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A synchronized multi-axis Digital Holographic Interferometry setup is presented for the
study of 3D flow fields with large density gradients. This optical configuration provides
instantaneous interferograms with fine spatial resolution in 6 directions of projection. A
regularized tomographic approach taking into account the presence of possible shock waves
is furthermore considered to reconstruct 3D density fields. Applied to a screeching under-
expanded supersonic jet with helical dynamics, this setup is used to provide dense optical
phase measurements in the initial region of the jet. The jet mean density field is shown to be
satisfactorily estimated with sharply resolved density gradients. In addition, an approach
based on azimuthal Fourier transform and snapshot Proper Orthogonal Decomposition
(POD) applied to the instantaneous flow observations is proposed to study the main coherent
dynamics of the jet. Relying on a cluster analysis of the azimuthal POD mode coefficients, a
reduced dynamical model in the POD mode phase space is used as an approximation of the
two observed limit cycles. A clear 3D representation of the density field of a helical instability
associated with screech mode C is then evidenced, with two equally-probable directions of
rotation. Switching between the two directions is reported, highlighting intermittency in the
feedback loop. This helical structure is particularly seen to extend to the jet core, driving its
internal dynamics and inducing out-of-phase density fluctuations between the outer and inner
shear layers. These out-of-phase motions are related to the non-uniform radial distribution
of fluctuation phase associated with the outer-layer Kelvin–Helmholtz instability wave.

1. Introduction
Supersonic jets are complex flows exhibiting a variety of interactions between strong shock
waves, small and large scale turbulent structures, internal modes and externally-propagating
acoustic waves. A particular example is found in under-expanded supersonic jets where such
complex interactions can generate an aero-acoustic feedback mechanism known as screech
(Powell 1953), locking the jet dynamics into different possible modes or limit cycles. The
complexity of themechanisms involved has prevented the development of accurate prediction
tools and experimental studies are still needed to better understand the main 3D dynamics of
these jets.
However, this complex environment poses metrological challenges. One promising way to

address the problem is to consider seedless optical techniques for probing the jet density field.
Among the different approaches that have been proposed in the literature, one of the optically
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simplest technique is tomographic Background Oriented Schlieren (BOS) (Atcheson et al.
2008; Nicolas et al. 2016), which has been successfully applied to the study of supersonic
jets by Nicolas et al. (2017) using a multi-camera setup. Tomographic BOS can nevertheless
be limited in terms of spatial resolution since the cameras are focused on the background and
not on the flow of interest, but also because of spatial filtering induced by image correlation
algorithms. Another optical technique used by Panda & Seasholtz (1999) to provide density
measurements in under-expanded jets is Rayleigh scattering. This technique offers fine spatial
measurement resolution with significant accuracy. However, the measurement is pointwise,
which is not ideal for the analysis of 3D coherent structures, and the results can be particularly
sensitive to Mie scattering.
The present work investigates the use of synchronized multi-axis Digital Holographic

Interferometry (DHI) for the study of the average and dynamical state of an under-
expanded screeching supersonic jet in helical mode. This approach provides multiple dense
observations of the flow at different angles as in tomographic BOS, but with a finer spatial
resolution. It is then demonstrated how these flow projections can be leveraged to expose and
analyze the main 3D coherent structures associated with the observed helical instability.

1.1. Multi-view Digital Holographic Interferometry
Applied to transparent media, Holographic Interferometry (HI) provides a means of evaluat-
ing the phase variations of an optical wavefront passing through a field of non-homogeneous
refractive index in comparison with a reference state (Schnars et al. 2014; Picart et al.
2015). HI is then a line-of-sight technique that provides integral projections of a flow field
and satisfactory estimation of an instantaneous 3D density field thus requires simultaneous
multi-directional acquisitions.
In the context of non-homogeneous 3D flows, this idea was first followed some fifty years

ago, with early works described by Matulka & Collins (1971) and Sweeney & Vest (1974).
These authors demonstrated that several interferograms obtained from different viewing
angles using holographic plates could be successfully processed to estimate asymmetric
density fields by solving a set of equations involving fringe number functions. At the time,
recording devices were mainly analog and the evaluation of the fringe number functions
yielded by the interfering holograms could only be performed visually, ultimately providing
measurements with a reduced spatial resolution.
The rise of digital recording devices has naturally led to significant improvements in this

technique. Early applications to flow visualization were reported by Watt & Vest (1987)
who used a digital camera to record the interferometric pattern obtained by illuminating
a double-exposed holographic plate. Post-processing of the fringe pattern could then be
performed numerically, thus providing accurate and well-resolved instantaneous maps of
interferometric phase-delays. Relying on this approach, Snyder & Hesselink (1988) andWatt
& Vest (1990) later performed tomographic reconstructions of instantaneous density fields
induced by a helium jet using several viewing angles. Snyder & Hesselink (1988) used 18
instantaneous interferograms distributed around the jet axis while Watt & Vest (1990) relied
on two orthogonal holographic plates from which multi-angular views of the holographic
interferograms could be retrieved a posteriori with different camera orientations. At the time,
this approach was already termed digital HI for the interferograms were digitized. It is noted
however that, nowadays, DHI rather refers to the direct acquisition of digital holograms by
a camera, with no need for a holographic plate (Schnars et al. 2014). Consequently, in this
work, DHI will refer only to this recent definition, while the older approach will be referred
to as “digitized HI”.
Tomographic digitized HI was further considered by Timmerman & Watt (1995) and

Timmerman et al. (1999) to study supersonic jets, relying on the initial single-view optical
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setup proposed by Lanen et al. (1992). A digitized tomographic holographic interferometer
was designed to simultaneously record on a single holographic plate 6 to 9 different
holograms of the flow of interest using a pulsed laser. A phase-stepping approach was used
to unambiguously determine phase maps associated with the digitized interferograms and
tomographic reconstruction was performed relying on an algebraic reconstruction method.
Interestingly, at about the same time, another tomographic interferometric technique was

considered by Söller et al. (1994) and Dillmann et al. (1998) to study supersonic jets. These
authors relied on a single-view Mach–Zehnder interferometer set to an infinite fringe mode
(Smits 2012) to estimate phase variations from the interferograms. No holographic plate
was required since the interferograms could be directly imaged on the camera sensor. Only
one viewing angle was considered with this setup and tomographic reconstructions were
performed on mean flows, assuming flow axisymmetry.
This digital interferometric approach shares strong similarities with the holographic inter-

ferometric technique previously discussed since they both yield an interferometric pattern
containing information about phase variations across the flow field. Yet, the holographic
approach can be considered less stringent on the constraints applying to the optical path of
the reference beam (Smits 2012). Indeed, the double exposure technique in the holographic
method ensures that the phase variations observed are exactly the ones induced by the flow
itself, whereas in the case of interferometry the optical path of the reference beam is of prime
importance. Nevertheless, this technical difference vanishes if one considers aMach–Zehnder
interferometer used in a finite fringe mode and if fringe patterns are made to interfere with a
reference state acquired without flow. This exactly corresponds to DHI, where holograms are
acquired by cameras (Schnars et al. 2014). This approach was recently followed and detailed
by Sugawara et al. (2020) who also studied the mean structure of supersonic under-expanded
jets. In the latter work, a single view was considered and tomographic reconstructions were
again obtained assuming axisymmetry, relying on the inverse Abel transform. Single-view
DHI with Abel transform has also been recently applied by Rodrigues et al. (2021) to
study under-expanded supersonic jets, but using high-speed cameras in an attempt to resolve
temporal fluctuations in optical phase. Finally, Doleček et al. (2013) and Doleček et al.
(2016) studied heated synthetic jets using a single-axis DHI setup and relied on a phase-
averaging technique to acquire holograms of the periodic flow at different viewing angles.
Tomographic reconstructions were then obtained by these authors relying on a classical
inverse Radon transform.
This fully digital approach to holographic interferometry is nowadays possible due to the

increased resolution of imaging sensors and the reduction in pixel size. The holograms are
then directly acquired by high-definition camera sensors and the final interference phasemaps
can be retrieved by simple spectral post-processing. These technical refinements therefore
now offer the opportunity to revisit multi-view holographic interferometry, in a way that
shares similarities with the recently developed tomographic BOS technique, and to benefit
from significant improvements made in tomographic reconstruction. Based on this idea, the
first objective of this work is to detail in sections 2 and 3 the development of a multi-axis
DHI configuration adapted to the study of unsteady complex 3D jet flows with large density
gradients in a limited field of view.

1.2. Under-expanded screeching supersonic jets
The flow considered in this work is a round supersonic under-expanded jet issuing from a
choked nozzle. Such a jet is obtained when a gas is exhausted through a contoured converging
nozzle in an non-ideally expanded manner, i.e. when the flow static pressure at the exit, p0, is
higher than the ambient one, pa. The operating condition can then be defined by the Nozzle
Pressure Ratio NPR = pt0/pa where pt0 is the stagnation (or total) pressure at the nozzle
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Figure 1: Spark schlieren visualization of an under-expanded supersonic jet at NPR = 5
and a total temperature of 293 K.

exit. Equivalently, the ideally expanded Mach number Mj can be used and is defined as

Mj =

(
2

γ − 1

[
NPR

(γ−1)
γ − 1

]) 1
2

(1.1)

where γ is the heat capacity ratio taken equal to 1.4 for dry air.
A detailed description of the average structure of under-expanded jets can be found in

the review provided by Franquet et al. (2015). As illustrated by the schlieren visualization
shown in figure 1 for a jet at NPR = 5, under-expanded jets feature quasi-periodic shock-
cell structures generated by successive expansion and compression waves trapped in the
jet plume. For such a value of NPR, the Mach disk induced by a Mach reflection on the
centerline is particularly visible in the first cell. The average structure of this type of jet has
been extensively studied in the literature using such schlieren photographs, giving easy access
to geometric parameters such as the average spacing of the shock cells and the diameter of
the Mach disk.
One particular aspect of under-expanded jets is the possible generation of an aeroacoustic

feedback loop, inducing an extremely tonal screech noise (Raman 1999; Edgington-Mitchell
2019). The basic understanding of this phenomenon is that the natural instability waves of
the jet outer shear layer interact with the shock-cells to produce upstream-traveling free-
stream acoustic or internally-guided waves that excite the jet shear layer at the nozzle lip
(Gojon et al. 2018; Edgington-Mitchell et al. 2018; Nogueira et al. 2022), which is a high-
receptivity region of the jet. This resonant closed-loop mechanism then amplifies the most
unstable waves, providing a highly frequency-selective mechanism that may be understood
as a global instability (Edgington-Mitchell et al. 2021; Nogueira et al. 2021). Interestingly,
different frequencies are selected when varying the NPR and sharp frequency jumps are
usually observed, permitting the identification of different screech modes. Following the
terminology proposed by Powell (1953), the four main modes are labeled A, B, C and D.
Each mode was reported by Powell et al. (1992) to present different azimuthal structures,
that were deduced to be mainly axisymmetric, flapping, helicoidal and flapping with rotation
respectively. A variety of measurement techniques have been used to study these modes, with
schlieren visualizations and acoustic measurements being the most common ones (see for
example André et al. (2011)). Density fields, however, are more rarely studied: among the
few references, Panda & Seasholtz (1999) relied on Rayleigh scattering to obtain pointwise
measurements while Nicolas et al. (2017) and Lanzillotta et al. (2019) used tomographic
BOS to evidence the average spatial structure of two screech modes.
Overall, field measurements providing detailed quantitative descriptions of under-

expanded screeching jets are relatively scarce in the literature, particularly when it comes
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to the structure of the jet over the first few nozzle diameters and the flow dynamics in the
vicinity of the Mach disk. Notable work on this point was performed by Edgington-Mitchell
et al. (2014a) who conducted a planar PIV experiment to describe the velocity field of an
under-expanded jet in helical screech mode C, at NPR = 4.2, with a particular emphasis on
the embedded annular shear layer present behind the first Mach disk. This work highlighted
the influence of azimuthal large-scale structures developing in the external jet shear layer
on the reflected shock, which was then hypothesized to force the internal annular jet shear
layer in a coherent but out-of-phase manner. This dynamical link between the structures
found in the outer and inner jet shear layers, and more generally between the main screech
instability and inner jet motions, has not been experimentally reexamined to the knowledge
of the present authors. Using the capability of the developed multi-view DHI setup to access
the azimuthal content of a density field, the second objective of the present work pursued
in section 4 is to provide another quantitative look at the dynamical features occurring in
screeching under-expanded jets in helical mode.

2. Digital Holographic Interferometry and 3D density field estimation
DHI being a line-of-sight technique, it naturally requires an appropriate inversion methodol-
ogy to reconstruct 3D density fields. Furthermore, the raw measurements provided by DHI
are interferometric patterns that need to be converted to relative optical thicknesses or phase
variations before tomographic processing. This section thus discusses the different physical
notions required to understand the methodology followed to develop the present multi-view
DHI setup.

2.1. Digital Holographic Interferometry for transparent media
Considering a 3D flow field of refractive index nλ(x) at a wavelength λ, a coherent wavefront
passing through will be distorted, inducing variations in optical path lengths (OPL, noted
Λ) compared to a reference situation without flow. The OPL of a monochromatic light ray
following a path C is defined as

Λ =

∫
C

nλ(s) ds , (2.1)

where s is a curvilinear abscissa. The field of refractive index being related to the flow density
field ρ(x) by the Gladstone–Dale relation, this equation can be written as

Λ =

∫
C

(Kλρ(s) + 1
)

ds (2.2)

where Kλ refers to the Gladstone–Dale constant of the fluid at the considered wavelength λ.
The variation of OPL δΛ with respect to a reference flow situation with uniform density ρ0
then writes

δΛ = Kλ

∫
C

(
ρ(s) − ρ0

)
ds . (2.3)

The OPL variations may be related to phase variations δφ in the initial wavefront using the
dispersion relation, yielding

δφ = 2π
δΛ

λ
. (2.4)

DHI provides a way to measure these integrated phase variations δφ by evaluating the
phase difference of two digital holograms obtained for the two different flow states. This
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phase difference is equivalent to the interference phase obtained using an analog holographic
approach where these holograms are made to interfere by re-illumination. Details about the
formation of holograms and their processingmay be found in references such as Schnars et al.
(2014) or Picart et al. (2015), and only the basics are reminded here. A hologram is the result
of the interference of two light waves in an observation plane: a reference wave traversing a
transparent medium that does not change over time and a second wave that passes through the
unsteady transparent medium of interest. It can be noted that holographic techniques are most
commonly used with opaque or translucent objects, but the physical principles remain the
same. Assuming the use of a monochromatic light, the complex amplitude of the reference
wavefront in the observation plane (η, ξ) can be expressed as

Er (η, ξ) = ar (η, ξ) exp
[
iφr (η, ξ)

]
(2.5)

where ar refers to the real amplitude, φr to the phase of the reference wave and i is the
imaginary unit. Similarly, the measurement wavefront reaching the observation plane after
traversing the transparentmedia (the object) and thus integrating the associated phase changes
is written as

Eo (η, ξ) = ao (η, ξ) exp
[
iφo (η, ξ)

]
(2.6)

where ao and φo refer to the real amplitude and the phase of the measurement wave. These
two waves interfere in the observation plane and the resulting light intensity captured by the
camera sensor is given by

I (η, ξ) = |Er + Eo |
2 (2.7)

= |Er |
2 + |Eo |

2︸          ︷︷          ︸
0 order

+ E∗r Eo︸︷︷︸
+1 order

+ ErE∗o︸︷︷︸
−1 order

(2.8)

where the superscipt ·∗ refers to the complex conjugate. Three diffraction order terms can be
identified in this equation, terms that will be further discussed and illustrated in section 2.3.
This expression can also be written as

I (η, ξ) = a2
r + a2

o + 2arao cos
(
φo − φr

)
, (2.9)

showing that the digital hologram is made of a background (the 0 order term), determined by
the intensity of the twowavefronts, and an interference term varyingwith the phase difference
φo − φr . The interference pattern obtained depends on the direction of propagation of the
two waves: in an “off-axis” DHI setup, i.e. when the two waves are made to propagate in
slightly different directions, a spatial carrier wave is formed permitting efficient isolation of
the phase difference term from the 0 order term as presented in section 2.3.
Post-processing the interferograms then allows the estimation of phase difference maps
∆φ(η, ξ) = φo − φr in the observation plane for one flow state. As a consequence, the phase
difference δφ between two flow states, required to evaluate the OPL variations δΛ using
(2.4), can be simply estimated by the difference

δφ(η, ξ) = ∆φn − ∆φ0 . (2.10)

Here, ∆φn refers to the holographic phase of the flow of interest acquired at an instant tn
and ∆φ0 to a reference holographic phase, typically obtained without flow. As mentioned in
the introduction, a clear advantage of this approach over traditional interferometric methods
is that the estimated phase variation δφ does not depend on φr , the phase of the reference
wave, since it is canceled in the subtraction process.
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Figure 2: Schematic of a single-camera Mach–Zehnder interferometer used to perform
off-axis Digital Holographic Interferometry. Mi refers to flat mirrors, Li to spherical

lenses and SFi to spatial filters.

2.2. Mach–Zehnder interferometric setup for DHI
Different optical setups may be considered to perform off-axis DHI with transparent media.
As emphasized by Desse & Olchewsky (2016), when studying flows with large density
gradients one particularly needs to account for the sensitivity of the apparatus and possible
shadow effects arising from light refraction. Indeed, the presence of shock waves in the flow
was shown to cast shadows in the holograms, with a detrimental effect on phase estimation.
This was particularly observed using a Michelson interferometer which relies on a double-
pass of the measurement wave through the flow of interest. In contrast, with a Mach–Zehnder
interferometer, the measurement wave only traverses the flow once. As a result, the sensitivity
is halved, but shadow effects can be greatly reduced by properly focusing the imaging system
on the flow. Based on this experimental result, a similar optical setup is considered in the
present work.
A classical setup for off-axis DHI relying on a Mach–Zehnder interferometer is schemat-

ically illustrated in figure 2. The laser beam is split in two by a beam splitter cube. The
reference beam is spatially filtered (SF2), expanded and directed to a recombination cube
(L4, M2). This reference wave traverses a quiescent atmosphere with uniform density and
its path towards the recombination cube is controlled using a flat mirror (M2). The angle
θ of this mirror controls the direction of propagation of the reference wave relative to the
measurement wave after recombination and its fine-tuning is necessary to generate a spatial
carrier wave as discussed in section 2.1. The measurement wave is also filtered (SF1) and
expanded to traverse the measurement volume in parallel rays (M1, L1) before being reduced
using an afocal optical setup (L2, L3) and reaching the recombination cube. Both waves
then illuminate the camera sensor to create a digital hologram, with the fringe spacing and
orientation of the spatial carrier being controlled by θ.
A practical implementation of this Mach–Zehnder interferometer for the analysis of a

supersonic jet will be presented in section 3. At this stage, some important constraints
associated with this optical setup can be emphasized. First, the size of the volume of interest
is limited by the size of the spherical lenses L1 and L2, usually limiting the technique
to flows a few centimeters wide. Second, the laser source needs to produce a light with
sufficient coherence length to ensure proper formation of an interferometric pattern on the
camera sensor during exposure time. For high-speed flows such as the one investigated in this
work and for which short-time illumination is required to obtained instantaneous snapshot
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holograms of the flow, specific pulsed lasers with long coherence length are then needed.
Finally, vibrations in the optical system can be particularly detrimental to the measurement
and care must be taken to reduce them as much as possible. For example, it is necessary to
ensure a certain level of steadiness in the density field traversed by the reference wave as well
as an absence of temporal drifts that may be induced by such vibrations.

2.3. Interferograms processing
Once the digital holograms are acquired, phase maps need to be estimated. Two steps are
required with the present approach: phase evaluation and phase map unwrapping.

2.3.1. Phase map evaluation
Two main approaches are usually considered to recover the phase distribution ∆φ from the
interferometric image associated with equation (2.7): temporal phase-stepping (or phase-
shifting) and spectral filtering (Picart et al. 2015). The latter method is considered in
the present work since a reference state (without flow) can be easily acquired, permitting
phase estimation with a single acquisition and enabling the analysis of instantaneous density
distributions in high-speed flows with an optical setup of reduced complexity.
Themain idea of this technique is to isolate the+1 diffraction order from equation (2.8) and

to evaluate its phase. This is possible in off-axis DHI because of the use of a spatial carrier
frequency yielding a clear separation of the different diffraction orders in Fourier space.
For example, figure 3(a) displays an interferogram acquired in a reference state, i.e. without
flow, with the apparatus later described in section 3. In this figure, the (x, z) coordinate
system used is deduced from that of the observation plane (η, ξ) by application of the optical
magnification factor of the apparatus, with an origin located at the center of the jet exit plane.
An inset highlights the fringe pattern induced by the off-axis modulation and its chosen
orientation which is approximately at 45°. The amplitude of the 2D Fourier transform of this
image is represented in figure 3(b), using a logarithmic scale. The different diffraction orders
are easily identified and can thus be individually filtered, as originally proposed by Takeda
et al. (1982) in a different context.
Different spectral filter shapes and functions may be considered. In this work, the pupil

of the optical setup was verified to produce an Airy pattern smaller than the pixel size
of the camera, thus such that no selection limitation in the Fourier spectrum appears. A
classical rectangular filter was then chosen since it provided consistent results for all the
cases considered. After application of this filter and inverse Fourier transform, a filtered
hologram IF isolating the +1 diffraction order is obtained, writing

IF (η, ξ) =F −1
(
W (kη, kξ ) F (I)

)
(2.11)

whereF refers to Fourier transform andW (kη, kξ ) is the filteringwindow in thewavenumber
plane. An example of such a filtering is given in figure 3(b), where the red rectangle indicates
the bounds of the chosen filter. The 0 order is concentrated at the origin and the selected
window discards this region while retaining about a quarter of the 2D spectrum. This window
was furthermore chosen to isolate the +1 diffraction order for the cases where the flow of
interest was in the measurement beam. An example of interferometric pattern captured in
this situation is shown in figure 3(c), highlighting the large changes in fringe orientation
induced by the inhomogeneous density field. The associated 2D spectrum is displayed in
figure 3(d), where the previous filtering window is also shown. Compared to the reference
state, the variations in the fringe pattern induce a spread of the spectral support of the +1
order, but the selected window still captures most of the associated content.
The holographic phase ∆φ is then deduced (modulo 2π) from the filtered hologram IF by
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Figure 3: Examples of (a,c) digital holograms in the aerodynamic plane (x, z) and (b,d)
associated 2D spectra obtained respectively without flow (reference state) and with an

under-expanded supersonic jet (NPR = 5) in the measurement beam using the
experimental setup described in section 3. In (a) and (c), the insets provide local

magnifications on the fringe patterns. In (b) and (d), a logarithmic scale on the spectrum
amplitude was used and the parts of the spectra that are filtered out are colored using

lighter tones. ki refers to a wavenumber in the ith direction and D is the diameter of the jet
nozzle exit.
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Figure 4: (a) Folded phase difference map deduced from the digital holograms shown in
figure 3 and (b) the corresponding map of unwrapped phase difference obtained using the

algorithm proposed by Herraez et al. (2002).

evaluating its argument, thus writing

∆φ(η, ξ) = arg(IF (η, ξ)) . (2.12)

Consequently, the phase difference in equation (2.10) can be estimated by applying this
methodology to the reference hologram and to a hologram acquired with a given flow
state. This phase difference, however, is only given modulo 2π because of equation (2.12),
providing phase difference distributions δφ as illustrated in figure 4(a) which was obtained
following this procedure for the two holograms shown in figure 3. In order to correctly
estimate OPL variations for tomographic reconstruction, a phase-unwrapping procedure is
required to restore continuous 2D phase distributions.
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2.3.2. Phase unwrapping
Phase map unwrapping aims at restoring a folded phase distribution to its original continuous
form, free of 2π jumps. This task can be relatively complexwhen dealing with noisy data such
as holographic phase measurements. In the present case, an additional difficulty is brought
by the presence of shock waves in the flow of interest, which naturally induce large phase
jumps in some regions of the flow. Various strategies have been proposed in the literature
to handle such difficulties (Ghiglia & Pritt 1998). Among the different algorithms available,
the one proposed by Herraez et al. (2002) was found to be particularly robust for unwrapping
the present phase maps, generally correctly handling the large phase jumps associated with
shocks and the phase measurement noise.
An example of application of this unfolding algorithm is shown in figure 4(b), where

no obvious unwrapping aberrations can be observed and where phase values around shock
waves present sharp transitions. It can be emphasized at this stage that the phase maps
obtained provide differential values and that the external region of the flow is considered as
the reference region. Consequently, phase maps are automatically adjusted by an additive
constant to provide zero phase values on average in this region.
Finally, it should be highlighted that the overall measurement uncertainty of the phase

difference δφ obtained after demodulation, filtering and unwrapping is not straightforward to
estimate. Future work will have to address this point which requires a dedicated study in itself
and which is thus deliberately left aside. It can nonetheless be noted that phase measurement
noise should be equal to or greater than the noise observed in the reference holograms, i.e.
without flow. With the setup detailed in section 3, it has been estimated to be about 0.15 rad.

2.4. Resolution
The Mach–Zehnder interferometric setup presented in figure 2 ensures that the measurement
wavefront is planar in the test-section. The holographic image then spatially resolves the flow
to the sensor resolution of the camera in the observation plane. However, the spectral filtering
process previously discussed degrades the spatial resolution of this phase measurement
(Picart et al. 2015). Indeed, equation (2.11) may be written as

IF (η, ξ) = I (η, ξ) ∗ w(η, ξ) (2.13)

where ∗ refers to the convolution operator and w is the impulse response of the rectangular
filter W applied in the Fourier domain. This impulse response can be expressed in the
following form in the observation plane,

w(η, ξ) = ∆kη∆kξsinc(∆kηη)sinc(∆kξ ξ)E (2.14)

where sinc refers to the normalized sinc function, ∆kη and ∆kξ are the dimensions of the
rectangular window W in the wavenumber plane and E = ei(kη,0η+kξ,0ξ ) with (kη,0, kξ,0)
the center of the rectangular window. The sinc functions appearing in this kernel will thus
spatially smooth the hologram whose resolution will then depend on ∆kη and ∆kξ . In the
present work, the filter size generally covers a quarter of the 2D spectrum as shown in figure 3
and the order of magnitude of the phase measurement spatial resolution in the observation
plane is then about 2 pixels.
With the DHI optical setup presented in section 3, given a magnification factor of 0.12,

this leads to an estimated spatial resolution for phase measurements of about 100 µm. It is
instructive to compare this value with the ones reported in studies relying on tomographic
BOS to study similar flows: Nicolas et al. (2017) reported a measurement resolution in the
displacement fields of about 2.5 mm and Lanzillotta et al. (2019) improved the BOS optical
setup to achieve a spatial resolution of about 0.9 mm. The effect of such differences on the
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description of the flow was particularly discussed by Champagnat et al. (2018). While some
improvements on these values can certainly be obtained, this discussion emphasizes that
DHI more naturally gives a high-resolution description of an object, which is particularly
beneficial for the analysis of flows presenting large density variations as in the work of
Sugawara et al. (2020). Clearly, this comes at a price of a more complex setup that can only
be used for flows of limited spatial extents.

2.5. Tomographic reconstruction
With the obtained maps of unwrapped phase difference δφ, the variations of OPL can be
deduced using equation (2.4). It then remains to solve the inverse problem of estimating
the density field ρ(x) from a set of line integrals (2.3), obtained simultaneously at different
projection angles. An important aspect of DHI is that the light rays probing the volume of
interest are parallel, thus permitting the treatment of this tomographic reconstruction problem
slice by slice along the jet axis, as in X-ray computed tomography. The projection operator to
be considered thus corresponds to the well-known 2D Radon Transform. This is in contrast
to BOS tomography (Nicolas et al. 2016; Grauer et al. 2018), where the entire volume must
be considered in the inverse problem which involves 3D light ray deviations, making the
inference process more computationally challenging. †
Considering a slice of the probed volume, a solution to this inverse problem is sought

by discretizing it on a cartesian grid with M × M square elements of constant density. The
discretized measurement model (2.3) in matrix form can then be expressed as

Tθχ = bθ (2.15)

where matrix Tθ ∈ RM×M2 refers to the discrete projection operator performing integration
along the paths followed by the light rays at the projection angle θ, χ = (ρ− ρ0) ∈ RM2 is the
2D field of density difference in the considered slice rearranged in a (uni-column) vector and
bθ ∈ R

M is the vector gathering the observed variations in optical phase at the observation
angle θ. Considering now Nθ projection angles {θi }[1..Nθ ], the global linear inverse problem
in matrix form may be written as

T χ = b (2.16)

with T ∈ RMNθ×M
2 and b ∈ RMNθ , where the Nθ observed projections are stacked in a

single vector. This vector b can be viewed as a flatten sinogram.
Onemajor difficulty hindering a direct resolution of this problem is thatT is ill-conditioned

because of the sparsity of the projections (the lower the number of projections, the larger
the condition number of T ) and the smoothing action of the measurement process given
by equation (2.3) implying that measurement noise naturally present in the projections can
significantly corrupt the solution. Various strategies have been proposed in the literature to
handle these problems. The two main families of reconstruction methods are the analytical
(Fourier methods, Filtered Back-Projection, ...) and the regularized approaches. The latter
are of interest in the context of this work for two main reasons: first, they provide a way to
distill prior knowledge about the solution and, second, efficient solving methods have been
proposed in the literature.
In a Bayesian framework, regularized methods provide Maximum A Posteriori (MAP)

solutions in which a measurement noise model is naturally taken into account and where χ

† It can nonetheless be noted that when considering mean axisymmetric flows, dedicated approaches
(Xiong et al. 2020) such as the inverse Abel transform and its generalization accounting for non-parallel
light rays (Sipkens et al. 2021) can be considered for BOS tomography at a reduced numerical cost.
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is considered as a random process. Formally, the problem amounts to solving

argmin
χ

{F (T χ − b) + µG (χ)
}

(2.17)

using an optimization procedure. The first term of this compound criterion provides ameasure
of data fidelity assuming a measurement noise model while the second one is a regularization
term driving the solution under a priori physically-plausible constraints. Here, µ is the
regularization parameter andG (·) is a regularization function. In the following, a least-squares
data model is considered, such that F (·) = 1

2 | | · | |
2
2 . This corresponds to the assumption of

a normally distributed measurement noise. This hypothesis has been validated based on the
analysis of a series of unfolded reference interferograms and should be approximately valid
for averaged phase measurements in the presence of flow. Indeed, unlike DHI applied to
opaque surfaces, no speckle noise is present in the holograms. Regarding the regularization
term, various functions have been proposed in the literature depending on the type of problem
to be solved. To enforce the smoothness of the solution, a Tikhonov (or `2) regularization
approach (Tikhonov & Arsenin 1977) can be used, as chosen by Nicolas et al. (2016) for
example for BOS tomography on hot jets and plumes. In the present study, however, a
supersonic flow featuring shock waves and thus sharp density gradients is considered. As a
consequence, an approach relying on (isotropic) Total Variation (TV) was selected instead
to best capture discontinuities in the estimated solution, such that G (·) = TV(·) = | |∇ · | |1.
Since TV regularization introduces a non-differentiable function, a different framework

than the classical gradient descent approach in the optimization procedure is required and
can be found in proximal splitting methods (Chambolle & Pock 2016). In the present work,
this optimization problem is solved relying on FISTA (fast iterative shrinkage-thresholding
algorithm) (Beck & Teboulle 2009) with a Primal-Dual TV algorithm (Chambolle & Pock
2010) for the regularization problem. Such an approach can be easily followed using open-
source codes such as ASTRA-Toolbox (van Aarle et al. 2015) and ToMoBAR (Kazantsev
2019).
The choice of the regularization parameter µ is performed using an L-curve method (Idier

2010), where the regularization term is plotted as a function of the data-fidelity term in
log-log scales for various values of µ. As discussed by Hansen (1999) for `2 regularization
problems, a satisfactory compromise may be expected for values of µwhere a change of slope
is observed in this graph, or equivalently, when the graph curvature κ is maximum. While
acknowledging that this simple heuristic approach may be limited in certain cases of study,
it has been observed in the present work (where TV regularization is used) that it provides
satisfactory estimates of µ with a slight tendency to give under-regularized solutions. This
heuristic approach has been used because the exact level of measurement noise is unknown,
precluding the use of estimation methods based on the discrepancy principle for example
(Hansen 1998). It can furthermore be underlined that the regularization parameter µ will
depend on the choice of regularization function but also significantly on the amount of
measurement noise.
Finally, this tomographic reconstruction process is probably the main source of uncertainty

in the estimated density fields. The subject of uncertainty estimation in tomographic
reconstruction is, however, very complex and not settled, requiring a dedicated study out
of the scope of the present work. Therefore, no definite confidence intervals can be proposed.
Nevertheless, given the results discussed in section 4.1.2, it is reasonable to expect that in the
present work the uncertainty in the density estimates could be better than ±5% overall. This
level of uncertainty is relatively arbitrary, however, and further work is needed to provide
objective values.
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Figure 5: Schematic of the nozzle geometry issuing an under-expanded supersonic jet. The
field of view observed by DHI is represented using a blue dashed circle that has an

approximate diameter of 4.5D where D is the nozzle exit diameter.

3. Experimental setup for multi-view DHI on a screeching supersonic jet
3.1. Under-expanded jet setup

The jet facility used is similar to the one described by Nicolas et al. (2017) and Lanzillotta
et al. (2019). As illustrated in figure 5, it comprises a contoured, converging nozzle with
an inner diameter D = 22 mm. This nozzle shape ensures a choked condition at the exit.
This flush-mounted nozzle is placed in the middle of a 400 mm × 400 mm metallic panel,
providing an extremely thick lip nozzle configuration. The exhausted air is regulated in mass-
flow rate and total temperature, with the former maintained at Tt0 = 293 K throughout the
experiments. The NPR was monitored using a total pressure probe located 32D upstream of
the convergent nozzle. In the presentwork, only one aerodynamic condition given byNPR = 5
is discussed. This value corresponds to an ideally expanded Mach number Mj = 1.71 and
provides a jet sustaining a helical screech mode C as reported by Lanzillotta et al. (2019) with
the present jet facility. Finally, the Reynolds number of the jet based on ideally-expanded
values is Rej = Uj ρ jD j/µ j ≈ 1.8 × 106 with ρ j ≈ 1.89 kg m−3.

3.2. Synchronized multi-view DHI setup
TheMach–Zehnder interferometer presented in section 2.2 was designed taking into account
the size of the flow of interest. As illustrated in figure 5, the measurement area extends over
a few jet diameters. Given the available volume around the jet and the size and cost of the
required optics, an optical setup based on concave mirrors instead of spherical lenses was
chosen. A schematic of this Mach–Zehnder interferometer is provided in figure 6, illustrating
the paths of the reference and measurement waves. In this optical setup, the concave mirrors
have a diameter of 100 mm and a focal length of 1 m. A compact arrangement is obtained
by folding the optical path of the measurement wave using flat mirrors between the beam-
splitters and the concave mirrors. These concave mirrors are combined with spherical lenses
to form two afocal systems. The one in front the camera has a lens of 120 mm focal length,
giving an imaging magnification factor of 0.12. This setup was used to obtain the 2D results
previously presented in section 2.
A multi-view DHI setup was then obtained by repeating this optical layout by rotational

symmetry around the jet axis. As mentioned in section 2.5, the number of projections and
their angular distribution are important for the accuracy of the tomographic reconstruction
process. Studies on the effects induced by these parameters for tomographic BOS have been
reported by Nicolas et al. (2016) and Lang et al. (2017). The conclusions drawn in these
studies are expected to be relevant for the present work since closely related tomographic
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Figure 6: Schematic of one DHI line used to study an under-expanded supersonic jet. In
this Mach–Zehnder interferometer, the reference wave is depicted in red and the

measurement beam is shown in blue. BS: Beam splitter, PH: pin-hole, FM: flat mirror,
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Figure 7: Schematic of the complete optical setup used for multi-view DHI. This setup is
composed of 6 Mach–Zehnder interferometers similar to the one displayed in figure 6,

centered on the nozzle exit and arranged every 30°.

tools are used. The latter authors particularly highlighted the performance of reconstruction
of an axisymmetric density field with cameras evenly distributed on a half-circle or on a
full circle, for an even or odd number of projections. Of interest for the present work, it was
shown that for such a simplified density field and for a reduced number of cameras (lower
than 8), the best results were obtained with an odd number of cameras distributed on a full
circle or with cameras distributed on a half-circle. Furthermore, as expected, the larger the
number of projections, the more accurate the reconstructions, with a minimum number of
projections around 8 before reaching marginal improvements with a half-circle distribution.
In the present work, the guidelines provided by these studies could not be followed because

of the bulk of each Mach–Zehnder interferometer. Only 6 lines could be fitted around the
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Figure 8: Photograph of the multi-view DHI setup vertically installed around the panel
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Figure 9: (a) Map of mean unwrapped optical phase δφ measured on a choked
under-expanded jet at NPR = 5 using the multi-view DHI setup and (b) the mean density
ratio ρ/ρa deduced by axisymmetric tomographic reconstruction, with ρa the density of

the quiescent atmosphere.

jet on a half-circle, every 30°, as depicted in figure 7. Such a number of projections is
relatively small and artifacts limiting the accuracy of the reconstructed density fields are then
generally to be expected with direct reconstructions, i.e. without providing additional prior
knowledge about the flow topology. This is illustrated for example by Olchewsky et al. (2018)
with non-axisymmetric helium jets and `2 regularization. Nonetheless, this optical layout is
perfectly suited to investigate the azimuthal structure of a flow mainly characterized by a
reduced azimuthal wavenumber content since it offers a direct means to perform azimuthal
Fourier decomposition of the observed projections. This approach is particularly leveraged
in section 4 to study the main dynamical structure of the present under-expanded jet.
The practical realization of this multi-view DHI setup is shown in figure 8. Once built

horizontally on optical boards, it was re-assembled vertically around the jet nozzle exit
on four pneumatic isolators to reduce system vibration. The laser source used was a pulsed
Nd:YAG laser (Quanta-Ray Lab-170-10, Spectra Physics) lasing at λ = 532 nm and equipped
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with an injection seeder, providing a coherence length of about 3 m and enhanced output
energy stability. It was triggered using a pulsed generator also synchronizing the cameras
at a frequency of 10 Hz. In order to balance the amount of energy distributed in each
holographic line, the laser beam was successively divided using polarized splitter cubes
as shown in figure 7. It can be noted here that this azimuthally-distributed optical layout
resembles the one designed by Ishino et al. (2015) to quantitatively study the 3D structure of
premixed turbulent flames using 20 synchronized projections. However, these authors relied
on schlieren visualization lines that are simpler to setup than DHI lines but that also arguably
provide less accurate quantitative measurements.

3.3. Holograms recording
The digital holograms were recorded using a set of 6 digital cameras (Basler ace U) equipped
with a 1920 px × 1200 px CMOS sensor with pixel size of 5.86 µm. Before performing
acquisition at the selected NPR, a series of reference holograms was recorded without
flow. Then, three series of 300 digital holograms of the jet were acquired by each camera
synchronized on the laser trigger signal at 10 Hz, with continuous operation of the jet facility.
Therefore, a total of 900 holograms were obtained for each DHI line.

4. Results and analysis
The optical phasemeasurements obtained by themulti-viewDHI setup on an under-expanded
jet at NPR = 5 are analyzed in the following sections. First, the average optical phase and
density fields are presented in section 4.1. Then, the main coherent structures associated with
the measured optical phase variations are extracted by azimuthal Fourier decomposition and
snapshot Proper Orthogonal Decomposition (POD) in section 4.2.

4.1. Mean density reconstruction
4.1.1. Mean optical phase map
The jet flow being axisymmetric, the map of mean optical phase δφ is evaluated by ensemble
and azimuthal averaging of 854 instantaneous maps acquired with the 6 holographic lines.
This operation thus provides the mean zeroth order azimuthal Fourier mode. The number
of instantaneous optical phase maps considered is slightly reduced compared to the total
number of acquired snapshots since some outliers for which the optical phase maps were not
correctly unwrapped were discarded.
The resulting map is displayed in figure 9(a). In this figure, three particular axial locations

are highlighted. First, the Mach disk is estimated to be located around x = 1.34D. This
value is in agreement with estimates reported by Addy (1981) and Nicolas et al. (2017) for
a contoured converging nozzle. Similarly, a matching estimate of 0.35D for the Mach disk
diameter is obtained. Second, the axial locations of the tips of the first two shock-cells are
evaluated to be around 1.83D and 3.63D, providing a shock-cell spacing of about 1.8D.
Again, this estimate is consistent with the value generally obtained with choked jets at such
a pressure ratio (Davies & Oldfield 1962; Powell 2010). The mean structure of the present
choked under-expanded jet thus appears to be consistent with results reported in the literature.

4.1.2. Mean density field
By construction, the mean optical phase map in figure 9(a) displays perfect reflection
symmetry across the horizontal axis. As shown in figure 9(b), tomographic reconstruction of
the associated density field using themethodology outlined in section 2.5 was then performed
accordingly, assuming exact axisymmetry. This is achieved by considering slices of mean
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Figure 11: ( ) Radial profiles of mean relative density ratio ρ/ρa − 1 obtained by
axisymmetric tomographic reconstruction at various axial locations x/D overlayed on the
map of mean density ratio shown in figure 9(b). ρa refers to the ambient density. Each

density profile has its origin horizontally shifted to coincide with the axial location of the
slice in the mean density map displayed in the background. The scale of these profiles is

given by the double-headed arrow along the x-axis. For conversion purpose,
ρ j/ρa ≈ 1.55. The white dotted lines provide iso-contours of ρ/ρa − 1 at a level of 0.05.

optical phase δφ at all axial locations x/D as input data for the tomographic process where it
was chosen to use 64 repeated projections evenly distributed on half a circle. It can be noted
that a more conventional approach relying on the inverse Abel transform could have been
used for this task, as performed by Sugawara et al. (2020) for example. But as emphasized
subsequently, the purpose here is to provide validation results for the present tomographic
methodology and to discuss the advantages of relying on a regularized tomographic approach.
A suitable value for the regularization parameter µ in equation (2.17) is required for

satisfactory density field reconstructions. The L-curve plots and the corresponding (log-log)
graph curvature plots κ(µ) obtained for three different slices are displayed in figures 10(a)
and 10(b) respectively. These L-curves give clear graph curvature maxima that are obtained
for similar values of µ. As a consequence, a single value µ = 5 × 10−5 was considered for
final reconstruction of the mean density field.
A longitudinal cross-section of the reconstructed density field ratio ρ/ρa is shown in
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figure 9(b) and mean relative density profiles (ρ − ρa)/ρa in this (xz)-plane are given
in figure 11. The mean density field being axisymmetric, its 3D structure can be easily
pictured, particularly up to the first shock-cell which appears to be very stable in time.
Following the discussion provided by Panda & Seasholtz (1999) for similar jets, different
flow regions have been highlighted in figure 11 using dashed gray lines. The first line labeled
(1) indicates approximately the curved boundary of the jet above which one finds the outer
mixing layer. The line (2) indicates the presence of a weak shock generated by the coalescence
of compression waves. This weak shock delimits the expansion region in the jet core and
is known as the barrel shock or the intercepting shock. This expansion ends with a normal
shock wave, before which the density falls well below the ambient one, forming the Mach
disk identified by (4). From the point of intersection of the Mach disk and the barrel shock
(known as the triple-point) emanates a reflected shock labeled (3) and an embedded shear
layer (5) which delimits a subsonic region downstream of the Mach disk and a supersonic
flow region downstream of the reflected shock wave (3). As expected, a density larger than the
ambient one (and than ρ j) is found between this slip stream (5) and the reflected shock (3).
The reflected shock (3) then intersects the external shear layer, giving rise to an expansion fan
(6) which closes the first shock cell. Further downstream, a second expansion thus appears
leading to a second, more diffuse shock-cell. The structure of this density field and the
density levels found appear to be in satisfactory agreement with the measurements obtained
by Panda & Seasholtz (1999) using Rayleigh scattering for jets at slightly lower and higher
Mach numbers, i.e. Mj = 1.6 and 1.8 respectively.
As displayed in figure 11, the density profiles are slightly staggered, which is a direct

consequence of the use of TV regularization since it promotes solutions for which ∇ρ is
sparse. Although it can then be expected that the resulting density levels are not perfectly
accurate, this drawback is compensated by a satisfactory capture of density jumps across
the shock waves present in the flow. Particularly, it can be highlighted that a sharp density
jump across the reflected shock (3) is captured (see figure 11, x/D = 1.5). It is interesting to
note that, for comparison, Sugawara et al. (2020) did not retrieve such a feature in their case
of study, probably because of their reconstruction process based on inverse Abel transform.
Similarly, sharper density jumps across the embedded annular shear layer are obtained with
a progressive thickening in the streamwise direction. As observed in figures 9(b) and 11,
a second advantage over other tomographic reconstruction approaches is the absence of
numerical artifacts in regions of uniform density such as the external region of the jet or
within its core.
Finally, a quantitative comparison of the mean density ratio ρ/ρ j estimated along the

jet axis with other measurements reported in the literature is provided in figure 12. The
present DHI results are displayed with a ±5% band to quantitatively illustrate the data
dispersion associated with such an arbitrary but plausible uncertainty level. First, compared
to tomographic BOS results obtained by Nicolas et al. (2017), similar density levels are
observed but with a better capture of the density profile across the Mach disk. Indeed,
tomographic BOS results probably suffer from a larger spatial resolution associated with
the BOS optical setup and a more complex tomographic reconstruction process relying on
a `2 regularization which probably oversmooths the gradients. Second, compared to the
density profile obtained by Panda & Seasholtz (1999) at a higher Mach number Mj = 1.8
(NPR ≈ 5.75), a very similar shape is obtained, supporting the relevance of the reconstructed
field. In the present case, the location of the Mach disk is closer to the jet exit plane and
larger density levels (close to ρ j) in the shock-cell regions are measured. This is expected
since the higher the Mach number, the greater the excessive heating due to non-isentropic
compression associated with the normal shock wave and thus the lower the density in these
regions. Finally, it can be highlighted that the density profile measured after the first Mach



19

0 1 2 3 4
x/D

0.0

0.5

1.0

1.5

2.0

ρ
/ρ

j

DHI, present results (±5%), Mj = 1.71
tomo BOS, Nicolas et al. (2017), Mj = 1.71
Rayleigh, P. & S. (1999), Mj = 1.8
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Figure 13: Map of root mean square values of temporal optical phase fluctuations
δφ′ = rms(δ̃φ).

disk is relatively flat, showing a plateau value over an extent in the streamwise direction
corresponding to the internal subsonic region delimited by the embedded axisymmetric
shear layer (from x/D ≈ 1.34 to x/D ≈ 2). A slightly different behavior is observed in the
second shock-cell, with a progressive increase in density (x/D ≈ 3.5), in agreement with the
measurements reported by Panda & Seasholtz (1999).

4.2. Identification of the main coherent structures
While the previousmean-field analysismainly focused on axisymmetric results forwhich only
a single holographic line could have been used, a methodology exploiting the simultaneity
of the acquisitions obtained with the 6 holographic lines is now discussed, with the objective
of identifying the main coherent azimuthal structure of the fluctuating density field.

4.2.1. Phase fluctuation map
An instantaneous optical phase distribution obtained with one holographic line can be
decomposed into a mean component δφ, discussed in the previous section 4.1, and a
fluctuating component δ̃φ, such that

δφ(t, η, ξ, θk ) = δφ(η, ξ, θk ) + δ̃φ(t, η, ξ, θk ) , (4.1)
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where t refers to a discrete time, (η, ξ) to the coordinates in the observation space and θk to
the k th projection angle. Similarly, an instantaneous 3D density field ρ is decomposed into a
mean field ρ and a fluctuating field ρ̃, writing

ρ(t, x, y, z) = ρ(x, y, z) + ρ̃(t, x, y, z) , (4.2)

where (x, y, z) are the coordinates in physical space. By linearity of the operators in (2.3)
and (2.4), the two optical phase terms δφ and δ̃φ are the projected results at an angle θk of
ρ and ρ̃ respectively. Analyzing the statistical properties of δ̃φ thus provides information on
the structure of ρ̃.
The azimuthally-averaged field of root mean square (rms) values of δ̃φ, referred to as δφ′,

is shown in figure 13 and highlights the projected regions of the flow with intense density
variations. The reflected shock wave in the first shock cell appears to sustain some local but
intense fluctuations, particularly at the junction with the external shear layer. Downstream,
significant fluctuations in the jet shear layer and in the second shock-cell can also be observed,
as well as in the embedded shear layers to a lesser extent. Finally, this figure shows the well-
known presence of a spatially-stationary wave envelope outside the jet shear layer, which is
the interfering result of downstream and upstream propagating waves that are building blocks
in the screech feedback mechanism (Panda & Seasholtz 1999; Edgington-Mitchell 2019).
The resulting wave is generally referred to as the jet near-field “standing wave”.

4.2.2. Azimuthal structure of the observed projections
As previously emphasized, the 6-view DHI setup was designed to provide instantaneous
optical phase maps with observation lines regularly distributed in the jet azimuthal direction,
for projection angles θk ∈ {0°, 30°, ..., 150°}. Since the observed optical phases result from
integration through the entire flow field, an augmented observation state for the optical phase
fluctuations can be constructed by rotational symmetry around the jet axis, such that

δ̃φ
a

(t, η, ξ, θk ) = δ̃φ(t, η, ξ, θk ) (4.3)
δ̃φ

a
(t, η, ξ, θk + 180°) = δ̃φ(t, η,−ξ, θk ) . (4.4)

This augmented observation state is then defined for projection angles homogeneously
distributed all around the jet, every 30°, and can be decomposed into azimuthal Fourier
modes δ̂φ

a

m with azimuthal wavenumbers m ∈ {−Nθ, ..., Nθ − 1}, writing

δ̃φ
a

(t, η, ξ, θk ) =
1

2Nθ

Nθ−1∑
m=−Nθ

δ̂φ
a

m(t, η, ξ)eimθk , (4.5)

where Nθ = 6 in the present study. The instantaneous and average azimuthal structure of
optical phase fluctuations can then be obtained, providing insights into the azimuthal structure
of the flow density field.
The azimuthal mean energy distribution of the optical phase fluctuations is assessed by

considering mean square values of the azimuthal Fourier modes amplitudes |δ̂φ
a

m |. Indeed,
time-averaging Parseval’s relation allows to define a mean distribution of azimuthal optical
phase fluctuation energy Eθ (η, ξ) such that

Eθ =
2Nθ−1∑
k=0

var(δ̃φa (t, θk )) =
1

2Nθ

Nθ−1∑
m=−Nθ

〈|δ̂φ
a

m(t) |2〉 , (4.6)

where 〈·〉 refers to the ensemblemean, var(·) to the variance operator along the time dimension
and where the coordinates in the observation space have been omitted for clarity. The maps
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Figure 14: Maps of relative energy distribution in the first four azimuthal Fourier modes of
observed optical phase fluctuations. For clarity only, the aerodynamic frame is used
instead of the observation one. The normalization term is M = max(2NθEθ ), see

equation (4.6). As emphasized using colored labels, figure (b) displaying results for the
azimuthal wavenumber m = ±1 features maximum values five times larger compared to

figures (a,c,d).

of normalized values of 〈|δ̂φ
a

m(t) |2〉 are displayed in figures 14(a–d) for four azimuthal
wavenumbers, the remaining modes having low energy content. Relying on equation (4.6),
the normalization term used isM = max(2NθEθ ), permitting the identification of regions in
the azimuthal Fourier modes contributing the most to the observed optical phase fluctuations.
It is emphasized that in these figures, the contributions of positive and negative azimuthal
wavenumbers ±m are summed, resulting in a factor of 2 on the maps of non-axisymmetric
modes (m > 0) since δ̂φ

a

±m are complex conjugates. Figure 14(b) highlights that most of
the optical phase fluctuations are associated with the m = ±1 helical modes, with local
values reaching up to 75% of the observed maximum mean optical phase fluctuation energy.
These large fluctuations are identified in the region of the flow where the second shock-cell
interacts with the external jet shear layer. Significant fluctuations are also present upstream,
in the outer shear layer found between the two shock-cells and in the reflected shock of the
first cell. As displayed in figures 14(a,c,d), the other azimuthal modes have about five times
smaller maximum fluctuation energy amplitudes. Interestingly, all of these azimuthal modes
capture significant fluctuations in the oblique shock of the first shock-cell, particularly in the
region where it intersects the external shear layer. This suggests that shock oscillation in the
first shock-cell cannot be explained primarily by the dynamics of a single pair of azimuthal
modes, in contrast to the second shock-cell whose motion appears to be largely driven by the
first helical modes m = ±1.
The dominance of the first pair of helical modes is made more evident in figure 15 which

provides a measure of the relative magnitudes of the total energy contained in the maps
〈|δ̂φ

a

m |
2〉 using the Frobenius norm denoted by | | · | |F . While the first pair of helical modes

at m = ±1 provides about 58% of the total energy, the other azimuthal modes all have
contributions less than 10%.
Finally, the map of rms values of optical phase fluctuations δφ′ previously shown in
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Figure 16: Maps of rms values of temporal optical phase fluctuations δφ′ obtained (a) by
isolating the contributions of the first pair of complex-conjugate azimuthal modes
(m = ±1) and (b) by considering the contributions of all the other azimuthal modes

(m , ±1).

figure 13 is decomposed in figures 16(a,b) by respectively isolating and discarding the
contributions of the first pair of helical modes. As observed in figure 16(a), the dominant
pair of azimuthal modes at m = ±1 captures the footprint of the standing wave present in the
external near-field of the jet, this feature being almost totally absent from the map associated
with the remaining modes in figure 16(b). As previously stated, this standing wave can
be associated with the screech feedback loop. This observation, along with the large optical
phase fluctuations observed, suggest that the salient features of screech mode C characterized
by a helical instability wave are captured by the present azimuthally-filtered measurements.

4.2.3. Proper Orthogonal Decomposition of the dominant helical Fourier mode
The previous azimuthal Fourier decomposition provided insights into the time-average
azimuthal energy distribution of the observed optical phase fluctuations, highlighting that
screech-related dynamical structures were embedded in the isolated complex-conjugate
modes at m = ±1. Yet, because of the unsteady nature of the system, which is furthermore
only observed at discrete and distant time intervals, exposing an average 3D density picture
of these structures is not straightforward.
In this work, it is proposed to rely on Proper Orthogonal Decomposition (POD) (Holmes

et al. 2012) to efficiently isolate these coherent structures and to provide a simple modeling
framework for their dynamics. POD aims at decomposing an ensemble of space-time-
varying fields { f (t j, x)}j=1..P into a linear combination of spatial orthogonal modes Ψ( f )

i (x)
optimally capturing its temporal variance or energy. Here, x ∈ R3 refers to spatial coordinates
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in the frame of interest, which can be in the physical or in the observation space. It is
emphasized that f is considered in this work as a zero-mean complex-valued function and
that, consequently, the spatial modes are also complex. The decomposition writes

f (t j, x) =
P∑
i=1

ai (t j )Ψ
( f )
i (x) , (4.7)

with ai (t j ) the discrete temporal complex coefficients animating the spatialmodes. In discrete
form, data functions and spatial modes are replaced by Nxyz-vectors, with Nxyz the number
of spatial points considered, such that equation (4.7) may be written as

f j =
P∑
i=1

ai, jΨ
( f )
i . (4.8)

Following Sirovich (1987), when the observations { f j } are independent, this decomposition
can be retrieved by considering the eigenvalue problem associated with the P × P temporal
covariance matrixC ( f ) defined by elements c( f )

m,n = f H
n f m/P where ·H refers to the conjugate

transpose operator. The eigenvectors of C ( f ) provide the temporal coefficients ai, j and the
spatial modes are obtained by linear combination, such that

Ψ
( f )
i =

P∑
j=1

ai, j f j . (4.9)

Furthermore,C ( f ) being Hermitian, its eigenvalues λi are real and give the energy associated
with the spatial modes Ψ( f )

i . This approach is computationally interesting when P � Nxyz

and is commonly referred to as the method of snapshots.
In this work, the P augmented snapshots of optical phase δ̃φa are arranged asQNa

θ -vectors
and stacked in a matrixΦ ∈ RQN a

θ ×P , with Q = M Nx the number of data points in one phase
map and Na

θ = 2Nθ the number of augmented projections. Snapshot POD is then applied to
the deduced P maps of helical Fourier modes at m = 1 arranged as Q-vectors and stacked
to form the snapshot matrix of Fourier modes Φ̂m=1 ∈ C

Q×P . The temporal covariance
matix then writes C (φ) = Φ̂

H
mΦ̂m/P. Solving the associated eigen problem provides the

real eigenvalues λi and the associated POD modes Ψ̂
(φ)
i ∈ CQ for i ∈ [1..P], which can

be rearranged to form complex spatial maps of size M × Nx . Selecting a limited number
of main modes, an inverse discrete azimuthal Fourier transform may then be applied to
obtain an arbitrary number N ′θ > Nθ of projections in the observation space of optical phase
fluctuations, thus allowing to perform an accurate reconstruction of the associated density
fields relying on the tomographic reconstruction approach described in section 2.5.
This way of proceeding to estimate the density field of screech-related spatio-temporal

modes is summarized in the flowchart shown in figure 17 using solid black arrows, where
azimuthal Fourier transform and snapshot POD are directly performed on the entire set of
observations. Other paths may however be imagined and it is important to clarify whether the
present process yields main modes similar to those that would be obtained with azimuthal
Fourier transform and POD directly applied to snapshots of density fields. Indeed, such an
approach may be considered more physically relevant since the decomposition would then
be performed in physical space and not in observation space. This way of proceeding is
also illustrated in the flowchart shown in figure 17, but using dashed gray arrows. First,
the inverse tomographic problem for the ensemble of acquired projections would have to be
solved, providing the matrixX ∈ RNxyz×P gathering the P temporal snapshots of 3D fields of
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Figure 17: Flowchart illustrating possible approaches to evaluate the main screech-related
coherent structures in the observed instantaneous density fields using snapshot POD. The
dashed gray path indicates an idealized direct approach where azimuthal Fourier transform
(FT) and POD would be performed on the reconstructed 3D density fields snapshots. The

solid black path describes the method that was followed in this work. The blue node
highlights the starting point, the available observations, which are the sinograms gathering

the variations of optical phase for each observation angle. The magenta dashed line
indicates the possibility of applying a Radon transform between azimuthal modes.

ρ̃ obtained on a cartesian grid of size Nxyz = NxM2. An azimuthal Fourier transform would
then directly provide the azimuthal Fourier modes X̂m and the deduced covariance matrix
would be C (ρ) = X̂ H

mX̂m/P. Applying an inverse Fourier transform to the selected main
POD modes would finally provide the main 3D structures of density fluctuations associated
with screech. Clearly, the major drawback with this approach lies in its first step, since it
requires tomographic inversion of the entire set of projections. In practice, this represents a
non-negligible computational burden and it cannot yield satisfactory results in the present
work because of the limited number of available projection angles. Nonetheless, arguments
can be provided to support the approximate equivalence of the two paths.
First of all, it is highlighted that Radon and azimuthal Fourier transforms can be

intertwined. Indeed, as demonstrated in appendix A, this is the consequence of conservation
of azimuthal symmetries by the Radon transform and of its linearity. The azimuthal Fourier
modes in the observation space can thus be alternatively obtained writing Φ̂m = TmX̂m

where Tm refers to the Radon transform of an azimuthal Fourier mode. This relation is
displayed in figure 17 using a magenta arrow. Given this result, the question then actually
amounts to knowing if the temporal covariance matrices C (ρ) and C (φ) provide similar
eigenfunctions for the dominant modes. Noting that C (φ) = X̂ H

m (T H
mTm)X̂m/P, the two

covariance matrices would be similar if the projection operator Tm was orthogonal. This
is not the case for the Radon transform and the projection-backprojection pair is known to
produce blurred, spectrally-filtered images (Epstein 2008; Paleo 2017). This spectral feature
appears for example in the filtered-backprojection approach where a frequency-filter is used
to obtain a practical inversion algorithm. T H

mTm acts as a low-pass frequency filter in the
image domain and thus promotes large-scale density variations in the covariancematrixC (φ) .
While a detailed quantitative analysis of this filtering process is out of the scope of the present
work, these observations suggest that the main eigenfunctions obtained from C (φ) and C (ρ)

are likely to be similar and the two paths shown in figure 17 should yield comparable modes,
thus allowing the main coherent large-scale density structures to be isolated.

4.2.4. A reduced dynamical model
Snapshot POD described in the previous section was applied to the P = 854 instantaneous
Fourier modes of optical phase fluctuations at the main azimuthal wavenumber m = 1. The
normalized eigenvalues ofC (φ) are shown in figure 18 in descending order and in logarithmic
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Figure 18: Normalized eigenvalues (vertical gray bars) in logarithmic scale of the
temporal covariance matrix C (φ) deduced from the snapshots of azimuthal Fourier modes
at an azimuthal wavenumber m = 1, and their cumulative sum (blue cross markers) in

linear scale for a reduced number of POD modes.
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Figure 19: Normalized scatter plots obtained from the collection of the first two complex
POD modes coefficients {ai (t j )}i=1..2. Data points are color-coded to highlight phase

links across the plots. (a) scatter plot of Re(a1(t j ))/r and Im(a1(t j ))/r with r a
normalizing constant; the markers colors encode the phase of a1(t j ), noted ϕ1(t j ); the
large black circle represents a model orbit or phase portrait in the phase space the POD

mode. (b) scatter plot of Re(a2(t j ))/r and Im(a2(t j ))/r; markers colors are still a
function of ϕ1(t j ); two different phase portraits are identified and modeled by blue and
red circular orbits. (c-d) separated scatter plots deduced from (b) highlighting the two

different superposed distributions and the associated modeled orbits.

scale for only a few modes, together with the associated cumulative sum in linear scale. Two
PODmodes concentrate about 83% of the optical phase fluctuation energy for this azimuthal
mode, with the eigenvalues λ1 and λ2 being an order of magnitude larger than the others.
To study the phase relationship that may exist between these two main PODmodes, scatter

plots of the real and imaginary parts of the complex POD mode coefficients a1(t j ) and
a2(t j ) are displayed in figure 19. First, in figure 19(a), Im(a1(t j )) is plotted as a function of
Re(a1(t j )) using a normalization amplitude r . The resulting distribution can be described
by a circular orbit with radial dispersion, suggesting that the temporal coefficients of the first
POD mode embed relatively coherent temporal dynamics subject to amplitude fluctuations.
Without considering the observed dispersion, the evolution of amplitude and phase of the
first POD mode can then be approximated by a reduced dynamical model M̂1 taking the
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Figure 20: Scatter plot of ϕ1(t j ) and ϕ2(t j ), which are the phases of the complex POD
modes coefficients a1(t j ) and a2(t j ) respectively. The markers are color-coded by ϕ1 as in
figure 19. The blue and red solid lines represent linear phase relationships modeling the
phase links observed in figure 19(b) for the two orbits displayed with the same two colors.

form of a simple harmonic oscillator written as

M̂1(t j, x) = r Ψ̂(φ)
1 (x) eiΩ(tj ) (4.10)

where Ψ̂1 is the first spatial POD mode, x = (η, ξ) refers to the spatial coordinates in the
observation space and Ω(t j ) is a real-valued function providing the instantaneous phase of
the mode. For example, assuming stationary cyclic dynamics for screech, it could be modeled
as Ω(t j ) = ±ωst j with ωs the screech angular frequency, such that the black orbit shown in
figure 19(a) would be followed at constant angular velocity in one direction of rotation or the
other.
The second scatter plot shown in figure 19(b) displays Im(a2(t j )) as a function of

Re(a2(t j )), normalized by the same scalar r as for the first POD mode coefficient. This
graph is more complex to describe and, to facilitate its reading, each data point has
been colored according to the instantaneous phase of the first POD mode coefficient, i.e.
ϕ1(t j ) = arg(a1(t j )). This color-coding can be observed in figure 19(a). It serves to highlight
the phase relationships that exist between the two POD modes and allows for a simple
cluster analysis to be performed visually. Two different distributions can be identified in
figure 19(b), with more explicit cluster partitions separately drawn in figure 19(c) and
figure 19(d). The first distribution highlighted in figure 19(c) shows a collection of points
scattered around an approximate circular orbit (displayed in blue), with an average radius
around 0.6r and with markers colors indicating an approximate phase-match with the first
POD mode coefficients. The second isolated distribution of points shown in figure 19(d)
also describes an approximate circular orbit (drawn in red), but with a larger average radius
around 0.75r and an approximate antiphase relationship with the first PODmode coefficients.
Consequently, for one state of the dynamical system described by the first POD mode, two
different orbits may be exclusively followed in the phase space of the second POD mode. As
shown thereafter, this behavior captures the two possible azimuthal directions of rotation of
the helical instability here observed. The probabilities of following either orbit in the phase
space of the second POD mode are almost equal (50% ± 0.5%), since a similar number of
snapshots were found in the scatter plots 19(c) and 19(d). It is concluded that the helical
structure subsequently presented has no preferred azimuthal direction of rotation about the



27

jet axis. Finally, this state decomposition indicates that the studied jet can only support one
of the two identified structures over a period of time. More particularly, it is evaluated that
the transition probability from one state to the other over the time interval separating two
snapshots, i.e. 0.1 s corresponding to about 460 screech cycles, is about 7% for the considered
NPR.
This switching in the direction of rotation observed during continuous operation appears

to be facility-dependent. For example, Powell et al. (1992) reported that in their experiments
“the sense of rotation remained the same during continuous operation of the jet, but was
liable to be different when the jet has been turned off and then on again.” In the present case,
the observed intermittency suggests that the feedback loop has been stochastically perturbed
during operation, allowing the dynamical system to switch between the two observed limit
cycles. At least two possible mechanisms can be imagined. First, stochastic variations in
upstreamflow conditions (pressure variations, flow turbulence, ...) could have acted as forcing
terms in the jet receptivity process. Second, the present experiment has a significantly larger
nozzle lip thickness compared to Powell et al. (1992). This difference in boundary conditions
may be of importance since the nozzle lip geometry plays a major role in receptivity and
has been shown to have a significant effect on the feedback loop (Raman 1999; Edgington-
Mitchell 2019). Although a thicker nozzle lip is known to increase the strength of the screech
noise and thus the feedback loop, an increase in the energy of the present stochastic dynamical
system could also promote intermittent escapes from the two potential wells in which the
two observed limit cycles evolve. Notably, a more stable helical mode has been observed by
the present authors with the same jet facility but with part of the nozzle lip covered with
acoustic dampening foam. The nature of this intermittency therefore needs to be clarified by
complementary experimental studies of these two hypotheses.
The exact phase relationships between the two POD modes for the two possible orbits

evidenced in figure 19(b) are made more explicit in figure 20, where the phase of the second
POD mode, noted ϕ2 is plotted as a function of ϕ1. Linear relationships provide satisfactory
models for the two observed trends with a phase difference of π. As a consequence, extending
the reduced model for the first POD mode given by equation 4.10, a simple linear model
describing the main jet dynamics captured by these two POD modes in the azimuthal
Fourier domain of the observation space can be proposed using two phase-coupled harmonic
oscillators, writing

M̂±(t j, x) = r
(
Ψ̂1(x) + c±2 Ψ̂2(x) eip±2

)
eiΩ(tj ) (4.11)

where c±2 and p±2 are parameters accounting for the reduced radii and the phase shifts
associated with the two circular orbits identified in the phase-space of the second POD
mode. Note that the exponent ·(φ) was omitted for clarity. Relying on figure 19 and figure 20,
the two orbits are more explicitly described by c+2 ≈ 0.6 and p+2 ≈ π/10 for the orbit almost
in phase with the first POD mode (blue in the figures 19(b) and 19(c)), and c−2 ≈ 0.75 and
p−2 ≈ 11π/10 for the second one associated with antiphase dynamics (red in the figures 19(b)
and 19(d)). In the context of dynamical systems theory, this model (4.11) is expected to
approximate the attractor of the system whose limit cycle is here described by periodic orbits
in POD phase space.
It is highlighted that the observed difference in orbit radii in the phase space of the

second POD mode has not found a definite explanation. It has been verified that this
result does not depend on the number of snapshots considered and that could have led
to covariance convergence issues, nor apparently on the optical setup since halving the
number of projections gave similar results. It is conjectured that this difference in the mode
amplitudes between the two observed states has a physical origin and actually captures slightly
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Figure 21: (a, c) Amplitude and (b, d) phase maps of the two main complex POD modes
Ψ̂1(x) and Ψ̂2(x) identified in the first azimuthal Fourier mode (m = 1) of observed

instantaneous optical phase fluctuations δ̃φa .

different density fluctuations between the two possible azimuthal directions of rotation of the
observed helical instability wave. This could be induced by some subtle non-axisymmetric
experimental conditions (jet swirl, nozzle geometry, jet surrounding, ...) that could slightly
favour the growth of the instability in one azimuthal direction, without significantly favoring
the probability of rotation in one of the two directions.

4.2.5. POD spatial modes and projection in the observation space
The reduced model proposed in equation (4.11) is composed of two complex spatial modes
Ψ̂1 and Ψ̂2 in the azimuthal Fourier domain of the observation space. Their spatial structure
in terms of amplitude and phase are displayed in figure 21. Focusing first on the amplitudes
shown in figures 21(a) and (c), it can be observed that both modes capture coherent optical
phase fluctuations in different regions of the jet. For example, Ψ̂1 captures greater variance
downstream and slightly upstream of the second shock-cell, while Ψ̂2 displays maximum
variations in the external shear layer just upstream the second shock-cell and in the reflected
shock of the first shock-cell. It may also be noted that both modes embed the footprint of
the external stationary wave, but that it is more pronounced in Ψ̂1. Focusing now on the
phase of the two complex modes displayed in figures 21(b) and (d), well-defined patches
of approximately constant phase can be observed, providing indications about the spatial
coherence of the isolated fluctuations. For both modes, antiphase distributions are obtained
with respect to the jet axis, which is expected since the helical mode at m = 1 is studied.
The first mode exhibits patches of constant phase around −π/2 and π/2, while the second
mode displays patch values around 0 and −π, indicating that both modes are in azimuthal
phase-quadrature. These observations can be interpreted as follows: taken individually, the
two modes Ψ̂1 and Ψ̂2 describe purely azimuthal fluctuations at m = 1 and are not able
to render features such as axial convection or helicity. These can only be rendered in the
observed space by streamwise and azimuthal quadrature between two modes, which is a
known feature of POD applied to convective instabilities (see for example Oberleithner
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et al. (2011), Schmid et al. (2012) and Edgington-Mitchell et al. (2014b) among others). As
shown in the following section, summation of the two modes does indeed recover convective
structures in the observation space and rotating helical density structures in the physical
space.
The reduced model (4.11) is expressed in the azimuthal Fourier domain of the observation

space. For the purpose of reconstructing the associated density field, an inverse azimuthal
Fourier transform is applied to obtain complex and real-valued model projections in the
observation space, referred to as M±(t j, x, θ ′k ) and P±(t j, x, θ ′k ) respectively. Here, owing
to the known azimuthal symmetry of the model, {θ ′

k
}k=1..N ′θ can be arbitrary projection

angles, particularly such that N ′θ > Nθ = 6, the actual number of holographic lines. This
operation writes

P±(t j, x, θ ′k ) =
1

2Nθ
M̂±(t j, x) eiθ′

k︸                   ︷︷                   ︸
M±

+ c.c. (4.12)

and equally-spaced model projections on a half-circle were obtained with θ ′
k
= kπ/N ′θ .

Similarly to tomographic reconstruction of the mean density field in section 4.1, N ′θ = 64
was observed to provide well resolved density reconstructions.

4.2.6. Density reconstruction of the helical structure
The 3D tomographic reconstructions obtained for P+ and P− with two arbitrary values ofΩ
are illustrated using 3D contour plots in figures 22(a,b) respectively. Two laterally-translated
median longitudinal cross-sections extracted at y = 0 and z = 0 (gray scales) and an axially-
translated transverse cross-section at x/D = 3.85 (at the edge of the reconstructed domain,
colored scales) are also displayed in each figure to further illustrate the internal density
distribution of these large-scale structures. An animation is provided as additional material
for better 3D visualization.
As previously indicated, the projected reduced models P± clearly describe a helical

structure, particularly visible in the external shear layer between the two shock-cells, with
two possible azimuthal directions of rotation. In the longitudinal cross-sectional planes, this
dynamical model yields apparent convection and growth of density fluctuations as would
be expected from an azimuthal instability wave. A particular feature of this result is that
the density fluctuations associated with this reconstructed helical structure extend into the
interior of the jet. Large density fluctuations can be observed in the embedded shear layer
of the first and second shock-cells. As seen in the transverse cross-sections showing colored
contour plots, these internal fluctuations are out-of-phase with the fluctuations observed in
the external jet mixing layer. Similar observations have been reported by Edgington-Mitchell
et al. (2014a) who performed planar PIV measurements in an under-expanded jet at a NPR
of 4.2 characterized by helical dynamics associated with a screech mode C. These authors
suggested that the helical instability observed in the external jet shear layer was driving large
velocity fluctuations in the jet embedded shear layers. Based on qualitative observations, they
furthermore hypothesized that the motion of the reflected shocks may play an important role
in the development of these inner shear layer fluctuations.

4.2.7. Analysis of the reconstructed density fluctuations
To investigate this point further, a more quantitative description of the density fluctuations
captured by the present reduced model is provided in figure 23. The complex-valued version
of the model M± is considered instead of its real part P± since the former intrinsically
contains information about the spatial correlations of the density fluctuations. The amplitudes
of the fluctuations normalized by ρ j in a longitudinal plane of the jet are first displayed in
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Figure 22: Illustrations of the 3D density fields obtained by tomographic reconstruction
(noted T−1) of the reduced dynamical models (a) P+ and (b) P−, for two arbitrary values

of model phase Ω.

figure 23(a). These amplitudes are furthermore scaled by 2/
√

2 to account for the contribution
of the complex conjugate term in equation (4.12) to the overall density fluctuations and to
provide root-mean-square estimates. With this scaling, this reduced model is shown to
capture maximum rms density fluctuations of about 0.1ρ j in the second shock-cell, an
order of magnitude that is in agreement with values reported by Panda & Seasholtz (1999)
using Rayleigh scattering measurements with phase-averaging on the screech noise. In this
figure, the growth of the helical instability in the outer jet shear layer can be observed with
a streamwise increase of the density fluctuations in the profiles located between the two
shock-cells. Significant fluctuations are also found in the vicinity of the oblique reflected
shock of the first shock-cell. As discussed by Panda (1998) and André et al. (2011), these
fluctuations are the footprint of oblique shock oscillations that have been proposed to be
induced either by upstream acoustic waves associated with the screech feedback loop or
by instability waves growing in the outer mixing layer. The present quantitative results,
and particularly the visualizations shown in figure 22, provide support for the presence of
azimuthal shock oscillations for screech mode C, as suggested by Panda (1998). Similarly,
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Figure 23: (a) Amplitude and (b) phase maps of the density fluctuations captured by
tomographic reconstruction of the reduced complex model M+ in the longitudinal plane
of the jet. In (a), the black solid lines ( ) provide the profiles of fluctuation amplitude
for M+ and the dark-gray dashed lines ( ) give the profiles for M−. In (b), the core
region of the jet over the first two nozzle diameters is hashed since the phase estimates in

this region are extremely uncertain.

the density fluctuations observed around the reflected shock of the second shock-cell are also
to be related to azimuthal shock oscillations, but with greater spatial dispersion due to larger
cell motions.
Figure 23(a) further highlights the presence of intense density fluctuations in the embedded

shear layers of both shock-cells. In the first, the fluctuations in the internal layer appear to grow
moderately in the streamwise direction, up to the end of the shock-cell around x = 2D. This
is in agreement with visualizations by Yip et al. (1989), obtained using Rayleigh scattering
imaging,who observed that the reduced growth in the streamwise direction could be explained
by the large convective Mach numbers in this region and a dampening of internal Kelvin–
Helmholtz instabilities due to compressibility effects. From there, the internal mixing layer
interacts with the expansion fan generated by the intersection of the first reflected shock with
the outer mixing layer, yielding a significant radial diffusion of density fluctuations toward
the jet axis. The embedded shear layer of the second shock-cell also displays intense but
more diffuse density variations in the radial direction. Of particular interest, the amplitudes
of density fluctuations appear to be very similar for M+ and M−, with only moderate
differences in maximum amplitudes appearing downstream, for x > 3.5D, with M− being
slightly more intense. The different radii of the two circular orbits identified in the two POD
modes phase space in figure 19 thus have a limited effect and do not significantly change the
structure of the two isolated helical modes.
Valuable insights are finally given by the phase map shown in figure 23(b) that allows

to identify phase links in the field of density fluctuations captured by M±. It is noted that
the upstream core region of the jet is hashed since no reliable phase estimates could be
obtained in this part of the flow where almost no density fluctuations were captured (see
figure 23(a)). To begin with, the phase pattern of the standing wave previously identified in
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Figure 24: Phase map of density fluctuations evaluated using PSE in the longitudinal
plane of a perfectly-expanded supersonic jet at Mj = 1.7, for a Strouhal number

Stj = 0.23 and an azimuthal wavenumber m = 1.

figure 13 in the external near-field of the jet can be clearly identified, with an axial wavelength
of about 2.5D. A smooth phase-coupling between this standing wave and the perturbations
developing in the outer mixing layer is observed upstream and downstream of the first shock-
cell, for x > 1.0D. Furthermore, the oblique shock oscillations in the two shock-cells are
directly in phase with the density fluctuations captured in the region of interaction with the
outer shear layer. This again indicates a strong coupling between shock oscillations and the
helical Kelvin–Helmholtz (KH) instability wave developing in this outer mixing layer, in
agreement with the main mechanism proposed in the literature (Panda 1998; André et al.
2011). The interior region of the jet, however, displays fluctuations that are generally out-of-
phase with those found in the outer mixing layer and the oblique shock oscillations. First,
the helical density fluctuations in the expansion fan of the first shock-cell are in approximate
quadrature phase-shift relative to the shock oscillations. Second, considering any of the two
shock-cells displayed, the density fluctuations associated with the oblique shock motions
are in approximate anti-phase relative to the upstream and downstream density fluctuations.
Of particular interest is a continuous large-scale variation of phase inside the jet, in the
streamwise direction and across the shock waves. This large-scale internal phase distribution
exhibits a phase jump across the outer shear layer but shows uniform variations in the
embedded shear layers.
Based on these observations, it is proposed to interpret this out-of-phase link between

fluctuations found in the embedded shear-layers and in the outer mixing layer (discarding
the near-field standing wave pattern) as the consequence of a phase-shift between large-scale
waves developing inside the jet and in the outer mixing layer. In these two regions of the jet,
a similar approximate large-scale axial wavelength of about 3.5D is estimated. This value
corresponds to about 2 shock-cell spacings and is identified as the footprint of the outer-
layer KH instability wave having support in the entire jet (Edgington-Mitchell et al. 2021).
This suggests that the phase differences observed between the two regions can be related
to the classical phase jump across shear layers observed for KH instability waves, a feature
commonly found in axial velocity fluctuations of KH modes (see Nogueira et al. (2021) for
example), but which also appears in fields of density fluctuations. As an example, figure 24
displays the phase map of density fluctuations captured by Parabolized Stability Equations
(PSE) (Herbert 1997; Sinha et al. 2014) applied to an analytic model of a perfectly-expanded
supersonic jet (which is thus free of shock-cells and screech) at a similar Mach number
Mj = 1.71, for an azimuthal wavenumber m = 1 and for a Strouhal number equivalent to
that deduced from screech noise measurements obtained for the present under-expanded jet.
The spatial distribution of phase values in the mixing layer and in the jet core is qualitatively
in agreement with the large-scale variations identified in figure 23(b), displaying a similar
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phase decrease radially toward the jet axis and providing support for the proposition. More
significant differences in phase pattern in the outer jet region can be observed and are
associated with the absence of the screech-related standing wave in this simple example,
which serves only to highlight the internal structure of the KH instability wave. From this
perspective, the helical density fluctuations found in the embedded shear layers in figure 23
are interpreted as being directly driven by the outer KH instability wave, suggesting that
reflected shocks oscillations only play a minor or indirect role in the associated dynamics.
It is emphasized, however, that this conclusion is based on spatio-temporal correlations
rendered by a reduced model and that further experimental or numerical work should thus
be considered to clarify its validity.
Finally, figure 23(b) suggests that a near-perfect phase match exists across the outer shear

layer in the nozzle-lip region between the outer standing wave and the inner-jet large-scale
fluctuations. While a phase-match condition between KH modes and upstream-traveling
waves is to be expected in the receptivity region of the mixing layer for the resonant
mechanism atwork to be closed, it is interesting to observe that this appears to be accompanied
by a phase match of density fluctuations in the two regions surrounding the initial shear layer.

5. Conclusion
The multi-view DHI setup detailed in this work has provided original insights into the
structure of an under-expanded screeching supersonic jet in helical mode. More generally,
this optical setup can be expected to be of interest for a broader class of aerothermal
or compressible open-flows characterized by dynamical coherent structures presenting
azimuthal symmetries. The main advantages of the presented technique are its fine optical
phase measurement resolution (on the order of 100 µm for the present setup) providing
sharp instantaneous images of shock waves and direct access to the azimuthal content
of the flow projections using azimuthal Fourier transforms. However, some challenges
should be highlighted. First, the optical layout can be relatively complex to implement
and sensitive to vibrations. Second, the technique provides indirect access to the probed
density fields since phase-unwrapping and tomographic reconstruction are necessary post-
processing steps. Particularly, the limited number of interferometric lines used prevents any
reliable density field reconstruction without taking advantage of azimuthal symmetries in
the flow. Furthermore, the quality of the reconstructed density fields depends significantly
on the tomographic reconstruction process. This study considered a regularized tomographic
approach relying on Total Variation regularization to account for the presence of shockwaves.
While providing satisfactory results, improvements in the quality of the reconstructed density
fields could be expected in future work by using higher-order regularization techniques such
as Total GeneralizedVariation (TGV) regularization (Bredies et al. 2010), or newly developed
learned regularization strategies (Gilton et al. 2020) increasing the level of a priori knowledge
used in the reconstruction process. A final challenging topic that has yet to be addressed in
depth and that is related to the choice of tomographic reconstruction approach concerns
uncertainty quantification in the reconstructed density fields.
The use of PODapplied to themain azimuthal Fouriermode of the flowprojections revealed

fine details about the main 3D dynamics of the jet. First, evidence of intermittency in the
direction of rotation of the observed helical screech mode C is reported. This unexpected
feature has not been observed previously to the authors’ knowledge and is likely to depend on
the jet facility (e.g., upstream flow conditions) or the nozzle geometry (e.g., lip thickness).
This result is particularly interesting since the screech mode C is commonly thought to
be stable and steady, as reported by Powell et al. (1992) for instance. The present results
therefore suggest that a more thorough investigation of the receptivity mechanisms at work in
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these jets should be conducted. It is important for such studies to emphasize that the present
observation of switching in the direction of rotation using flow state projections can only
be unambiguously obtained by using multiple observation lines. Relying on a single flow
projection (as obtained with single-line BOS, schlieren imaging or DHI for example) would
have obscured this result. In particular, applying POD to the snapshots obtained with a single
DHI line yields only a single pair of real modes, in contrast to the results shown in figures 18
and 19 where two complex pairs have been identified.
Secondly, a forcing mechanism of the inner jet shear layer and reflected shocks by the

main helical KH instability wave developing in the outer jet shear layer has been evidenced.
This work complements the observations reported by Edgington-Mitchell et al. (2014a)
and offers a physically-plausible explanation for the out-of-phase motions of the helical
coherent structures observed in the two regions. Interestingly, Edgington-Mitchell et al.
(2014a) additionally reported the presence of weak axisymmetric structures in the inner
annular shear layer. Although not explicitly shown here, minor or suboptimal azimuthal
POD modes (found for m , 1 in the azimuthal decomposition given in figure 15) have also
been observed with the present measurements, but in both the outer and inner shear layers. In
particular, weak axisymmetric modes in the inner shear layer have been found to be mainly
accompanied by dominant outer-layer modes. Overall, the present study therefore suggests
that the coherent dynamics of a screeching jet is driven primarily by the outer-layer instability
waves, for both the preferred azimuthal mode and for the suboptimal modes. Investigations at
various NPRs and for different screech modes should be considered to validate and explore
the universality of this conclusionwhich could help to better understand the internal dynamics
of these jets.
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Appendix A. Intertwining Radon and azimuthal Fourier transforms
The following theorem supporting the discussion of section 4.2.3 may already exist in the
literature, but it has not been found by the authors. For the necessary prior definitions of the
Radon transform and its natural domain, the reader is referred to Epstein (2008) for example.
Here, R f (r, θ) refers to the Radon transform of f on a line L whose distance to the origin
is |r | with r ∈ R and whose angle in the plane is θ ∈ [0, 2π[.

Theorem 1. Let f be an absolutely integrable function of the plane in the natural domain
of R. Let f be defined in polar coordinates on R × [0, 2π[ with a decomposition in Fourier
series that writes

f (ρ, ϕ) =
∑
m∈Z

f̃m(ρ, ϕ) (A 1)

with f̃m(ρ, ϕ) = f̂m(ρ)eimϕ . Then,

R f̃m(r, 0) =
1

2π

∫ 2π

0
R f (r, θ)e−imθdθ . (A 2)

In other words, the Radon transform applied to an azimuthal Fourier mode of an object
defined in physical space corresponds to the azimuthal Fourier mode of Radon projections
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of the object in the observation space. The Radon transform thus preserves azimuthal
symmetries and can then be viewed as an equivariantmapunder azimuthal Fourier transforms.
Proof. Using the Fourier series of f and the linearity of the Radon transform,

R f (r, θ) =
∑
m′∈Z

R f̃m′ (r, θ) . (A 3)

Using proposition 6.1.4 from Epstein (2008) that considers the effect of rigid rotations on
the Radon transform of a function in the plane, one can write

R f̃m′ (r, θ) = R f̃m′,θ (r, 0) (A 4)

with f̃m′,θ denoting rotation of f̃m′ (ρ, ϕ) by an angle θ, thus such that

f̃m′,θ (ρ, ϕ) = f̂m′ (ρ)eim′(ϕ+θ) = f̃m′ (ρ, ϕ)eim′θ . (A 5)

Consequently,

R f (r, θ)e−imθ =
∑
m′∈Z

(
R f̃m′ (r, 0)ei(m′−m)θ

)
(A 6)

and finally

1
2π

∫ 2π

0
R f (r, θ)e−imθdθ =

∑
m′∈Z

R f̃m′ (r, 0)
2π

∫ 2π

0
ei(m′−m)θdθ = R f̃m(r, 0) , (A 7)

where in the last step the orthogonality of the Fourier basis yields only one non-zero term
for m = m′.
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