

(
Ai

π̂n(x)
− 1−Ai

1− π̂n(x)

)
| Xn,An,Yn

]]

=
1

n
E

[∑
x∈X

E [p̂T,m(x) | Xn,An,Yn]

p̂R,n(x)

n∑
i=1

1Xi=xYi

(
Ai

π̂n(x)
− 1−Ai

1− π̂n(x)

)]

=
1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xYi

(
Ai

π̂n(x)
− 1−Ai

1− π̂n(x)

)]
.

This derivation is possible as p̂T,m is estimated on a different data set than the trial.
Using SUTVA (Assumption 2), one can replace observed outcomes by potential outcomes, and

E [τ̂n,m] =
1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=x

(
Y

(1)
i Ai

π̂n(x)
− Y

(0)
i (1−Ai)

1− π̂n(x)

)]

=
1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xE

[(
Y

(1)
i Ai

π̂n(x)
− Y

(0)
i (1−Ai)

1− π̂n(x)

)
|Xn,Y

(1)
n ,Y(0)

n

]]
.

Let us consider, for any fixed x ∈ X,

E

[
Y

(1)
i Ai

π̂n(x)
|Xn,Y

(1)
n ,Y(0)

n

]
= Y

(1)
i E

[
Ai

π̂n(x)
|Xn

]
.
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Up to reordering the Xi’s, we have

E
[

Ai

π̂n(x)
|Xn

]
= E

 Ai∑Zn(x)
j=1 Aj

Zn(x)

|Xn


= Zn(x)E

[
Ai∑Zn(x)

j=1 Aj

|Xn

]

= Zn(x)π(x)E

[
1

1 +
∑Zn(x)

j=2 Aj

|Xn

]
.

The last rows uses the law of total probability. According to Lemma 11 (i) in Biau (2012), and considering
Bn(x) ∼ B(n, p), for any x ∈ X,

E
[

1

1 +Bn(x)

]
=

1

(n+ 1)p
− (1− p)n+1

(n+ 1)p
.

Since, conditional on Xn,
∑Zn(x)

j=2 Aj is distributed as B(Zn(x)− 1, π(x)),

E
[

Ai

π̂n(x)
|Xn

]
= Zn(x)π(x)

(
1

Zn(x)π(x)
− (1− π(x))Zn(x)

Zn(x)π(x)

)
= 1− (1− π(x))Zn(x).

Similarly,

E
[
(1−Ai)

1− π̂n(x)
|Xn

]
= 1− π(x)Zn(x).

Consequently,

E

[(
Y

(1)
i Ai

π̂n(x)
− Y

(0)
i (1−Ai)

1− π̂n(x)

)
|Xn,Y

(1)
n ,Y(0)

n

]
= Y

(1)
i

(
1− (1− π(x))Zn(x)

)
− Y

(0)
i

(
1− π(x)Zn(x)

)
=
(
Y

(1)
i − Y

(0)
i

)
− Y

(1)
i (1− π(x))Zn(x) + Y

(0)
i π(x)Zn(x).

Therefore,

E [τ̂n,m] =
1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=x(Y
(1)
i − Y

(0)
i )

]
(51)

+
1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xY
(0)
i π(x)Zn(x)

]
(52)

− 1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xY
(1)
i (1− π(x))Zn(x)

]
. (53)

On one hand, considering (51),

1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=x(Y
(1)
i − Y

(0)
i )

]
=

1

n

∑
x∈X

E

[
pT(x)

p̂R,n(x)

n∑
i=1

1Xi=x(Y
(1)
i − Y

(0)
i )

]
=
∑
x∈X

E
[
pT(x)1Zn(x)>0τ(x)

]
,

corresponding to the bias in the semi-oracle and the estimated IPSW. Indeed, we recall from the semi-oracle
IPSW proof that, ∑

x∈X
E
[
pT(x)1Zn(x)>0τ(x)

]
=
∑
x∈X

pT(x)(1− (1− pR(x))
n)τ(x).

On the other hand, considering (52),
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1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xY
(0)
i π(x)Zn(x)

]
=

1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xE
[
Y

(0)
i | Xi = x

]
π(x)Zn(x)

]

= E

[∑
x∈X

pT(x)1Zn(x)>0E
[
Y

(0)
i | Xi = x

]
π(x)Zn(x)

]
=
∑
x∈X

pT(x)E
[
Y

(0)
i | Xi = x

]
E
[
1Zn(x)>0π(x)

Zn(x)
]

=
∑
x∈X

pT(x)E
[
Y

(0)
i | Xi = x

]
E
[(
1− 1Zn(x)=0

)
π(x)Zn(x)

]
=
∑
x∈X

pT(x)E
[
Y

(0)
i | Xi = x

] (
E
[
π(x)Zn(x)

]
− E

[
1Zn(x)=0

])
.

Now, note that P [Zn(x) = 0] = (1− pR(x))
n and

E
[
π(x)Zn(x)

]
=

n∏
j=1

E
[
π(x)1Xi=x

]
= (π(x)pR(x) + (1− pR(x)))

n
.

= (1− pR(x) (1− π(x)))
n
.

Therefore,

1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xY
(0)
i π(x)Zn(x)

]
=
∑
x∈X

pT(x)E
[
Y

(0)
i | Xi = x

] (
(1− pR(x) (1− π(x)))

n − (1− pR(x))
n )

.

Similarly, considering (53),

− 1

n
E

[∑
x∈X

pT(x)

p̂R,n(x)

n∑
i=1

1Xi=xY
(1)
i (1− π)Zn(x)

]
= −

∑
x∈X

pT(x)E
[
Y

(1)
i | Xi = x

] (
(1− pR(x)π(x))

n − (1− pR(x))
n
)
.

Finally, the bias of the estimated IPSW with estimated treatment proportion is given by

E [τ̂n,m]− τ = −
∑
x∈X

pT(x)τ(x) (1− pR(x))
n

+
∑
x∈X

pT(x)
(
E
[
Y

(1)
i | Xi = x

]
− E

[
Y

(0)
i | Xi = x

])
(1− pR(x))

n

+
∑
x∈X

pT(x)E
[
Y

(0)
i | Xi = x

]
(1− pR(x) (1− π(x)))

n

−
∑
x∈X

pT(x)E
[
Y

(1)
i | Xi = x

]
(1− pR(x)π(x))

n
,

such that,

E [τ̂n,m]− τ =
∑
x∈X

pT(x)E
[
Y

(0)
i | Xi = x

]
(1− pR(x) (1− π(x)))

n

−
∑
x∈X

pT(x)E
[
Y

(1)
i | Xi = x

]
(1− pR(x)π(x))

n
.

Variance

As above, we have
Var [τ̂n,m] = Var [E [τ̂n,m | Xm+n]] + E [Var [τ̂n,m | Xm+n]] . (54)
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Let us examine the first term. We have

E [τ̂n,m | Xm+n] = E

[
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)
Yi

(
Ai

π̂n(Xi)
− 1−Ai

1− π̂n(Xi)

)
| Xm+n

]

=
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)
E

[
Y

(1)
i Ai

π̂n(Xi)
− Y

(0)
i (1−Ai)

1− π̂n(Xi)
| Xm+n

]

=
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)
E

[
E

[
Y

(1)
i Ai

π̂n(Xi)
− Y

(0)
i (1−Ai)

1− π̂n(Xi)
| Xm+n,Y

(1)
n ,Y(0)

n

]
| Xm+n

]
.

A similar computation as the one used in the derivation of the bias above shows that

E

[
Y

(1)
i Ai

π̂n(Xi)
− Y

(0)
i (1−Ai)

1− π̂n(Xi)
| Xm+n,Y

(1)
n ,Y(0)

n

]
=
(
Y

(1)
i − Y

(0)
i

)
− Y

(1)
i (1− π(Xi))

Zn(Xi) + Y
(0)
i π(Xi)

Zn(Xi),

which leads to

E [τ̂n,m | Xm+n] =
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)
E
[(

Y
(1)
i − Y

(0)
i

)
− Y

(1)
i (1− π(Xi))

Zn(Xi) + Y
(0)
i π(Xi)

Zn(Xi) | Xm+n

]
=

1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)

(
τ(Xi)− E

[
Y

(1)
i | Xi

]
(1− π(Xi))

Zn(Xi) + E
[
Y

(0)
i | Xi

]
π(Xi)

Zn(Xi)
)
.

Rewriting the previous sum yields

E [τ̂n,m | Xm+n] =
1

n

∑
x∈X

n∑
i=1

1Xi=x
p̂T,m(Xi)

p̂R,n(Xi)

(
τ(Xi)− E

[
Y

(1)
i | Xi

]
(1− π(Xi))

Zn(Xi) + E
[
Y

(0)
i | Xi

]
π(Xi)

Zn(Xi)
)

=
∑
x∈X

p̂T,m(x)
(
τ(x)− E

[
Y

(1)
i | Xi = x

]
(1− π(x))Zn(x) + E

[
Y

(0)
i | Xi = x

]
π(x)Zn(x)

)
=

1

m

n+m∑
i=n+1

Un(Xi),

where

Un(Xi) :=
(
τ(Xi)− E

[
Y

(1)
i | Xi

]
(1− π(Xi))

Zn(Xi) + E
[
Y

(0)
i | Xi

]
π(Xi)

Zn(Xi)
)
.

By the law of total variance,

Var [E [τ̂n,m | Xm+n]]

=Var

[
1

m

n+m∑
i=n+1

Un(Xi)

]

=E

[
Var

[
1

m

n+m∑
i=n+1

Un(Xi)|Xn

]]
+Var

[
E

[
1

m

n+m∑
i=n+1

Un(Xi)|Xn

]]

=
1

m
E [Var [Un(X)|Xn]] + Var [E [Un(X)|Xn]]

=
1

m
Var [Un(X)] +

(
1− 1

m

)
Var [E [Un(X)|Xn]] ,

where the last line comes from the law of total variance applied to Var [Un(X)]. Since

Var [E [Un(X)|Xn]]

=Var
[
E
[(

τ(X)− E
[
Y (1) | X

]
(1− π(X))Zn(X) + E

[
Y (0) | X

]
π(X)Zn(X)

)
|Xn

]]
=Var

[
E
[
E
[
Y (0) | X

]
π(X)Zn(X) − E

[
Y (1) | X

]
(1− π(X))Zn(X)|Xn

]]
,

as the only source of randomness comes from Zn(X) (and not from τ(X)), we have

Var [E [τ̂n,m | Xm+n]] =
1

m
Var [τ(X)− Cn(X)] +

(
1− 1

m

)
Var [E [Cn(X)|Xn]] , (55)
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where

Cn(X) = E
[
Y (1) | X

]
(1− π(X))Zn(X) − E

[
Y (0) | X

]
π(X)Zn(X).

Regarding the other term, and first re-writing τ̂n,m,

τ̂n,m =
1

n

n∑
i=1

p̂T,m(Xi)

p̂R,n(Xi)

(
AiY

(1)
i

π̂n(Xi)
− (1−Ai)Y

(0)
i

1− π̂n(Xi)

)

=

n∑
i=1

p̂T,m(Xi)

Zn(Xi)

(
AiY

(1)
i

π̂n(Xi)
− (1−Ai)Y

(0)
i

1− π̂n(Xi)

)

=
∑
x∈X

p̂T,m(x)

Zn(x)

n∑
i=1

1Xi=x

(
AiY

(1)
i

π̂n(x)
− (1−Ai)Y

(0)
i

1− π̂n(x)

)
.

Hence,

Var [τ̂n,m | Xn+m]

=Var

[∑
x∈X

p̂T,m(x)

Zn(x)

n∑
i=1

1Xi=x

(
AiY

(1)
i

π̂n(x)
− (1−Ai)Y

(0)
i

1− π̂n(x)

)
| Xn+m

]

=
∑
x∈X

(p̂T,m(x))2 Var

[
1

Zn(x)

n∑
i=1

1Xi=x

(
AiY

(1)
i

π̂n(x)
− (1−Ai)Y

(0)
i

1− π̂n(x)

)
| Xn+m

]

+
∑

x,y∈X,x ̸=y

Cov

 p̂T,m(x)

Zn(x)

n∑
i=1

1Xi=x

(
AiY

(1)
i

π̂n(x)
− (1−Ai)Y

(0)
i

1− π̂n(x)

)
,
p̂T,m(y)

Zn(y)

n∑
j=1

1Xj=y

(
AjY

(1)
j

π̂n(y)
−

(1−Aj)Y
(0)
j

1− π̂n(y)

)
| Xn+m

 .

Note that the term

Var

[
1

Zn(x)

n∑
i=1

1Xi=x

(
AiY

(1)
i

π̂n(x)
− (1−Ai)Y

(0)
i

1− π̂n(x)

)
| Xn+m

]

corresponds to the variance of the difference-in-means estimator on the strata X = x (where n is replaced by
Zn(x)) and therefore equals

VDM,n(x)1Zn(x)>0/Zn(x),

where (see Lemma 2),

VDM(x) =

(
E
[
1π̂>0

π̂

]
Var

[
Y

(1)
i

]
+ E

[
1(1−π̂)>0

1− π̂

]
Var

[
Y

(0)
i

])
+O (Zn(x)max(π, 1− π)n) .

Consequently,

Var [τ̂n,m | Xn+m]

=
∑
x∈X

(p̂T,m(x))2VDM,n(x)1Zn(x)>0

Zn(x)

+
∑

x,y∈X,x ̸=y

p̂T,m(x)

Zn(x)

p̂T,m(y)

Zn(y)

∑
i,j

1Xi=x1Xj=y Cov

[(
AiY

(1)
i

π̂n(x)
− (1−Ai)Y

(0)
i

1− π̂n(x)

)
,

(
AjY

(1)
j

π̂n(y)
−

(1−Aj)Y
(0)
j

1− π̂n(y)

)
| Xn+m

]
.

Note that for x ̸= y, π̂n(x) ⊥⊥ π̂n(y). Consequently, for i ̸= j,(
AiY

(1)
i

π̂n(x)
− (1−Ai)Y

(0)
i

1− π̂n(x)

)
⊥⊥

(
AjY

(1)
j

π̂n(x)
−

(1−Aj)Y
(0)
j

1− π̂n(x)

)
.

Consequently,

Var [τ̂n,m | Xn+m] =
∑
x∈X

(p̂T,m(x))2VDM,n(x)1Zn(x)>0

Zn(x)
,
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and, taking the expectation with respect to Xn+m, we have

E [Var [τ̂n,m | Xn+m]] =
∑
x∈X

E
[
(p̂T,m(x))2

]
E
[
1Zn(x)>0

Zn(x)

]
VDM,n(x)

=
∑
x∈X

(
pT(x)(1− pT(x))

m
+ p2T(x)

)
E
[
1Zn(x)>0

Zn(x)

]
VDM,n(x). (56)

Gathering (55) and (56), we finally obtain,

Var [τ̂n,m]

=
1

m
Var [τ(X)− Cn(X)] +

(
1− 1

m

)
Var [E [Cn(X)|Xn]]

+
∑
x∈X

(
pT(x)(1− pT(x))

m
+ p2T(x)

)
E
[
1Zn(x)>0

Zn(x)

]
VDM,n(x),

where

Cn(X) = E
[
Y (1) | X

]
(1− π(X))Zn(X) − E

[
Y (0) | X

]
π(X)Zn(X).

Note that, by Jensen’s inequality,

Var [E [Cn(X)|Xn]]

≤ E
[
Cn(X)2

]
≤ 2E

[
E
[
Y (1) | X

]2
(1− π(X))2Zn(X)

]
+ 2E

[
E
[
Y (0) | X

]2
π(X)2Zn(X)

]
≤ 2E

[
E
[
Y (1) | X

]2
E
[
(1− π(X))2Zn(X) | X

]]
+ 2E

[
E
[
Y (0) | X

]2
E
[
π(X)2Zn(X) | X

]]
≤ 2E

[
E
[
Y (1) | X

]2 (
1−

(
1− π(X)2

)
pR(X)

)n]
+ 2E

[
E
[
Y (0) | X

]2 (
1−

(
1− (1− π(X))2

)
pR(X)

)n]
≤ 2

(
1−min

x

(
(1− π̃(x)2)pR(x)

))n
E
[
(Y (1))2 + (Y (0))2

]
,

where π̃(x) = max(π(x), 1− π(x)), and we have used the fact that

E
[
π(X)2Zn(X) | X

]
=
(
π(X)2pR(X) + 1− pR(X)

)n
=
(
1−

(
1− π(X)2

)
pR(X)

)n
.

Besides, we have

Var [τ(X)− Cn(X)] ≤ VarT [τ(X)] + 2 (VarT[τ(X)] VarT [Cn(X)])
1/2

+VarT [Cn(X)] ,

where

VarT [Cn(X)] ≤ E
[
Cn(X)2

]
≤ 2

(
1−min

x

(
(1− π̃(x)2)pR(x)

))n
E
[
(Y (1))2 + (Y (0))2

]
.

Consequently,

Var [τ(X)− Cn(X)] ≤ VarT [τ(X)] + 4
(
1−min

x

(
(1− π̃(x)2)pR(x)

))n/2
E
[
(Y (1))2 + (Y (0))2

]
+ 2

(
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x

(
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))n
E
[
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]
≤ VarT [τ(X)] + 6

(
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x

(
(1− π̃(x)2)pR(x)
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E
[
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.

Finally,

Var [τ̂n,m] ≤ 2

n+ 1
ER

[(
pT (X)

pR (X)

)2

VDM(X)

]
+

Var [τ(X)]

m
+

2

(n+ 1)m
ER

[
pT (X) (1− pT (X))

pR (X)
2 VDM,n(X)

]

+ 2

(
1 +

3

m

)(
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x

(
(1− π̃(x)2)pR(x)
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E
[
(Y (1))2 + (Y (0))2

]
.
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A.4.2 Proof of Corollary 3

Proof. The proof follows exactly the same structure as that of the proof of Corollary 2.

Proof. We recall the explicit expression of the variance of τ̂n,m,

Var [τ̂n,m]

=
1

m
Var [τ(X)− Cn(X)] +

(
1− 1

m

)
Var [E [Cn(X)|Xn]]

+
∑
x∈X

(
pT(x)(1− pT(x))

m
+ p2T(x)

)
E
[
1Zn(x)>0

Zn(x)

]
VDM(x),

where

Cn(X) = E
[
Y (1) | X

]
(1− π(X))Zn(X) − E

[
Y (0) | X

]
π(X)Zn(X).

Recall that using (37) and (38), one has

lim
n→∞

E
[
1Zn(x)>0

Zn(x)/n

]
=

1

pR(x)
,

and we also have
lim
n→∞

VarT [τ(X)− Cn(X)] = VarT[τ(X)] = Var[τ(X)].

Finally, note that the term Var [E [Cn(X)|Xn]] can be bounded by a term proportional to (1−min(π, 1− π))n,
so that the convergence toward 0 it at an exponential pace with n.

Multiplying the explicit variance by min(n,m) one has,

min(n,m)Var [τ̂n,m]

=
min(n,m)

m
Var [τ(X)− Cn(X)] + min(n,m)

(
1− 1

m

)
Var [E [Cn(X)|Xn]]

+
min(n,m)

n

∑
x∈X

(
pT(x)(1− pT(x))

m
+ p2T(x)

)
E
[
1Zn(x)>0

Zn(x)/n

]
VDM(x).

Now, we study an asymptotic regime where n and m can grow toward infinity but at different paces. Let
lim

n,m→∞
m
n = λ ∈ [0,∞],where λ characterizes the regime.

Case 1: If λ ∈ [1,∞], one can replace min(n,m) by n, so that

min(n,m)Var [τ̂n,m] = nVar [τ̂n,m]

=
1

λ
Var [τ(X)− Cn(X)] +

(
n− 1

λ

)
Var [E [Cn(X)|Xn]]

+
∑
x∈X

(
pT(x)(1− pT(x))

m
+ p2T(x)

)
E
[
1Zn(x)>0

Zn(x)

]
VDM(x),

such that

lim
n,m→∞

nVar [τ̂n,m] =
Var [τ(X)]

λ
+ Ṽso,

where

Ṽso := ER

[(
pT(X)

pR(X)

)2

VDM,∞(X)

]
.

Case 2: If λ ∈ [0, 1], one can replace min(n,m) by m, so that,

min(n,m)Var [τ̂n,m] = mVar [τ̂n,m]

= Var [τ(X)− Cn(X)] +m

(
1− 1

m

)
Var [E [Cn(X)|Xn]]

+ λ
∑
x∈X

(
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m
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)
E
[
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]
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Because m ≤ n, then

m

(
1− 1

m

)
Var [E [Cn(X)|Xn]] ≤ n

(
1− 1

m

)
Var [E [Cn(X)|Xn]] ,

so that

lim
n,m→∞

m

(
1− 1

m

)
Var [E [Cn(X)|Xn]] ≤ lim

n,m→∞
n

(
1− 1

m

)
Var [E [Cn(X)|Xn]] = 0.

Finally,

lim
n,m→∞

mVar [τ̂n,m] = Var [τ(X)] + λṼso.

A.4.3 Proof of Theorem 4

Proof. According to Proposition 3, the bias of the IPSW estimator with estimated π̂n can be upper bounded
via

|E [τ̂n,m]− τ | ≤
∑
x∈X

pT(x)
∣∣∣E [Y (0) | X = x

]∣∣∣ (1− pR(x) (1− π(x)))
n

+
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n
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]∣∣∣] .
Therefore, the risk of the (estimated) IPSW estimate with estimated π̂n satisfies,

E
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(τ̂n,m − τ)

2
]

≤
(
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x
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)2n
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m
+

2
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ER

[
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]

+ 2

(
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(
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]
≤ 2
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[(
pT (X)
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+
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m
+

2
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.

B Extended adjustment set

B.1 Proof of Corollary 4

Proof. According to Corollary 1, we have

lim
n→∞

nVar
[
τ̂∗T,n(X)

]
= Vso, (57)

where

Vso := ER

[(
pT(X)

pR(X)

)2

VHT(X)

]
,

with

VHT(x) = ER

[(
Y (1)

)2
π

| X = x

]
+ ER

[(
Y (0)

)2
1− π

| X = x

]
− τ(x)2.
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Since, by assumption, V is composed of covariates that are not treatment effect modifiers, using Definition 11,
we have, for all (x, v),

VHT(x, v) = VHT(x). (58)

Now, considering the set (X,V ) instead of X in the expression (57) leads to

lim
n→∞

nVarR
[
τ̂∗T,n(X,V )

]
= ER

[(
pT(X,V )

pR(X,V )

)2

VHT(X,V )

]

=
∑

x,v∈X ,V

p2T(x, v)

pR(x, v)
VHT(x, v)

=
∑

x,v∈X ,V

p2T(x, v)

pR(x, v)
VHT(x) Equation. (58)

=
∑

x,v∈X ,V

p2T(x)p
2
T(v)

pR(x)pR(v)
VHT(x) V ⊥⊥ X

=

(∑
v∈V

pT(v)
2

pR(v)

)∑
x∈X

p2T(x)

pR(x)
VHT(x)

=

(∑
v∈V

pT(v)
2

pR(v)

)
lim

n→∞
nVarR

[
τ̂∗T,n(X)

]
,

Now, note that ∑
v∈V

pT(v)
2

pR(v)
= ER

[
pT(V )2

pR(V )2

]

≥
(
ER

[
pT(V )

pR(V )

])2

≥

(∑
v∈V

pT(v)

)2

≥ 1,

where the first inequality results from Jensen’s inequality. Consequently,

lim
n→∞

nVarR
[
τ̂∗T,n(X,V )

]
≥ lim

n→∞
nVarR

[
τ̂∗T,n(X)

]
.

B.2 Proof of Corollary 5

Proof. By the law of total variance, we have, for all x,

VDM(x) = E [VDM(x, V )] + Var [τ(x, V )] . (59)

Indeed, according to the law of total variance, for all random variables Z,X1, X2, we have, a.s.,

Var [Z | X1] = E [Var [Z | X1, X2] | X1] + Var [E [Z | X1, X2] | X1] .

47



Letting X1 = X,X2 = V and Z = (Y A/π)− (Y (1−A)/π) yields equation (59). Now, we can write

lim
n→∞

nVarR
[
τ̂∗T,n(X,V )

]
= ER
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pR(X,V )

)2

VDM(X,V )

]
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xX
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pR(v)
VDM(x, v)

=
∑
xX
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pR(x)

∑
v∈V

pT(v)VHT(x, v) by Definition 12

=
∑
xX

p2T(x)

pR(x)
(VDM(x)−Var [τ(x, V )]) Equation (59)
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n→∞

nVarR
[
τ̂∗T,n(X)

]
− ER

[
pT(X)

pR(X)
Var [τ(X,V ) | X]

]
,

which concludes the proof.

C Semi-synthetic simulation’s data preparation

C.1 Context

The semi-synthetic simulation is made of real world data, a trial called CRASH-3 (Dewan et al., 2012; CRASH-3,
2019) and an observational data base called Traumabase. The covariates of both data sources are used to gen-
erate the true distribution from which the simulated data are generated. This part details the pre-treatment per-
formed on the covariates, which is contained in the R notebook entitled Prepare-semi-synthetic-simulation.Rmd.
As explained in the main document, in this semi-synthetic simulation we only consider six baseline covariates:

• Glasgow Coma Scale score7 (GCS) (categorical);

• Gender (categorical);

• Pupil reactivity (categorical);

• Age (continuous);

• Systolic blood pressure (continuous);

• Time-to-treatment (continuous), being the time between the trauma and the administration of the treat-
ment.

As three covariates out of 6 are continuous, we categorize them to obtain a completely categorical data. The
time-to-treatment is categorized in 4 levels, systolic blood pressure in 3 levels, and age in 3 levels. To further
reduce the number of categories, and follow the CRASH-3 trial stratification, the Glasgow score is also gathered
in 3 levels, from severe to moderately injured individuals, based on their Glasgow score.

CRASH-3 trial The CRASH-3 trial data contains information on 12, 737 individuals. Over the six covariates
of interest and the 12, 737 individuals, 108 values are missing. We imputed them using the R package missRanger.

Traumabase observational data The complete Traumabase data contains 20, 037 observations, but when
keeping only the individuals suffering from Traumatic Brain Injury (TBI) as it is the case in the CRASH-3
trial, only 8, 289 observations could be kept. Many data are missing, in particular 2, 660 missing values for
8, 289 individuals and along 5 baseline covariates considered. We impute them with the R package missRanger,
using 35 other available baseline covariates. Because the time to treatment is not observed in the Traumabase
this covariate is generated following a beta law, and considering a shifted distribution compared to the trial, in
particular toward lower time-to-treatment values than in the trial.

7The GCS is a neurological scale which aims to assess a person’s consciousness. The lower the score, the higher the severity of
the trauma.
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Ensuring overlap When binding the two data sets, we had to ensure that the support inclusion assumption
(Assumption 4) was verified. Out of the 586 modalities present in the target data, only 192 are also present in
the trial data. Therefore only these observations are kept, such that the observational sample finally contains
8, 058 observations (8, 289 at the beginning). All the observations in the trial are kept as there is no restriction
for the trial to contain a larger support as presented in Assumption 4.

C.1.1 Covariate shift vizualization

For each of the six baseline and categorical considered, visualization of the covariate shift between the two data
source is represented on Figures 10, 11, 12, 13, 14, and 15.
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Figure 10: Bar plot of categorized age in the semi-synthetic simulation
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Figure 11: Bar plot of categorized systolic blood pressure in the semi-synthetic simulation

C.2 Synthetic outcome model

As detailed above, for now the covariate support reflects a true situation, where only the time-to-treatment
covariate was created as it is missing in the target population sample (Colnet et al., 2021).
For the purpose of simulation, the outcome model is completely synthetic, and for each strata a number is
affected, from 1 to the number of strata, starting to the lowest category (for example youngest strata, or lowest
Glasgow score, or lower systolic blood pressure), to the highest one.
Doing so, the outcome model considered is such as,

Y = 10− Glasgow+ (if Girl:− 5 else:0)

+A
(
15(6− TTT) + 3 ∗ (Systolic.blood.pressure− 1)2

)
+ εTTT,
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Figure 12: Bar plot of gender in the semi-synthetic simulation
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Figure 13: Bar plot of the glasgow score in the semi-synthetic simulation
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Figure 14: Bar plot of pupil reactivity (−1 encoding not able to measure) in the semi-synthetic simulation

where εTTT is a random Gaussian noise with a standard deviation depending on the value of the covariate TTT.
In particular if the treatment is given later, then the noise is stronger.
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Figure 15: Bar plot of categorized time-to-treatment in the semi-synthetic simulation

D Useful results about RCTs under a Bernoulli design

Here we recall the definition of a Bernoulli trial (see Definition 13) and results such as variance expression of the
Horvitz-Thomson and difference-in-means estimators under this design. We also provide details about variance
inequality between the variance of the Horvitz-Thomson compared to the variance of the difference-in-means. In
the literature we have not found detailed derivations about the finite sample bias and variance of the difference-
in-means under a Bernoulli design. Extensively detailed derivations are available in Chapter two of Imbens and
Rubin (2015), but for a completely randomized design. Also note that in this work we assume a superpopulation
framework, and a large part of the existing literature focuses on inference on a finite population. Indeed, when
considering a finite sample, bias and variance of the Horvitz-Thomson and difference-in-means are not the same
as when inferring the superpopulation treatment effect (Splawa-Neyman et al., 1990; Imbens, 2011; Miratrix
et al., 2013; Harshaw et al., 2021).

Note that all the results in this section considers one population, and not two populations with two distributions
(target and randomized), therefore no index is placed on the expectation. When the following results on RCTs
are used in the main paper and/or in the proofs, we use the index R in the expectation as the trial in the main
paper is sample according to PR.

D.1 Bernoulli trial

A Bernoulli trial is a trial where the treatment assignment vector, being A = (A1, . . . , An) follows a Bernoulli
law with a constant probability. More formally,

Definition 13 (Assignment mechanism for a Bernoulli Trial). If the assignment mechanism is a Bernoulli trial
with a probability π, then

∀i, P[Ai] = π,

and considering a sample for n units,

P [A | i ∈ R] =

n∏
i=1

[
πAi · (1− π)

1−Ai

]
,

where A denotes the vector of treatment allocation for the trial sample R.

In this design the treatment allocation is independent of all other treatment allocations. A disadvantage of such
design is the fact that there is always a small probability that all units receive the treatment or no treatment.
This is why other designs are possible, such as the so-called completely randomized design, where the number
of treated units is selected prior to treatment allocation (usually n/2 units are given treatment). The interest
is to ensure a balanced group of treated and controls, and avoid a possible pathological case of high unbalance
between the number of treated and control individuals.
Mathematically, treating the situation of a completely randomized design is different than a Bernoulli design,
as in the former the probability of treatement is not independent between units, for example

∀i, j ∈ R, PComp. rand. [Ai = 1 | Aj = 1] ̸= PComp. rand. [Ai = 1] = π,
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D.2 Horvitz-Thomson’s

The Horvitz-Thomson estimator is unbiased and has an explicit finite sample variance.

Lemma 1 (Finite sample bias and variance of the Horvitz-Thomson estimator). Assuming trial internal validity
(Assumption 2), then

∀n, E[τ̂HT]− τ = 0,

and

∀n, nVar [τ̂HT,n] = E

[(
Y (1)

)2
π

]
+ E

[(
Y (0)

)2
1− π

]
− τ2.

Note that the following proof can be extended to any π(x) depending on baseline covariates, and therefore
extends to the oracle IPW in the causal inference literature.

Proof. Bias

E[τ̂HT] =
E
[
AiY

(1)
i

]
π

−
E
[
(1−Ai)Y

(0)
i

]
1− π

Linearity & SUTVA

=
E [Ai]E

[
Y

(1)
i

]
π

−
E [(1−Ai)]E

[
Y

(0)
i

]
1− π

Randomization

=
πE
[
Y

(1)
i

]
π

−
(1− π)E

[
Y

(0)
i

]
1− π

Def. of π - Bernoulli design

= τ, Linearity.

Variance

Var [τ̂HT,n] = Var

[
1

n

n∑
i=1

AiYi

π
− (1−Ai)Yi

1− π

]

=
1

n2
Var

[
n∑

i=1

AiY
(1)
i

π
− (1−Ai)Y

(0)
i

1− e

]
Assumption 2

=
1

n
Var

[
AY (1)

π
− (1−A)Y (0)

1− π

]
. iid

Then,

Var [τ̂HT,n] =
1

n

(
Var

[
AY (1)

π

]
+Var

[
(1−A)Y (0)

1− π

]
− 2 Cov

[
AY (1)

π
,
(1−A)Y (0)

1− π

])
. (60)

The first two terms can be simplified, noting that

E

[(
AY (1)

π

)2
]
= E

[
1{Ai=1}

(
Y (1)

π

)2
]

A is binary

= E

[(
Y (1)

)2
π2

]
ER

[
1{Ai=1}

]
Randomization of trial

= E

[(
Y (1)

)2
π

]
Definition of π

Similarly,

E

[(
(1−A)Y (0)

1− π

)2
]
= E

[(
Y (0)

)2
1− π

]
.

So,
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Var

[
AY (1)

π

]
= E

[(
AY (1)

π

)2
]
− E

[
AY (1)

π

]2

= E

[(
Y (1)

)2
π

]
− E

[
Y (1)

]2
.

Similarly,

Var

[
(1−A)Y (0)

1− π

]
= E

[(
Y (0)

)2
1− π

]
− E

[
Y (0)

]2
.

The third term in equation (60) can also be decomposed, so that,

Cov

[
AY (1)

π
,
(1−A)Y (0)

1− π

]
= ER

[(
AY (1)

π
− E

[
Y (1)

])( (1−A)Y (0)

1− π
− ER

[
Y (0)

])]

= ER

AY (1)

π

(1−A)Y (0)

1− π︸ ︷︷ ︸
= 0

− ER

[
Y (0)

]
ER

[
Y (1)

]
.

Finally,

nVar [τ̂HT,n] = ER

[(
Y (1)

)2
π

]
+ ER

[(
Y (0)

)2
1− π

]
− τ2 := VHT.

D.3 General results about the Difference-in-means

First, note that the Difference-in-Means estimator (in Definition 2) can be re-written as,

τ̂DM,n =
1

n

n∑
i=1

AiYi∑n
i=1 Ai

n

− 1

n

n∑
i=1

(1−Ai)Yi∑n
i=1 1−Ai

n

,

which corresponds to the Horvitz-Thomson where the probability to be treated is estimated with the data.
This estimator is always defined, even if due to the Bernoulli design it possible that all observations were
allocated treatment or control. For example, if all units are given control, then

n∑
i=1

Ai = 0,

and because for all i, Ai = 0, the ratio 1
n

∑n
i=1

AiYi∑n
i=1

Ai
n

is defined and equal to 0
0 = 0 by convention.

Lemma 2 (Finite sample and large sample properties of the difference-in-means estimator). Assuming trial
internal validity (Assumption 2), then

∀n, E [τ̂DM,n]− τ = πnE
[
Y

(0)
i

]
− (1− π)nE

[
Y

(1)
i

]
,

and

∀n, Var [τ̂DM,n] =
1

n

(
E
[
1π̂>0

π̂

]
Var

[
Y

(1)
i

]
+ E

[
1(1−π̂)>0

1− π̂

]
Var

[
Y

(0)
i

])
+Dn,

where Dn = E
[
Y

(1)
i

]2
(1− π)n + E

[
Y

(0)
i

]2
πn −

(
E
[
Y

(1)
i

]
(1− π)n + E

[
Y

(0)
i

]
πn
)2

.

Asymptotically, the difference-in-means is unbiased

lim
n→∞

E [τ̂DM,n] = τ,

and has the following variance

lim
n→∞

nVar [τ̂DM,n] =
Var

[
Y (1)

]
π

+
Var

[
Y (0)

]
1− π

:= VDM,∞.
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The difference-in-means under a Bernoulli design has a finite sample bias due to the possibility of a sample
where everyone receive treatments or control. But the bias is exponentially decreasing with n. Also note that,

Dn = O (max(π, 1− π)n)

The asymptotic variance of the difference-in-means is the variance usually reported in textbooks, and corre-
sponds to the finite sample of the Difference-in-Means estimator under a completely randomized trial. Note
that we could also show that the Difference-in-Means is asymptotically normally distributed, for example using
M-estimation technics (Stefanski and Boos, 2002). As this result is not used in this paper, we do not detail the
proof.

Note that for a completely randomized design, the difference-in-means is unbiased and its finite sample variance
is,

Var [τ̂DM,n] =
Var

[
Y (1)

]
n1

+
Var

[
Y (0)

]
n0

,

where n1 is the number of treated units (∼ πn) and n0 is the number of control units (∼ (1−π)n). This formula
is extensively used in the literature, but under a Bernoulli design this formula is true only in large sample as
detailed in Lemma 2.

Proof. Bias

One can use the law of total expectation, conditioning on the treatment assignment vector denoted A,

E [τ̂DM] = E [E [τ̂DM | A]]

= E
[ 1

n

∑n
i=1 Ai

1
n

∑n
i=1 Ai

E
[
Y

(1)
i | A

]
−

1
n

∑n
i=1(1−Ai)

1
n

∑n
i=1(1−Ai)

E
[
Y

(0)
i | A

]]
= E

[ 1
n

∑n
i=1 Ai

1
n

∑n
i=1 Ai

E
[
Y

(1)
i

]
−

1
n

∑n
i=1(1−Ai)

1
n

∑n
i=1(1−Ai)

E
[
Y

(0)
i

]]
{Y (1)

i , Y
(0)
i } ⊥⊥ Ai

= E
[
1∑n

i=1 Ai>0E
[
Y

(1)
i

]
− 1∑n

i=1 1−Ai>0E
[
Y

(0)
i

]]
= E

[
Y

(1)
i

]
E
[
1∑n

i=1 Ai>0

]
− E

[
1∑n

i=1 1−Ai>0

]
E
[
Y

(0)
i

]
= (1− (1− π)n)E

[
Y

(1)
i

]
− (1− πn)E

[
Y

(0)
i

]
= E

[
Y

(1)
i − Y

(0)
i

]
− (1− π)nE

[
Y

(1)
i

]
+ πnE

[
Y

(0)
i

]
= τ − (1− π)nE

[
Y

(1)
i

]
+ πnE

[
Y

(0)
i

]
,

where the second row uses linearity of expectation and the conditioning on A. To summarize, the difference-
in-means has a finite sample bias,

E [τ̂DM,n]− τ = πnE
[
Y

(0)
i

]
− (1− π)nE

[
Y

(1)
i

]
.

Variance

Using the law of total variance, and conditioning on the treatment assignment vector A, one has

Var [τ̂DM] = Var [E [τ̂DM | A]] + E [Var [τ̂DM | A]] .

Recall from derivations about the bias that,

E [τ̂DM | A] = 1∑n
i=1 Ai>0E

[
Y

(1)
i

]
− 1∑n

i=1 1−Ai>0E
[
Y

(0)
i

]
.

Note that if the number of treated was fixed, we would have E [τ̂DM | A] = τ , and therefore, Var [E [τ̂DM | A]] = 0.
Here, one has,

Var [E [τ̂DM | A]] = Var
[
1∑n

i=1 Ai>0E
[
Y

(1)
i

]
− 1∑n

i=1 1−Ai>0E
[
Y

(0)
i

]]
= E

[
Y

(1)
i

]2
Var

[
1∑n

i=1 Ai>0

]
+ E

[
Y

(0)
i

]2
Var

[
1∑n

i=1 1−Ai>0

]
− 2E

[
Y

(1)
i

]
E
[
Y

(0)
i

]
Cov

[
1∑n

i=1 Ai>0,1
∑n

i=1 1−Ai>0

]
.
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Besides,

Var
[
1∑n

i=1 Ai>0

]
= E

[
12∑n

i=1 Ai>0

]
− E

[
1∑n

i=1 Ai>0

]2
= (1− π)n (1− (1− π)n) ,

and similarly,

Var
[
1∑n

i=1 1−Ai>0

]
= πn (1− πn) .

On the other hand,

Cov
[
1∑n

i=1 Ai>0,1
∑n

i=1 1−Ai>0

]
= E

[(
1∑n

i=1 Ai>0 − (1− (1− π)n)
) (
1∑n

i=1 1−Ai>0 − 1− πn
)]

= E
[
1∑n

i=1 Ai>01
∑n

i=1 1−Ai>0

]
− (1− (1− π)n) (1− πn)

= 1− (1− π)n − πn − (1− πn − (1− π)n − πn(1− π)n)

= πn(1− π)n,

such that,

Var [E [τ̂DM | A]] = E
[
Y

(1)
i

]2
(1− π)n (1− (1− π)n) + E

[
Y

(0)
i

]2
πn (1− πn)− 2E

[
Y

(1)
i

]
E
[
Y

(0)
i

]
πn(1− π)n

= E
[
Y

(1)
i

]2
(1− π)n + E

[
Y

(0)
i

]2
πn −

(
E
[
Y

(1)
i

]
(1− π)n + E

[
Y

(0)
i

]
πn
)2

≤ E
[
Y

(1)
i

]2
(1− π)n + E

[
Y

(0)
i

]2
πn

≤
(
E
[
Y (1)

]2
+ E

[
Y (0)

]2)
max(π, 1− π)n.

Now,

Var [τ̂DM | A] = Var

[
1

n

n∑
i=1

(
AiY

(1)
i

π̂
− (1−Ai)Y

(0)
i

1− π̂

)
| A

]

=
1

n
Var

[
AiY

(1)
i

π̂
− (1−Ai)Y

(0)
i

1− π̂
| A

]
iid

=
1

n

(
Var

[
AiY

(1)
i

π̂
| A

]
+Var

[
(1−Ai)Y

(0)
i

1− π̂
| A

]
− 2Cov

[
AiY

(1)
i

π̂
,
(1−Ai)Y

(0)
i

1− π̂
| A

])
.

Now, developing the covariance term, it is possible to show that,

Cov

[
AiY

(1)
i

π̂
,
(1−Ai)Y

(0)
i

1− π̂
| A

]
= −E

[
(1−Ai)Y

(0)
i

1− π̂
| A

]
E

[
AiY

(1)
i

π̂
| A

]

= −
(1−Ai)E

[
Y

(0)
i | A

]
1− π̂

AiE
[
Y

(1)
i | A

]
π̂

Linearity and conditioned on A

= 0. Ai(1−Ai) = 0

Now, also using linearity of expectation, and the fact that we conditioned on A, one has

Var [τ̂DM | A] =
1

n

((
Ai

π̂

)2

Var
[
Y

(1)
i | A

]
+

(
1−Ai

1− π̂

)2

Var
[
Y

(0)
i | A

])

=
1

n

((
Ai

π̂

)2

Var
[
Y

(1)
i

]
+

(
1−Ai

1− π̂

)2

Var
[
Y

(0)
i

])
, using {Y (1)

i , Y
(0)
i } ⊥⊥ Ai.

Taking the expecation of the previous term leads to,

E [Var [τ̂DM | A]] = E

[
1

n

((
Ai

π̂

)2

Var
[
Y

(1)
i

]
+

(
1−Ai

1− π̂

)2

Var
[
Y

(0)
i

])]

=
1

n

(
E

[(
Ai

π̂

)2
]
Var

[
Y

(1)
i

]
+

1

n
E

[(
1−Ai

1− π̂

)2
]
Var

[
Y

(0)
i

])
, by linearity.
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Note that,

E

[(
Ai

π̂

)2
]
= E

[
Ai

(π̂)
2

]

=
1

n

(
E
[
A1

π̂2

]
+ E

[
A2

π̂2

]
+ · · ·+ E

[
An

π̂2

])
= E

[
π̂

π̂2

]
= E

[
1π̂>0

π̂

]
,

so that

E [Var [τ̂DM | A]] =
1

n

(
E
[
1π̂>0

π̂

]
Var

[
Y

(1)
i

]
+ E

[
1(1−π̂)>0

1− π̂

]
Var

[
Y

(0)
i

])
.

Coming back to the law of total variance, one has,

Var [τ̂DM] = Var [E [τ̂DM | A]] + E [Var [τ̂DM | A]]

= E
[
Y

(1)
i

]2
(1− π)n + E

[
Y

(0)
i

]2
πn −

(
E
[
Y

(1)
i

]
(1− π)n + E

[
Y

(0)
i

]
πn
)2

+
1

n

(
E
[
1π̂>0

π̂

]
Var

[
Y

(1)
i

]
+ E

[
1(1−π̂)>0

1− π̂

]
Var

[
Y

(0)
i

])
In particular, for any sample size,

Var [τ̂DM] =
1

n

(
E
[
1π̂>0

π̂

]
Var

[
Y

(1)
i

]
+ E

[
1(1−π̂)>0

1− π̂

]
Var

[
Y

(0)
i

])
+O (max(π, 1− π)n) ,

and more particularly,

lim
n→∞

nVar [τ̂DM] =
Var

[
Y (1)

]
π

+
Var

[
Y (0)

]
1− π

:= VDM,∞.

D.4 Variance inequality between a Horvitz-Thomson and difference-in-means

In this work we use an inequality to compare the variance of the Horvitz-Thomson with the variance of the
difference-in-means under a Bernoulli design. We propose two inequalities, one for the finite sample and one
for the asymptotic variance. The result in finite sample depends on another equality on Binomial law, and in
particular π̂, that we detail in Lemma 3.

Lemma 3 (Inequality on π̂). Consider a Bernoulli trial (Definition 13) and the estimated propensity score π̂
defined as,

π̂ =

∑n
i=1 Ai

n
.

Then, for all n ≥ 1 and for all α ∈ (0, 1
2 ),

E
[
1π̂>0

π̂

]
≤ 1 + Cα,πn

−α

π
,

where Cα,π = 1 + 2
(

16
π2(1−2α)

) 2
1−2α

.

Proof. Let ε > 0. (and later in the proof, we will more precisely posit ε = π
4n

−α with α ∈ (0, 1
2 ))

The law of total expectation leads to,

E
[
1π̂>0

π̂

]
= E

[
1π̂>0

π̂
1|π̂−π|<ε

]
+ E

[
1π̂>0

π̂
1|π̂−π|≥ε

]
.

For the first term,
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E
[
1π̂>0

π̂
1|π̂−π|<ε

]
≤ 1

π − ε
E
[
1π̂>01|π̂−π|<ε

]
≤ 1

π − ε
,

and for the second term,

E
[
1π̂>0

π̂
1|π̂−π|≥ε

]
≤ nE

[
1π̂>01|π̂−π|≥ε

]
≤ nP (|π̂ − π| ≥ ε)

≤ 2ne−2ε2n.

The last row is obtained through Chernoff’s inequality in a similar manned as in the proof for the semi-oracle
(see (36)). As a consequence, and gathering the two previous inequalities,

E
[
1π̂>0

π̂

]
≤ 1

π − ε
+ 2ne−2ε2n

=
1

π

1

1− ε
π

+ 2ne−2ε2n.

One can show using function analysis, that, for all 0 ≤ x < 1
2 , we have

1

1− x
≤ 1 +

x

1− 2x
.

Then, as soon as ε is small enough, then ε
π < 1

2 , so that,

E
[
1π̂>0

π̂

]
≤ 1

π

1

1− ε
π

+ 2ne−2ε2n

≤ 1

π

(
1 +

ε
π

1− 2 ε
π

)
+ 2ne−2ε2n.

Letting ε = π
4n

−α with α ∈ (0, 1
2 ), we have

E
[
1π̂>0

π̂

]
≤ 1

π
+

1

4π

n−α

1− n−α

2

+ 2ne−
π2

8 n1−2α

Now, using the fact that

∀x ≥ 1,∀α ∈ (0,
1

2
), x2e−

π2

8 x1−2α

≤
(

16

π2(1− 2α)

) 2
1−2α

︸ ︷︷ ︸
Cα,π

,

allows to have

E
[
1π̂>0

π̂

]
≤ 1

π
+

1

4π

n−α

1− n−α

2

+ 2
Cα,π

n

≤ 1

π
+

n−α

π
+ 2

Cα,π

πnα

=
1 + n−α(1+2Cα,π)

π
.

Lemma 4 (Variance inequality). Considering the Horvitz-Thomson estimator (Definition 1) and the difference-
in-means estimator (Definition 2), with an internally valid randomized controlled trial of size n (Assumption 2),
then asymptotic variance of the difference-in-means is always smaller or equal than the Horvitz-Thomson, such
as

VDM,∞ = VHT −

(√
1− π

π
ER[Y

(1)] +

√
π

1− π
ER[Y

(0)]

)2

≤ VHT.

In addition, and using the previous inequality, Lemma 2 and Lemma 3, one can bound the finite sample
difference-in-means’s variance:

57



Var [τ̂DM,n] =≤ 1

n

(
Var

[
Y (1)

]
π

+
Var

[
Y (0)

]
1− π

)
+O

(
n−3/2

)
≤ VHT +O

(
n−3/2

)
.

Proof. Asymptotic inequality

Recall that,

VHT = E

[(
Y (1)

)2
π

]
+ E

[(
Y (0)

)2
1− π

]
− τ2.

Noting that,

τ2 =
(
E
[
Y (1) − Y (0)

])2
= E

[
Y (1)

]2
+ E

[
Y (0)

]2
− 2E

[
Y (1)

]
E
[
Y (0)

]
,

and that for any a ∈ {0, 1},

Var
[
Y (a)

]
= E

[(
Y (a)

)2]
− E

[
Y (a)

]2
,

allows to obtain,

VHT =
Var

[
Y (1)

]
π

+
Var

[
Y (0)

]
1− π

− (1− 1

π
)E
[
Y (1)

]2
− (1− 1

1− π
)E
[
Y (0)

]2
+ 2E

[
Y (1)

]
E
[
Y (0)

]
= VDM,∞ +

(√
1− π

π
ER[Y

(1)] +

√
π

1− π
ER[Y

(0)]

)2

.

Finite sample inequality
Recall the finite sample variance of the difference-in-means from Lemma 2, and using the inequality from
Lemma 3,

Var [τ̂DM,n] = E
[
Y

(1)
i

]2
(1− π)n + E

[
Y

(0)
i

]2
πn −

(
E
[
Y

(1)
i

]
(1− π)n + E

[
Y

(0)
i

]
πn
)2

+
1

n

(
E
[
1π̂>0

π̂

]
Var

[
Y

(1)
i

]
+ E

[
1(1−π̂)>0

1− π̂

]
Var

[
Y

(0)
i

])
≤ E

[
Y

(1)
i

]2
(1− π)n + E

[
Y

(0)
i

]2
πn −

(
E
[
Y

(1)
i

]
(1− π)n + E

[
Y

(0)
i

]
πn
)2

+
1

n

(
1 + C1/4,πn

− 1
4

π
Var

[
Y

(1)
i

]
+

1 + C1/4,1−πn
− 1

4

1− π
Var

[
Y

(0)
i

])
,

where Lemma 3 is applied with α = 1/4 and we recall that C1/4,π = 1 + 2
(
32
π2

)4
. Note that, at this stage, it is

possible to write that,

Var [τ̂DM,n] =
1

n

(
Var

[
Y (1)

]
π

+
Var

[
Y (0)

]
1− π

)
+O

(
n−3/2

)
. (61)

But the overall goal here is to compare Var [τ̂DM,n] with Var [τ̂HT,n].

Var [τ̂DM,n] ≤ Var [τ̂HT,n]−
1

n

(√
1− π

π
ER[Y

(1)] +

√
π

1− π
ER[Y

(0)]

)

+
1

n

(
C1/4,πn

− 1
4

π
Var

[
Y

(1)
i

]
+

C1/4,1−πn
− 1

4

1− π
Var

[
Y

(0)
i

])
≥ 0

+ E
[
Y

(1)
i

]2
(1− π)n + E

[
Y

(0)
i

]2
πn −

(
E
[
Y

(1)
i

]
(1− π)n + E

[
Y

(0)
i

]
πn
)2
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D.5 Post-stratification estimator

The post-stratified estimator (see Definition 8) is an estimator of the average treatment effect from a RCT
sample. The principle is to divide the RCT sample into strata, to compute the difference-in-means per strata,
and then to average the estimand on each strata, weighting by the strata size. Indeed, the post-stratification
estimator introduced in Definition 8 can be re-written as follows.

τ̂PS,n =
∑
x∈X

nx,1 + nx,0

n

 1

nx,1

∑
Ai=1,Xi=x

Yi −
1

nx,0

∑
Ai=0,Xi=x

Yi

 , where nx,a =

n∑
i=1

1Xi=x1Ai=a.

Therefore, the post-stratification estimator can be understood as a weighted estimate of each strata level
difference-in-means estimates,

τ̂PS,n =
∑
x∈X

nx

n
τ̂DM,nx , where nx =

n∑
i=1

1Xi=x.

Proof. Recalling the definition of π̂n(x) (Definition 7) and denoting nx,a =
∑n

i=1 1Xi=x1Ai=a

τ̂PS,n =
1

n

n∑
i=1

AiYi

π̂n(x)
− (1−Ai)Yi

1− π̂n(x)

=
1

n

n∑
i=1

AiYi

nx,1/nx
− (1−Ai)Yi

nx,0/nx
Definition 7

=
∑
x∈X

1

n

n∑
i=1

1Xi=x
AiYi

nx,1/nx
− (1−Ai)Yi

nx,0/nx
Categorical covariates

=
∑
x∈X

nx

n

n∑
i=1

1Xi=x
AiYi

nx,1
− (1−Ai)Yi

nx,0
Re-arranging nx

=
∑
x∈X

nx

n
τ̂DM,nx .

The post-stratified estimator is extensively detailed in Miratrix et al. (2013), but largely focused on inference
on a finite population (except in their Section 5). In particular the variance of the post-stratified estimator
under a Bernoulli or a completely randomized design is given in Miratrix et al. (2013) (see their Equation (16)).
Imai et al. (2008) also present derivation to compare the variance of a difference-in-means with a post-stratified
estimator, quantifying the gain in precision (see Appendix A).

E (Non-exhaustive) Review of the different IPSW versions in the
literature

Within the generalization literature, the IPSW can be found under slightly different forms, such as with esti-
mated π or not, or with or without normalization. Here, and to help the reader navigates, we reference some
of the different formulas found in the literature and in implementations.

Reference IPSW formula Comments

Huang (2022) 1
n

∑
i∈Trial ŵn,m(Xi)

(
YiAi

π̂n
− Yi(1−Ai)

1−π̂n

)
π estimated once π̂n =

∑n
i=1 Ai/n

Josey et al. (2021) 1
n

∑
i∈Trial ŵn,m(Xi)

(
YiAi

π̂n
− Yi(1−Ai)

1−π̂n

)
π estimated by any consistent estimator

Nie et al. (2021) 1
n

∑
i∈Trial ŵn,m(Xi)

(
YiAi

π − Yi(1−Ai)
1−π

)
Oracle π

Dahabreh et al. (2020) 1
n

∑
i∈Trial ŵn,m(Xi)

(
YiAi

π̂n(X) −
Yi(1−Ai)
1−π̂n(X)

)
π̂n(X) estimated with logistic regression

Buchanan et al. (2018) 1
n

∑
i∈Trial ŵn,m(Xi)

(
YiAi

π̂n
− Yi(1−Ai)

1−π̂n

)
π estimated once π̂n =

∑n
i=1 Ai/n

Table 1: Non-exhaustive review of the different IPSW versions, illustrating that different approaches exist.
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