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Structural properties of zinc oxide nanoparticles are theoretically studied focusing on the effects induced by
the surfaces. In this aim, we compare two models: an atomistic and an elastic model. Atomistic model uses a
semiempirical potential: the shell model. Effects of surface relaxation and surface stress are taken into account
in this model while they were not in the elastic model. Studying nanoparticles with sizes varying from 1.5 to
4.5 nm, we show that surface relaxation occurs on a typical length of about 1 nm in the vicinity of surfaces
within the atomistic model. This significant length is due to the existence of long-range interaction forces in
zinc oxide which is an ionocovalent material. Because this typical length is comparable to nanoparticle size,
elasticity fails to reproduce correctly structural properties of the nanoparticles. As an illustration of structural
properties changes by decreasing nanoparticles sizes, we study the nanoparticles acoustic vibrations eigenfre-
quencies focusing on the mostly observable modes by vibration spectroscopy. Differences between elasticity
and atomistic calculations are attributed to surface effects. If elasticity acceptably provides vibration frequen-
cies of most studied nanoparticles, it fails to reproduce them for nanoparticles with a size below an approxi-
mate value of 2.5 nm. We expect such effects to be experimentally observable.

DOI: 10.1103/PhysRevB.79.045408 PACS number�s�: 78.67.Bf, 63.22.�m, 68.35.Gy

I. INTRODUCTION

Decreasing the size of nanoparticles �NPs� or quantum
dots increases their surface/volume ratio. The effect of the
surface can then become predominant and allows to access
new material properties.1 Especially, increasing surface/
volume ratio in NP raises fundamental questions related to
mechanical properties and to the localized and discrete na-
ture of the electronic and vibrational states.2 For instance, the
effect of confinement on the electronic properties in quantum
dots has been demonstrated more than a decade ago, in the
case of InAs.3 In this study, we aim to quantify the effects
due to surface on the structural properties of NPs. To under-
stand how the presence of surface can modify the structural
properties, let us first write a few lines of thermodynamics.
The free-energy differential for an infinitesimal modification
of a freestanding NP shape at constant entropy and number
of atoms reads:

dF =� � �
V

�ij��ijdV +� �
A

s̃������dS + �dA , �1�

where A and V are the surface and volume of the nanopar-
ticle. The symbol d corresponds to a differential and is thus
related to the infinitesimal shape changes, whereas the sym-
bol d is related to integrations. ��ij denotes the infinitesimal
bulk deformation. The first term represents the volumic elas-
tic term. �� and �� , respectively, design the stress and strain
tensors. The second term represents the free-energy variation
by the surface deformation of the NP.4–7 s̃, called the surface
stress tensor, designs the excess of tangential components of
the stress tensor and s̃��d���dS is the elastic excess energy at
the surface.8 The last term represents the free-energy varia-
tion by creation of surface; � is the well-known surface en-
ergy. We decompose here the surface excess energy as the
sum of two terms:5,7 the term ��As̃������dS coming from
the deformation of the surface �at constant surface atoms�

and the term �dA coming from the creation �at constant
strain� of the surface. The surface stress tensor is related to
the surface energy through the Shuttleworth’s relation.9

Let us now imagine a freestanding nanoparticle which we
want to know the equilibrium shape of. This NP is only
submitted to its internal forces; the equilibrium shape corre-
sponds to the minimum of free energy compared to infini-
tesimal NP deformation. Such deformations are expected to
be small enough, so that no plastic deformation occurs. In
this case, the number of surface atoms remains constant im-
plying no creation of surface. The last term of Eq. �1� is thus
cancelled and surface effects only reveal through the defor-
mation surface term.

Surface stress is well known in surface physics for induc-
ing phenomena such as reconstruction, interfacial mixing,
segregation, and self-organization. The Laplace law �P= 2s̄

R
for solid NPs is one of its consequences.10,11 �P is the dif-
ference between the inside and outside pressures, s̄ charac-
terizes the surface stress, and R is the local surface curvature.
The existence of surface stress may induce a volumic strain
in the NPs. This deformation is all the more important since
the ratio surface/volume in the NP is high.

Surface stress induces an inhomogeneous strain field in a
NP. Let us call 	 the characteristic depth beneath the surface
over which surface effects are significant. This length char-
acterizes the surface relaxation. At the atomic scale, we ex-
pect this typical length to be of the order of the atomic in-
teraction range, i.e., about a few angstroms to 1 nm. If this
typical length becomes of the same order as the NP size, we
expect a strong deformation of the NP and thus a strong
alteration of its structural properties.

Therefore, it is judicious to choose a material with a typi-
cal length 	 as large as possible, so that these effects may
experimentally be observable. We thus choose to study zinc
oxide �ZnO�, an ionocovalent compound that ensures long-
range interactions between atoms. ZnO is currently the aim
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of many research projects in view of a widespread range of
applications.12,13

In this paper, we will theoretically study the surface ef-
fects on ZnO NPs. NPs are freestanding wurtzite ZnO prisms
identical to the ones experimentally synthesized by a one-
step wet chemistry method.14 Prisms are faceted with hex-
agonal basis of diameter d and height h. Each NP has an
aspect ratio h /d depending on experimental conditions. Typi-
cal experimental sizes �height or diameter� vary from 2 to 7
nm. The choice of prismatic shape also corresponds to the
symmetry of the hexagonal lattice and is a good approxima-
tion of the Wulff equilibrium shape for hcp crystals.15

To describe the effects of the surface, we compare struc-
tural properties of ZnO NPs using two models: the linear
elasticity theory without any surface stress and an atomistic
model based on a semiempirical potential. Actually, linear
elasticity theory can handle surface stress �following Eq.
�1��, but surface stress determination asks experiments or
atomistic calculations.16 In addition, surface stress in elastic-
ity theory does not consider the typical range 	 of surface
relaxation; indeed, the precise physical meaning of an excess
quantity such as surface elastic energy is to compact the
surface effects �which can spread in the vicinity of the sur-
face� in a quantity characteristic of the surface. For these
reasons, the elasticity theory is used in this study without any
surface terms. On the contrary, atomistic calculations implic-
itly take into account surface effects. Differences between
structural properties computed with these two models will
thus reveal effects due to the surface stress and surface re-
laxation. Using the atomistic model, we are able to compute
structural properties of NPs of size varying from 1.5 to 4.4
nm, i.e., in the range of experimental sizes. The same calcu-
lation using linear elasticity theory does not suffer from any
size limitations.

Experimentally, mechanical properties of NPs can effi-
ciently be probed by the study of their vibration properties.
Among experimental techniques,17,18 vibration spectroscopy
�Raman or time resolved�19–23 is a nondestructive, fast, and
reliable technique to characterize NPs and may thus be able
to reveal these surface effects on mechanical properties of
NPs. Especially, observable acoustic vibration modes are
characterized by a long wavelength that is proportional to the
NP size. Changing the size of NPs thus allow to probe the
phonon-dispersion diagram and to measure elastic properties.
As a matter of fact, in the second part, we illustrate the
change in mechanical properties as decreasing the NP sizes
by studying the alteration of acoustic vibrations eigenfre-
quencies by surface effects and the induced inhomogeneous
strain field. Surface effects on structural properties of NP
have already aroused several studies.

Weissker et al.24 reported the consequences on absorption
spectra of the surface reconstruction of Si/Ge nanocrystals.
Recently, Ramirez et al.,25,26 studying surface effects on vi-
bration properties of silicon NP, used an atomistic simulation
to show a breakdown of frequency-spectra scaling for size
smaller than 4 nm. Elasticity forecasts vibration frequencies
scale as the inverse of the nanoparticle size. On another side,
Combe et al.27 showed that using the Stillinger-Weber poten-
tial for germanium, which is another semiconductor, the elas-
ticity describes well the first acoustical vibration frequencies
of nanoparticles of size as small as 1 nm.

Concerning metallic compounds, Kara and Rahman28,29

theoretically studied the vibrational density of states of silver
nanocrystal NP showing an enhancement in the vibrational
density of states at low frequencies and an overall shift of the
high-frequency band beyond the top of the bulk phonons.
Meyer et al.11,30 studied the structural properties and the size
dependence of capillary pressure and vibration density of
state in metallic NPs. The capillary pressure given by the
Laplace law holds for particles with a diameter above a criti-
cal size of approximately 2.5 nm.

Concerning ionocovalent materials, a recent experimental
study of CdSe NPs �Ref. 31� attributes the NP size depen-
dence of structural parameters to surface stress and atomic
relaxation related to the presence of stacking faults. Whereas
optical vibration properties of ZnO NPs have aroused numer-
ous studies,32–34 few studies at the atomistic scale deal with
structural properties of ZnO NPs and their effects on acous-
tical vibration properties which is precisely the aim of this
paper.

Section II is devoted to the description of the atomistic
model including details of computational procedures and to
the description of the resolution of the elastic equation. Sec-
tion III describes the structural properties of NPs using the
atomistic description and finally, as an illustration of struc-
tural properties changes, Sec. IV presents the comparison
between vibration frequencies calculated by the atomistic
model and the linear elasticity.

II. MODELS

A. Atomistic simulation: Shell model

The modeling of structural properties of ZnO NPs can be
performed either by using ab initio first-principles calcula-
tions or by using classical semiempirical potentials. The
computation of these quantities for NPs of size comparable
to experimental ones, namely, few nanometers, would clearly
be too expensive using the first technique. On another hand,
semiempirical potentials provide a good description of static
properties, i.e., precisely the domain concerned by our study.
Hence we naturally choose to use a semiempirical potential.
Erhart et al.35 described a bond order potential for ZnO. Es-
pecially, elastic coefficients are very close to experimental
ones. However, this model, as stated by its authors, is not
suited for the modeling of NPs where the surface atoms on
volume atoms ratio may become on the order of 1.

Other semiempirical potentials belong to the shell-model
category. Atoms are ionic and modeled by a core and a shell.
Pairwise shells experience a Born-Mayer potential. Coulomb
forces couple all entities �core or shell� except the shell and
the core belonging to the same ion which interact through a
harmonic spring. We found two sets of parameters available
for the modeling of ZnO in the literature: one from Binks36

and one from Lewis and Catlow �LC�.37 We tested both of
them. We found that the set of parameters from Binks accept-
ably reproduces interatomic distances, primitive cell volume,
and elastic coefficients but fails to reproduce the phonon-
dispersion curves of ZnO and especially the optical part. This
discrepancy on optical phonons would in principle not be an
issue for the modeling of static properties; however, it re-
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veals an incorrect description of the atomic polarizabilities.
Hence, we preferred to use the LC potential which accept-
ably reproduces optical-phonon-dispersion diagram. Al-
though this potential has been designed in the 1980’s, it is
still used as a reference potential for ZnO.35

1. Bulk properties: Validation of the model

Table I sums up the primitive cell properties and the elas-
tic coefficients obtained by the LC potential for wurtzite ZnO
and their corresponding experimental values. These quanti-
ties have been computed using the program GULP.41–43 Com-
puted quantities show a very good agreement with experi-
mental ones. Note that first-principles calculations using
density-functional theory �DFT� �local-density approxima-
tion �LDA� and generalized gradient approximation �GGA��
reproduce experimental data with about the same
precision.44,45 The phonon-dispersion diagram for the LC
model correctly reproduces the experimental dispersion
diagram.35 Especially, due to the good agreement between
the computed and experimental stiffness tensor, the low-
frequency acoustical branches are well modeled. Note that
since we will focus on acoustic vibrations of NPs at the end
of the study, this agreement supports the relevance of the LC
model.

2. Nanoparticles: Stabilization of polar surfaces

In this work, we aim to simulate nanostructures of ZnO
with a prismatic shape as synthesized experimentally.14 The
prism axis is parallel to the c axis of the wurtzite lattice. We
design a prismatic NP with a hexagonal crystal structure.

Side surfaces of the prism are �11̄00� facets. Two kinds of
side surfaces can be exhibited: one where surface oxygen or
zinc atoms have two first-nearest neighbors on the surface
�only one in projection along the c axis� and one where they
have three �two in projection along the c axis�. Figure 1
illustrates these two surfaces. Only the second type of sur-
face has been investigated while the first type has been found
to be unstable against surface reconstruction using the LC

model after minimization of the potential. The studied sur-
face type agrees with some recent density-functional theory
calculations on ZnO nanowires.46

Top and basis surfaces of the prism are �0001� and �0001̄�
surfaces. “Tasker type 3”47 ZnO �0001� and �0001̄� surfaces
exhibit a nonzero dipole moment perpendicular to the sur-
face. The alternation of oxygen and zinc layers creates a
dipole that increases monotonically as a function of the crys-
tal thickness and gives rise to a surface instability. Two main
stabilization mechanisms of polar ZnO surfaces have been
proposed: �1� reconstruction of the surface and �2� metalli-
zation of the surface by charge transfer. Recently, experimen-
tal studies48 using atomic force microscopy corroborate the-
oretical predictions49 based on DFT calculations. They show
that infinite surfaces are stabilized by mechanism �1� involv-
ing a triangular structure. The triangular structure reconstruc-

tion in infinite �0001� and �0001̄� surfaces is obtained by the
removal of one fourth of surface atoms.

In this work, in addition to the necessary stabilization of
the polar surfaces, we are constrained by the neutrality of the

NP and by the fact that the number of �0001� and �0001̄�
surface atoms is not necessarily a multiple of 4. Hence, the
design of neutral NPs with a triangular structure reconstruc-

tion on �0001� and �0001̄� surfaces, which incidentally has
not been demonstrated nor precisely described in NPs, be-
comes a very subtle art. For these reasons, we have decided
to stabilize the polar surfaces by charge transfer. Zn-
terminated surfaces are less positive and O-terminated sur-
faces are less negative by a factor that converges toward 0.75
with increasing NP size.50,51 The stabilization mechanism
will not crucially affect the structural properties of the NP.
Reconstruction and charge transfer both imply a modification

of the charge density in the vicinity of �0001� and �0001̄�
surfaces. This charge peculiarity extends over two monolay-
ers in the first case whereas over one in the second to be
compared to the NP size.

TABLE I. Lattice parameters, density, cell volume and elastic
coefficients of bulk ZnO calculated using the shell model of Lewis
and Catlow compared to experimental data �Refs. 38–40�. Elastic
coefficients are expressed in gigapascal.

LC model Expt.

a �Å� 3.29 3.242

c �Å� 5.09 5.188

Density �g cm−3� 5.71 5.6

Cell volume �Å3� 47.35 47.77

C11 233.66 209.7

C12 110.42 121.1

C13 103.51 105.1

C33 185.90 210.9

C44 72.84 42.5

C66 61.61 44.3

FIG. 1. �Color online� Two kinds of �11̄00� surfaces before re-
laxation. On the left figure, surface oxygen or zinc atoms have two
first-nearest neighbors �only one in projection along the c axis�,
whereas they have three on the right one �two in projection along
the c axis�. Zn and O atoms are, respectively, denoted in gray and
red. These two figures represent two NPs of 1320 �left� and 864
�right� atoms projected along the �0001� direction before the mini-
mization of the potential. Configurations of the first type �left fig-
ure� have been found to be unstable against surface reconstruction
after minimization of the potential.
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3. Methodology

Using a conjugate gradient algorithm, the NPs previously
constructed are then relaxed by minimizing the overall po-
tential energy to reach their equilibrium states. Our model
omits the possible existence of surface reconstructions and
dangling bonds. These aspects could correctly be addressed
using more sophisticated techniques �for instance DFT or
tight binding�. Structural properties of NPs can then be cal-
culated.

Concerning the phonon calculations, the dynamical ma-
trix is computed and diagonalized to obtain eigenfrequencies
and eigenvectors. The potential minimization procedure en-
sures that all vibration eigenfrequencies are real. We study in
this work NPs with up to 5000 atoms, corresponding to sizes
up to 4.4 nm. Table II reports the characteristics of the stud-
ied NP.

B. Continuum model: Elasticity

As already mentioned, calculations of structural proper-
ties of NPs using elasticity theory are done without any sur-
face stress, so that only the first term in Eq. �1� remains. The
NPs are constructed following the same scheme as for the
atomistic model. However, NPs constructed from the bulk
are in their equilibrium states for elasticity theory. The pres-
ence of surfaces in the NPs does not induce any volumic
strain or stress since stress and strain in the NPs are uni-
formly null.

Concerning vibrations, phonon modes are calculated us-
ing the elastic coefficients obtained from the LC model in
Table I. Eigenvectors displacement field u� are solutions of
the Navier equation in the scope of the linear elasticity
theory


�2ui + �
jkl

Cijkl
�2uk

�xl � xj
= 0, �2�

where 
 is the volumic mass, � is the eigenfrequency, ui is
the ith component of the displacement field u� , and C is the
fourth-order stiffness tensor. We compute acoustic vibration
eigenfrequencies and eigenmodes using the scheme of Viss-
cher et al.52 The advantage of this scheme is the possibility
to solve the Navier equation for any geometry including the

elastic coefficients anisotropy. Visscher et al. proposed to
expand the displacement field of eigenvectors on a polyno-
mial basis. Resolution of Eq. �2� reduces then to matrix al-
gebra. We use in this study polynomials of order up to 11 to
ensure the precision and convergence of the method. Eigen-
frequencies of the acoustic modes we will study remain un-
changed by increasing the base above polynomials of order
11.

Vibrations of a free spherical particle were first studied by
Lamb.53 The case of isotropic elastic spheres embedded in a
matrix has also been explored.54–58 Yadav et al.19 applied the
Lamb theory to ZnO spherical NPs for comparison with ex-
perimental values; in the isotropic elasticity approximation
�which is usually made�, for a spherical NP of radius r,
the eigenfrequency of a given mode scales as r−1. This power
law can easily be understood and extended to the case of
anisotropic elastic coefficients. Normalizing spatial coordi-
nates xi by the typical size �i of the NP in that direction
xi�=

xi

�i
, Eq. �2� reads


�2ui + �
jkl

Cijkl

�l� j

�2uk

�xl� � xj�
= 0. �3�

In the case of a spherical NP, all typical sizes �i are equal
and proportional to the sphere radius r, so that for a given
mode, �r becomes independent of the NP radius even for
anisotropic elastic coefficients. This power law has been ex-
perimentally checked on spherical NPs using vibration spec-
troscopy in numerous studies.59–63

In our case, prismatic NPs have two typical sizes: their
diameter d and their height h. The expression of the fre-
quency � as a function of d and h for a given mode is
certainly very complex and at least far from being obvious.
However, if we compare prismatic NPs at constant aspect
ratio h

d , linear elasticity theory predicts again that �d be-
comes independent of the NP size. For this reason, we will
only study in Sec. IV vibration properties of NPs with aspect
ratio �around� unity as shown in Table II.

III. STRUCTURAL PROPERTIES OF NANOPARTICLES

In this section, we discuss the equilibrium layout of NPs
in the scope of the atomistic model compared to linear elas-
ticity. As already mentioned, NPs constructed from the bulk
are in equilibrium state in the scope of the elasticity model;
thus, the comparison of displacement fields before and after
relaxation in the scope of the atomistic model provides a
direct comparison between the elastic and atomistic models.
In the following, we consider a NP of 3.09 nm height and of
3.15 nm diameter, which is an intermediate size in our cal-
culations and we describe it using cylindrical coordinates,
with the z axis being the c axis of the hcp crystal, and the
origin �r=0, z=0� is at the NP center of mass. Atoms, ini-
tially located as in bulk ZnO as represented in Fig. 2 �left�,
relax to the final structure shown on the right part of Fig. 2
by minimization of the interatomic potential. The relaxed NP
is constricted in the z=0 plane and extended along the z axis.
We precisely define the diameter and height of the NP as it
would be measured experimentally, i.e., on the relaxed NP.

TABLE II. Characteristics of the studied nanoparticles. Size is
defined as size= �hd2�1/3 in Sec. IV B. Surface atoms are atoms
whose number of first neighbors is different from the one in the
bulk.

h
�nm�

d
�nm�

Size
�nm�

Aspect
ratio Natoms

Surface
atoms

1.54 1.76 1.68 0.875 567 73.0%

2.06 2.45 2.31 0.92 864 59.7%

2.58 2.45 2.49 1.15 1056 56.8%

3.09 3.15 3.13 0.93 1950 48.0%

3.61 3.83 3.76 1.00 3240 41.5%

4.12 4.50 4.37 1.06 4998 36.5%
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The diameter is the largest distance between atoms in the z
= h /2 plane. The height is the largest vertical distance be-
tween atoms along the z axis.

Figure 3 presents the atomic displacements consecutively
to the NP relaxation occurring along radial and axial direc-
tions �noted ur and uz, respectively� plotted vs r and z coor-
dinates. Evaluation of the strain tensor inside the NP could
easily be deduced from the displacement field using �rr=

�ur

�r ,
�zz=

�uz

�z , and �rz= 1
2 �

�ur

�z +
�uz

�r �. We choose to represent here the
displacement field rather than the strain tensor to avoid a
numerical derivation and to facilitate the interpretation.

Figure 3�a� shows that in the z=0 plane, atoms are all
the more constricted as they are located near the side surface

r=d /2=15.7 Å. In addition, this map also reveals that atoms

near the �0001� and �0001̄� surfaces have extended from the
z axis of the NP. This extension increases with the radial
position of the atom. Figure 3�b� reports atomic displace-
ments along the z axis. Atoms located near the edges of the

�0001� and �0001̄� surfaces significantly move toward the z
=0 plane whereas atoms in the core of the NP are moving in
the opposite direction. Note that both Figs. 3�a� and 3�b�
suggest atomic displacements up to about 1 Å. The displace-
ment field revealed by Fig. 3 leads to a NP shape that is
illustrated in Fig. 4. In Fig. 3, we consider a NP of 3.09 nm
height and of 3.15 nm diameter. For smaller NPs, atomic
displacements and surface effects become more important
due to a greater surface/volume ratio but the qualitative de-
scription remains.

Figure 3 clearly shows a non-negligible displacement
field even in the core of the NP. The atomic interactions
induce a surface relaxation in the vicinity of the surface. To
quantify the typical length of this relaxation in ZnO, Fig. 5
�top� plots the radial displacement field as a function of r in
the z=0 plane for the biggest NP we can afford. This proce-

dure ensures that the �0001� and �0001̄� surfaces minimally
interfere on atom displacements. Figure 5 reveals that sur-
face relaxation in the plane z=0 induces an almost linear
displacement in the NP core. The NP core is uniformly
strained in volume with a typical value of �rr=0.3% �for the
4 nm NP�. Note that such a uniform strain is compatible with

FIG. 2. �Color online� Perspective view along the �11̄00� direc-
tion of a 3.09-nm-height and 3.15-nm-diameter ZnO nanoparticle
before �left� and after �right� relaxation. Zn and O atoms are de-
noted in gray and red, respectively. Blue axis denotes the z axis
parallel to the c axis of the hcp crystal structure.

(b)

(a)

FIG. 3. Atomic displacements along �a� the radial direction and
�b� the z direction vs r and z coordinates for a 3.09-nm-height and
3.15-nm-diameter NP. All quantities are in angstrom.

FIG. 4. �Color online� Sketch of the relaxed NP shape.

FIG. 5. �Color online� Zn and O displacement fields along radial
direction �top� in the plane z=0 and along vertical direction �bot-
tom� in the subspace r=0 for a 4998 atom NP �h=4.0 nm and
d=4.3 nm�. r and z are reported in angstrom. Regions where sur-
face relaxation is significant are patterned. Dashed line is a linear
regression of the displacement field in the NP core.
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the Laplace law mentioned above.11 In ZnO, the typical
length scale characterizing the surface relaxation is measured
after removing the linear part of the displacement field �not
shown�. We find 	r�1 nm. An analogous protocol is used
on the z axis in Fig. 5 �bottom� to quantify the relaxation of

�0001� and �0001̄� surfaces. We find 	z�1 nm and a typical
value of �zz=3% in the core of the NP.

As a matter of fact, we can expect a significant effect of
surface relaxation on experimentally measured structural
properties of NP when size and surface relaxation length turn
to be of the same order of magnitude, i.e., r=	r=1 nm;
indeed, for a NP of 2 nm diameter and of 2 nm height, the
surface relaxation involves 100% of the volume of the NP.
Note that for NP of radius r=3	r=3 nm the surface relax-

ation already involves about
h�r2−�h−2	z���r−	r�2

h�R2 =70% of the
volume of the NP. In Sec. IV, we illustrate these structural
properties changes by the study of acoustic vibration proper-
ties of these NPs.

IV. ACOUSTIC PHONONS

A. Observable vibration modes

Vibration spectroscopy59–63 is able to check the eigenfre-
quencies power-law scaling as r−1 for a spherical NP of ra-
dius r. In this part, we illustrate the modification of structural
properties of ZnO nanoparticles by analyzing their vibration
eigenfrequencies size dependence. Yadav et al.19 studied by
Raman scattering the acoustic vibration modes of ZnO
spherical NPs with diameter varying from 5 to 10 nm. In a
homogeneous elastic sphere, the most studied case, eigen-
modes can be separated into two categories: spheroidal and
torsional modes. Essentially, spheroidal modes are observ-
able by Raman or time-resolved spectroscopy. In the follow-
ing, among the thousands eigenmodes of a NP, we focus on
two spheroidal modes: the breathing �l=0 and n=1 using
Yadav et al.19 notations� and quadrupolar modes �l=2 and
n=1� since they are the most observable modes by the cited
experimental techniques because of their high interaction
with electronic states via potential deformation mechanism.
Note that time-resolved experiments are sensible to the
breathing mode, while Raman spectroscopy detects both
breathing and quadrupolar modes.64

The quadrupolar mode of a sphere consists in a biaxial
constriction of a planar section of the sphere while the or-
thogonal direction of the plane is expanding, and vice versa.
The breathing mode consists in a succession of isotropic
extensions/constrictions of the whole sphere.

When studying prismatic NPs, we consider the two fol-
lowing modes derived from the quadrupolar mode of an iso-
tropic sphere: �i� if the extension occurs in the z=0 plane
then the constriction is axial, this mode is called the exten-
sional mode, and �ii� if the constriction is in a �=Cst plane,
the extension is in ��=Cst+� /2 direction. From a top view
of this mode the particle would look like a peanut; we call
this mode the peanut mode. Figure 6 illustrates schematically
both extensional and peanut modes. In addition, we consider
a breathing mode of a prismatic NP �aspect ratio unity�
which is similar to the one of a sphere. Note that analytical
calculations of NP vibration modes have never been per-
formed in a prism but in a close geometry, namely, the cyl-
inder. However, these calculations most often assume an in-
finitely long cylinder and isotropic elastic coefficients65,66

which can obviously not be compared to our prism of aspect
ratio unity with an hcp crystal structure.

Visscher et al.52 method allows a precise calculation of
the vibration eigenfrequencies of a prism. We find that the
three modes’ breath, extensional and peanut frequencies are
not degenerated. Especially, the anisotropic shape breaks the
degeneracy of the peanut and extensional mode frequencies
�that exists in an sphere with elastic isotropy�. Moreover, this
breaking is reinforced by the anisotropy of the stiffness ten-
sor of ZnO.

Atomistic calculations confirm this point. In the case of
h=3.09 nm and d=3.15 nm NP, the extensional mode was
found at �ext=26.0 cm−1, while the peanut mode was found
at �pea=26.7 cm−1. However, experimentally, since acoustic
phonons peaks of NPs have a typical full width at half maxi-
mum of 	10 cm−1 in Raman spectra19 �mainly due to inho-
mogeneous broadening�, the splitting between extensional
and peanut modes could hardly be observable by Raman
spectroscopy for such NP. Only for very small NPs �typically
�2.0 nm�, we find �ext=35.6 cm−1 and �pea=40.0 cm−1

�h=2.06 nm and d=2.25 nm�. The difference becomes sig-
nificant.

(b)(a)

FIG. 6. Schematic illustration of the extensional �left� and peanut �right� modes.
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In the following, we will focus on the breathing and ex-
tensional mode since observation of both peanut and exten-
sional modes may experimentally be arduous. Orders of
magnitude of eigenfrequencies of prism vibrations calculated
using both atomistic calculations and elasticity theory can be
compared to values obtained from Eqs. �7� and �8� of Ref. 19
giving the breathing and quadrupolar mode frequencies of
ZnO spherical NP. These last equations satisfactorily de-
scribe experimental values for NPs whose diameters exceed
5 nm. Following these equations, the breathing and quadru-
polar mode frequencies of a 3.4-nm-diameter spherical NP
would be �br

sph=55.9 cm−1 and �quad
sph =22.1 cm−1. Using the

atomistic description with a prismatic NP involving the same
volume h=3.09 nm and d=3.15 nm, the breathing and the
extensional mode frequencies are, respectively, 55.9 and
26.0 cm−1. Linear elasticity �through Visscher scheme� pro-
vides 56.5 and 23.3 cm−1. Table III sums up this compari-
son.

Observation of Table III reveals that both calculations in
the framework of the shell model and the theory of elasticity
lead to frequencies which are close to those measured by
Raman-scattering experiments. This point is an important re-
sult that supports the relevance of our calculations. In addi-
tion, both shell model and theory of elasticity provide fre-
quencies in a close proximity for a 3.4 nm NP. We now
analyze how these frequencies vary with the NP size.

B. Atomistic vs elastic model

In the following, we compare the size dependence of
breathing and quadrupolar mode frequencies computed by
the atomistic and elastic models. Identification of modes has
been performed using a systematic projection of atomistic
modes on elastic ones and using a careful analysis of the
displacement fields of modes. As explained in Sec. II B, vi-
bration mode frequencies follow a 1/size power law in the
elastic model as soon as only one characteristic length exists
in the NP, which requires a fixed aspect ratio. The character-
istic size of the NP is defined as size= �hd2�1/3.

If fixing the aspect ratio to unity is not an issue in the
elastic model, it may not be the case using the atomistic

description. Heights and diameters are discrete and are cho-
sen so as not to lead to a surface reconstruction after relax-
ation �see Sec. II A 2�. Therefore, and especially for very
small NP, aspect ratio may not exactly match unity �1.15 in
the worst case in Table II�.

Figure 7 reports the breathing and extensional mode fre-
quencies calculated both in the atomistic approach and the
elasticity theory. Atomistic calculations were performed on
NPs up to size=4.37 nm �h=4.12 nm and d=4.50 nm�,
which corresponds to 	5000 atoms. The global agreement
between atomistic and elasticity models is rather good.

Focusing on the breathing mode, Fig. 7 reveals that �br is
satisfactorily described by the theory of elasticity above an
approximate characteristic size of 2.5 nm. The difference be-
tween the elastic and atomistic calculations is not significant
for larger NPs. �br in the case of atomistic calculations is
	1.6 cm−1 higher than in the case of the elastic model for
the 4.4 nm NP. However, this difference becomes significant
when reducing the NP size. For smaller NPs, �br evaluated
by atomistic model is found 9 cm−1 lower than by linear
elasticity. Thus, calculating �br by means of the theory of
elasticity, one would commit a 	10% error on the value of
�br for a 1.5-nm-size NP. Note that experimental setup reso-
lution is below 9 cm−1.

On another side, concerning the extensional mode fre-
quencies, atomistic calculations predict a value 3 cm−1

higher than the elasticity theory for the largest NP. Surpris-
ingly, the agreement between atomistic model and the elas-
ticity model is better for the smallest NPs.

We emphasize that we take care in our study to use for
elastic model the stiffness tensor provided by the LC model.
Moreover, we are considering acoustic phonons of typical
wavelengths q�1 /size, which corresponds in our case to
phonons with q�

1
5qBZ where qBZ corresponds to the

Brillouin-zone border wave vector. In this region of the Bril-

TABLE III. Comparison between breathing and quadrupolar
mode frequencies of spherical NP �d=3.4 nm� derived from Eqs.
�7� and �8� of Ref. 19 and breathing, extensional, and peanut modes
of prismatic NP �h=3.09 nm and d=3.15 nm�.

Sphere

�br
sph

�cm−1�
�quad

sph

�cm−1�

Eqs. �7� and �8� of Ref. 16 55.9 22.1

Prism

�br

�cm−1�
�ext

�cm−1�
�pea

�cm−1�

Atomistic 55.9 26.0 26.7

Elasticity �Visscher� 56.5 23.3 24.8
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FIG. 7. �Color online� Frequencies of the breathing and exten-
sional modes vs 1/size deduced from both atomistic and continuous
models.
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louin zone, the dispersion is linear and well described by a
stiffness tensor.

Consequently, we attribute the discrepancy between ato-
mistic and elastic models to the surface effects. We identify
three possible mechanisms induced by surface effects that
can explain this result.

First, the Laplace law, as long as one can still define a NP
core where the strain field is homogeneous, predicts an in-
crease in the pressure �or more rigorously, in the stress ten-
sor� in this NP core. This pressure may induce an increase in
vibration eigenfrequencies compared to the unconstrained
elastic model. This effect may be disconnected to the other
effects described below, investigating NPs whose sizes are
much larger than the surface relaxation length 	 and whose
strain field in the NP is weak compared to the linear elasticity
domain limits. Unfortunately, due to computer limitations,
we are not able to provide vibration frequencies for bigger
particles than 4.4 nm using atomistic simulations.

Second, as already suggested, we expect a modification of
vibration eigenfrequencies scaling law due to inhomoge-
neous strained field in the vicinity of the surface when the
surface relaxation length 	 becomes comparable to the NP
size.

Third, as shown above in Sec. III, when decreasing the
NPs size, the strain fields in the NP become comparable �we
measured a strain of 3%� to usual linear elasticity limits, so
that anharmonic effects may become an issue. In our atom-
istic study, we use a harmonic description by calculating the
dynamical matrix, but we address the anharmonicity of the
semiempirical LC potential that can be involved by a signifi-
cant strain in the NP.

All of these effects are induced by surface effects. Com-
ing back to Fig. 7, if one could hardly think about experi-
mentally detecting surface effects by studying the exten-
sional mode since differences between elastic and atomistic
frequencies are not experimentally significant, the study of
the breathing mode as a function of 1/size may reveal these
surface effects by studying NP of typical size of 2.5 nm and
below. Especially, note that the breathing mode frequency is
not a linear function of 1/size. Finally, note that a typical size
of 2.5 nm is on the order of twice the surface relaxation
length, suggesting that the second mechanism mentioned
above is dominating.

V. CONCLUSION

We first show that surface effects may involve a signifi-
cant displacement field in NPs. We describe this displace-
ment field showing how the NP is strained by performing

atomistic calculations, a powerful tool that takes into account
all surface effects. Although the LC potential certainly fails
to reproduce all the characteristics of ZnO systems, we be-
lieve that such potential clearly allows a more accurate de-
scription of ZnO NPs than elasticity theory. In this study, we
have used the theory of elasticity without taking into account
surface effects. Artificially including a surface stress in elas-
ticity theory would not presumably67 help to reduce the dis-
crepancies. A surface relaxation length of about 1 nm can no
longer be omitted in ZnO NPs of a few nanometers. It is
remarkable that surface effects and especially surface relax-
ation effects are so significant on strain fields in ZnO NPs.
We believe that the long atomic interaction range in ZnO is
essential to warrant a high surface relaxation length.

Second, we illustrate surface effects by showing that
acoustic vibration eigenfrequencies of NPs can be altered by
surface effects. We show that if globally elasticity provides a
good description of both breathing and extensional mode fre-
quencies, i.e., elasticity provides these frequencies with an
accuracy smaller than the experimental one for most of the
studied NPs, elasticity fails to reproduce with the same ac-
curacy the breathing mode frequencies of very small NPs.
An important point is that, in the case of ZnO, this failure
occurs for typical NP size, on the order of 2.5 nm �breathing
mode� available experimentally.14 Since NPs low-frequency
vibration spectroscopy of such small NP is achievable, re-
sults presented in this work give reasonable hopes to observe
these surface effects experimentally by vibration spectros-
copy and especially a nonlinearity in the modes frequencies
as a function of the inverse NP size.

In addition, this study may easily be extended to other
materials. One can expect the strongest effects of the inho-
mogeneous strain field in ionocovalent materials �ZnO, ZnS,
CdSe, etc.� and small effects in covalent compounds �Si, Ge,
etc.�, with the case of metals being an intermediate case. This
distinction between materials is however only schematic.
Sun et al.68 showed a surface relaxation length in gold NPs
comparable to the one found in this work whereas Meyer et
al.11 found a surface relaxation length of about 0.7 nm in
silver nanoparticles. Note however that the inhomogeneity of
the strain field in the vicinity of surface is characterized by
the surface relaxation length and an amplitude. A detailed
comparative study of inhomogeneous strain fields in differ-
ent materials will thus be welcomed to address this point.
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