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Abstract—This paper presents a theoretical study of the
combined effect of Virtual Machine (VM) migration and Physical
Machine (PM) consolidation on energy consumption, end-user
task performance and equipment wear. Our numerical results
indicate that a moderately aggressive consolidation strategy
seems to be a good compromise. They indicate also the potential
importance of distributional assumptions for time between VM
launch requests and for VM lifetime.

Index Terms—Server consolidation, VM migration, Live mi-
gration, Energy performance trade-offs, Hierarchical model.

I. INTRODUCTION

In the past several years, cloud computing with virtual-
ized data centers has emerged as the dominant computing
paradigm. With this technology, Virtual Machines (VMs) run-
ning on a set of Physical Machines (PMs or servers) can share
the available physical resources. Benefits of this approach
include improved overall resource utilization and lower energy
requirements.

In a dynamic environment, VMs are launched (created) and
terminated in response to customer requests. At VM launch,
one of the objectives of the initial VM placement may be to
balance (or to maximize) the PM utilization. With live VM
migration, [1], it is possible to reposition a running VM on a
different PM.

There are a number of potential motivations for live VM
migration. Server consolidation to reduce energy consumption
is one of them [2] and our paper focuses specifically on
this important objective. It is intuitively clear that live VM
migration may have a significant effect on power consumption
and VM performance. In general, however, this effect doesn’t
seem easy to predict.

Cloud performance tends to be difficult to evaluate due to
the scale of the system, its dynamic nature and interactions
between numerous cloud components. In addition to perfor-
mance, one needs to take into account energy usage [3] and
potential equipement wear caused by repeatedly turning PMs
on and off [4]. Our main goal in this paper is determine how
aggressive PM consolidation should be when one takes into
account the combined effects in terms of energy consumptions,
performance and equipment wear.

A number of publications devoted to live VM migration and
server consolidation have appeared in recent years, including
several surveys (e.g., [5]). A large number of consolidation
strategies have been proposed with a varied set of criteria.

Since server consolidation can be viewed as an optimization
problem, approaches used include exact or approximate meth-
ods (heuristics) (e.g., [6]), often stressing a specific aspect
of resource consumption, e.g., CPU utilization [7] or energy
footprint [6].

Existing studies of the performance aspects of live VM
migration include experimental benchmarking evaluation (e.g.,
[8]), simulation studies (e.g., [9]) and analytical performance
models (e.g., [10]–[12]). Several performance studies are
devoted to the evaluation of the impact of implementation
mechanisms for live migration (e.g., [13]). Other research
looks at live migration in the context of load balancing (e.g.,
[10]) or energy-savings techniques to improve the trade-off
between energy consumption and application performance
(e.g., [14]).

In this paper we use a probabilistic model of VM live
migration in the context of PM consolidation for energy
savings. Our goal is not to model a specific cloud system.
Rather, it is to assess how aggressive VM migration should
be when taking into account its combined impact on energy
consumption, end-user performance and equipment wear. Our
study includes heterogeneous PMs and represents multiple
classes of VMs through the use of distributions of VM memory
sizes and lifetimes.

Our paper is organized as follows. In the next section we
describe in detail the assumptions of our VM migration study.
Section III presents the main results of our study. In Section IV
we briefly describe the solution approach used to obtain our
results. Section V concludes this paper.

II. STUDY ASSUMPTIONS

Because VM lifetime and migration on one hand, and task
executions on the other hand, generally occur at very different
time scales, it is advantageous to consider these sets of events
separately. Hence, we adopt a two-level view of the system.
At the upper level, as shown in Figure 1, we represent the set
of Physical Machines (PMs) and the Virtual Machines (VMs)
competing for their use. Our lower level represents individual
VMs and the end-user tasks executing on them. We use the
term “tasks” to denote the end-user jobs executed by the VMs,
the latter running on a set of PMs.
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Fig. 1: Overview of the VM creation, destruction, and live
migration process with K PMs.

A. VM lifetime and PM consolidation (Upper level)

We let K be the total number of available PMs. We
denote by mi the current number of VMs at PM number
i (i = 1, . . . ,K). This number includes VMs in “normal”
operation and VMs being migrated to and from the given
PM. Differences in the individual PMs may include their
memory capacity, execution speed and energy consumption
characteristics. Note that we assume that PM memory (and not
the number of CPU cores) is the principal limiting resource
(cf. [15]). We denote by Si the available memory capacity of
PM number i.

The time between consecutive VM launch requests has
a distribution with mean 1/φ. Individual VMs may require
different amounts of memory and may remain in the system
for different time durations. This is represented in our study
through a distribution of memory requirements, as well as a
distribution of lifetime durations for VMs. We use distribu-
tions derived from published measurement data for the times
between VM launch requests, memory requirement and VM
lifetime [16]. Thus, requests for the launch of a new VM
arrive to the system with rate φ. They are routed to a specific
PM according to the current state of the system, including, of
course, the amount of memory available on the PM, which
must be sufficient to accommodate the new VM.

If, at some point in time, there are no VMs executing on a
PM, the PM becomes inactive and is placed in a low power
state. PM load balancing happens at the moment of VM launch
when a new VM is initially assigned to a PM. If power savings
is a driving consideration, the load balancing algorithm will
attempt to assign the new VM to one of the currently active
PMs. In this case, an inactive PM is activated only if no active
PM has enough resources to accommodate the new VM. In
all cases, if no PM has enough resources left, the VM launch
request is queued. While the corresponding queue has a finite
capacity, for moderate rates of VM launch requests it may be
treated as unbounded. We assume that VM launch requests are
considered in FCFS order.

As mentioned before, for the lifetime of a VM we use a
distribution derived from published data [16]. We let νi be
the rate with which a VM currently running on PM number
i completes its lifetime and leaves the PM. Following such a
departure, depending on VM launch request currently queued,
the VMs remaining on PM i may be migrated to PM number

j. For the migration to happen, the target PM number j must
have the capacity to accommodate the remaining VMs from
PM i and the migration must be deemed desirable under the
migration policy in effect. Note that it may be also possible
and advantageous to consolidate the VMs from another PM
on PM number i following the departure of a VM from the
latter. Clearly, during the migration of a VM there is some
impact on task performance due to execution slow-down.

To be clear, in our study, we assume that server consol-
idation happens only following a departure of a VM from
a PM. To control how aggressively the system attempts to
consolidate, we use a “trigger” fraction ft. PM consolidation
is attempted after a VM ends its lifetime if available memory
on the PM falls below ftSi, i.e., below the fraction ft of
the memory capacity of the PM on which the VM ended its
lifetime. Thus, with ft = 1, PM consolidation is considered
following every VM departure, while with ft = 0, no VM
migration takes place. Additionally, we assume that the effects
of migration collisions can be neglected [5]. We denote by
1/γ the mean time it takes to migrate a single VM.

The goal of this upper-level abstraction is to represent server
consolidation and initial load balancing in the interactions
between VMs and the PMs on which they execute. Note that
the use of distributions for memory requirements and lifetime
durations of the VMs represents a simple way to account for
multiple classes of VMs in the system.

At this upper level we can estimate quantities related to
resource utilization including the probability that at launch a
VM is assigned to a given PM, denoted by qi (i = 1, . . . ,K),
the mean number of VMs at a given PM, denoted by m̄i, the
mean time between migrations out of an active PM, denoted
by 1/αi, as well as the probability that when a migration out
of PM i does take place its target is PM number j, which we
denote by pij . We can also assess quantities related to energy
consumption for each PM including the number of migrations
per time unit, θmig,i, the number of times the PM is switched on
and off per time unit, θon,i and θoff,i, as well as the fraction of
time the given PM is active denoted by fact,i, for i = 1, . . . ,K.

B. End user task performance (Lower level)

At the lower level, we have individual VMs and the end-
user tasks executing on them. Figure 2 shows one such a VM.
Tasks arrive at rate λ(n) where n denotes the current number
of tasks at the given VM. The maximum number of tasks
that can be present in the system at any given time is limited
to N . There are C virtual CPUs available to execute these
tasks. With probability qi a VM starts its life on PM number
i (i = 1, . . . ,K). A VM currently located on PM number i
can be in its “normal” state or it can be in “migration” state,
i.e., it can be undergoing migration out to another PM. The
rate with which a VM in its “normal” state at PM i begins a
migration to PM number j is given by αipij . The quantities
qi, αi and pij are known from the upper level.

The rate with which a migration from PM i to PM number
j ends (i.e., the VM returns to its “normal” state) is given
by γ (recall that 1/γ is the mean time to complete a VM
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Fig. 2: End-user tasks at a VM.

migration). We let µi(n) be the rate of task completion for
a VM in “normal” state at PM i with a current total of n
tasks at the VM. Analogously, when the VM is undergoing
migration out of PM number i, its rate of task completion is
given by ηi(n). Clearly, we will usually have ηi(n) << µi(n)
(if task execution was to be totally stopped during migration,
we would have ηi(n) = 0). Because of competition for PM
resources by the VMs, the rates µi(n) and ηi(n) may degrade
with the mean number of VMs sharing the given PM, m̄i. The
latter quantity is known from the upper level. For simplicity,
at the lower level we assume that all times follow memoryless
distributions.

The goal at this level is to represent the end-user task
execution on a VM and the effect of VM migration on task
performance. As a measure of task performance for VMs, we
use the mean task response time, denoted by R, and the at-
tained task throughput (the number of tasks processed per time
unit), denoted by θ. In some applications, the mean execution
time may be the proper measure of attained performance. We
denote by X the mean execution time for VM. Note that with
proper selection of the arrival rate function λ(n) it is possible
to represent batch workloads. Obviously, we need to know the
task completion rates µ(n) and η(n). These are parameters in
our study.

C. Energy consumption model

Since our goal is to assess the combined impact of VM mi-
gration on energy consumption and end-user task performance,
we need a model of energy consumption in our system. When
a PM is fully booted or awoken from sleep or hibernation, we
view its energy consumption per time unit as a sum of base
energy consumed plus some amount of energy per VM running
of the PM as suggested by Beloglazov and Buyya [17]. Thus,
the energy consumed by PM number i per time unit in absence
of migration, can be expressed as Pbase,ifact,i+m̄iPVM,i, where
Pbase,i is the average consumption of PM i with no VMs
running on it (besides the OS) and m̄i is the mean number
of VMs running on the PM. Additionally, we assume that the
migration of a VM requires on average Emig units of energy.
Also, we let Eon,i and Eoff,i be the expected energy consumed
to turn PM number i on and off, respectively. As mentioned
before, we denote by θmig,i, θon,i and θoff,i the corresponding
rates of migration and on and off events. Thus, we can express

the energy consumed per time unit by PM number i as

Pi = Pbase,ifact,i + m̄iPVM,i + θmig,iEmig

+ θon,iEon,i + θoff,iEoff,i, for i = 1, . . . ,K. (1)

Note that formula (1) accounts for the energy use due
to the activity of PMs and VM migrations [18] but does
not include incompressible data center energy consumption
(HVAC, lighting, etc). Note also, that in our accounting we
assign the energy use due to a VM migration to the PM that
hosted the VM being migrated. If desired, different or more
elaborate energy usage models [19], [20] can be used.

D. Combined energy-performance-wear criterion

In general, performance and power consumption tend to be
antagonistic. Hence, to assess the relative merits of different
VM placement and migration policies, we need to look at
their energy consumption and performance jointly. Since the
absolute energy consumption per time unit P and the mean
task response time R (or the mean execution time) have both
different units and dynamic ranges, we create corresponding
relative measures by scaling quantities to the range [0, 1]. For
the energy consumption component we use cP = P−Plo

Phi−Plo
and

for the mean response time component we use cR = R−Rlo
Rhi−Rlo

.
Plo corresponds to a value no higher than the lowest value for
energy consumption that could be observed for a given PM
configuration and workload range, and Phi is no lower than the
highest energy consumption under the same conditions. The
quantities Rlo and Rhi are defined in an analogous way for
the task response times. In situations where the task execution
time is a more appropriate measure, we can redefine cR as
cR = X−Xlo

Xhi−Xlo
. Xhi and Xlo are defined analogously to Rhi and

Rlo.
Besides energy consumption and performance, different PM

selection and consolidation policies may have different impact
on the reliability of the PMs. In particular, the frequency of
switching the PMs on and off may impact their longevity [5].
Let ω =

∑K
i=1(θon,i + θoff,i) be the total number of times

the PMs are switched on and off per time unit. We use ω as
a measure of PM wear and define the corresponding scaled
relative measure cω = ω−ωlo

ωhi−ωlo
. The quantities ωlo and ωhi are

defined analogously to the corresponding quantities for energy
consumption and performance so that cω remains in the range
[0,1].

Our combined energy-performance-wear criterion is a sim-
ple weighted combination of the components defined above
C1 = wP cP + wRcR + wωcω where wP , wR and wω are
the weights assigned to power consumption, performance and
equipment wear, respectively. With this criterion, it is easy to
emphasize a specific component and the goal will be to seek
policies that minimize the criterion chosen.

The next section presents the numerical results of our study,
which assesses the combined impact of VM migration on en-
ergy consumption, end-user task performance and equipment
wear.

Table I summarizes the notation used in this paper.



TABLE I: Principal notation used.

Upper level
K Number of available PMs
Si Allocatable memory capacity of PM i
φ VM launch rate
1/νi Mean VM lifetime at PM speed of 1
νi Lifetime rate of a VM running on PM number i
1/γ Mean time to migrate a single VM
qi Probability that at launch a VM is assigned to

PM number i
m̄i Mean number of VMs at PM number i
1/αi Mean time between migrations out of PM num-

ber i
pij Probability that a migration out of PM i goes to

PM number j
Lower level

N Maximum number of tasks in a VM
λ(n) Tasks arrival rate at a VM with a current total

of n tasks at the VM
C Number of virtual CPUs available to a VM
µi(n) Rate of task completion for a VM in “normal”

state at PM i with a current total of n tasks at
the VM

ηi(n) Rate of task completion for a VM in “migration”
state at PM i with a current total of n tasks at
the VM

Energy consumption parameters
Pbase,i Average energy consumption of an active PM i

with no VMs running on it.
fact,i Fraction of time PM number i is active
PVM,i Additional energy consumption for each new

VM on PM number i
θmig,i Number of migrations of VMs out of PM num-

ber i per time unit
Emig Energy consumed to migrate a VM
θon,i Number of times the PM number i is switched

on per time unit
Eon,i Energy consumed to turn PM number i on
θoff,i Number of times the PM number i is switched

off per time unit
Eoff,i Energy consumed to turn PM number i off
Pi Energy consumed per time unit by PM number i

Performance, energy and wear metrics
R Mean task response time
θ Attained task throughput
X Mean execution time
P Energy consumed per time unit by all PMs
ω Total number of times PM are switched on and

off per time unit
cP Relative measure of energy
cR Relative measure of performance (mean relative

response time or mean relative execution time)
cω Relative measure of wear
wP Weight assigned to power consumption
wR Weight assigned to performance
wω Weight assigned to wear
C1 Combined energy-performance-wear criterion

TABLE II: PM attributes for Section III-A.

Group 1 Group 2
Memory capacity (GB) 32 32
Speed factor 1.0 2.0
Pbase (energy unit) 1.0 3.0
PVM (energy unit) 0.15 0.45
Emig (energy unit per hour) 1/3 ×

10−3
1/3 ×
10−3

Eon (energy unit per hour) 5 ∗ 10−3 1.65 ∗
10−2

Eoff (energy unit per hour) 5 ∗ 10−3 1.65 ∗
10−2

III. STUDY RESULTS

A. How aggressive should the PM consolidation be?

We are now ready to study the effects of live migration in
a system with VMs running interactive type of workloads on
a set of heterogeneous PMs. Specifically, in our case there are
two groups of 4 PMs each (K = 8). The PMs in each group
differ by their speed and power consumption. The machines
in the first group are slower and also more energy thrifty.
The machines in the second group run at twice the processor
speed of the first group but use three times the energy per
time unit. The relevant machine attributes for both groups are
summarized in Table II. Note that the energy unit used in our
study is the base power consumption of a slower PM (this
might be, for instance, 175W as mentioned in [17]).

Based on published measurement values [16], we assume
that VM memory requirements are uniformly distributed be-
tween 1GB and 8GB, the VM lifetime can be represented as a
mixture of exponential and uniform distributions (e.g., [21]),
and the time between arrivals of VM launch requests can be
represented by a high-variability Weibull distribution. Relevant
VM parameters are summarized in Table III.

The parameter values related to energy consumption have
been inspired by values published in the literature [18], [22].
Clearly, these values may be expected to vary widely as
technology and machine architecture change.

Since our study involves energy savings that can be ex-
pected from live VM migration, our initial VM placement
strategy avoids waking dormant PMs if a VM launch request
can be accommodated by one of active PMs. To repre-
sent VM performance degradation due to competition for
PM resources, we use a factorfdeg which affects the rate
of task execution as follows: µi(n) = min(n,C)µiξi(m̄i)
and ηi(n) = min(n,C)ηiξi(m̄i) where ξi(m̄i) is given by
ξi(m̄i) = 1 − fdegm̄i/Mi. Mi is the maximum number of
VMs that can be accommodated on PM number i and C is
the number of virtual CPUs.

As discussed in the assumptions of our study, PM con-
solidation can only happen following the end of life of a
VM and we use use a “trigger” fraction ft to control how
aggressively the system attempts to consolidate. Recall that for
ft = 1, PM consolidation is considered as often as possible
(following every VM departure), while with ft= 0, there is



TABLE III: VM attributes for Section III-A.

VM memory requirements
Uniform distribution between 1 and 8 GB

VM lifetime
Mixture of exponential and uniform
distrib.
Probability of exponential branch 0.6
Exponential with mean value 1.0 hour
Probability of uniform branch 0.4
Uniform distribution between 2 and 24

hours
VM launch request inter-arrival times

Weibull distribution
Scale parameter 0.5
Shape parameter 0.5
Coeff. of variation 2.236

Task related parameters
1/γ 6 sec
λ 0.3 sec
C 4
N 12 requests
µ (at processor speed factor of 1.0) 1 per sec
η (at processor speed factor of 1.0) 0.2 per sec

no VM migration. Figure 3a shows the energy consumption
per time unit for a set of values of the trigger fraction ft
as a function of the rate of VM launch requests φ. We note
that the impact of live migration on energy consumption tends
to be the highest for moderate rates of VM launch. We also
observe that, in our example, a moderately aggressive PM
consolidation policy appears sufficient to reap much of the
energy savings. Figure 3b shows the “raw” wear component,
i.e., the total number of times the PMs are switched on and
off per time unit, as a function of VM launch rate φ. The
aggressiveness of the PM consolidation policy has a major
effect on this component for a large range of VM launch
rates. With the parameter values used in our study for the
mean time to migrate a VM, there is only a limited impact
on the mean task response time. Figure 4 illustrates the values
of our combined energy-performance-wear criterion C1 at a
moderate VM launch rate of φ = 6 with equal weights for
each of the components in our criterion. We observe that, with
the parameter values used, among the trigger fraction values
considered, the value ft = 0.25 (moderately aggressive PM
consolidation) seems to offer a good compromise.

B. Are realistic distributions truly important?

As a last point in our study we look at how important proper
workload characterization is at our higher-level abstraction of
VM and PM interactions. We consider a system similar to
the one described above except that we use three different
distributions for the time between arrivals of VM launch
requests. The distributions, referred to as Weibull 1, Weibull
2, and hyper-exponential are scaled so that in all cases they
result in the same rate of arrivals of VM launch requests.

(a) Energy consumption per time unit.

(b) Wear metric (total number of times the PMs are switched on and
off per time unit).

Fig. 3: Energy and wear metrics for varying migration agres-
siveness and VM launch rates.

TABLE IV: Distributions for the time between arrivals of VM
launch requests for Section III-B.

Weibull 1 Weibull 2 Hyper-
exponential

Scale parameter 0.5 0.75 N/A
Shape parameter 0.5 0.665 N/A
Coeff. of variation 2.236 1.553 2.236

Table IV summarizes the parameters of each distribution. The
distribution labelled Weibull 1 is the same distribution derived
from measurements (cf. [16]) as used in Section III-A. Dis-
tributions Weibull 2 and hyper-exponential were designed for
our needs. The choice of the hyper-exponential was motivated
by the results published by [23].

We note that Weibull 1 and Weibull 2 have different
coefficients of variation (and hence different second moments),
while Weibull 1 and hyper-exponential have the same first
two moments, i.e., their differences come from higher order
moments. Here, we keep the trigger fraction at ft = 0.5.
Figures 5a, 5b and 5c show the expected task response time,
the energy consumption per time unit and the “raw” equipment
wear as a function of the rate of arrivals of VM launch
requests, φ, respectively. Comparing the results for Weibull 1



Fig. 4: Effect of migration agressiveness.

and Weibull 2, we notice the influence of the second moments
of the distribution. Somewhat surprisingly, depending on the
workload levels, higher order moments may be quite impor-
tant (sometimes even more important than second moments).
Additionally, we ran experiments, not shown in this paper, in
which we used different VM lifetime distributions, all with
the same mean. Here, too, the influence of the second and
higher-order moments was non-negligible. This may not be
surprising given that our higher level can be viewed as a multi-
server queue and such queues are known to be sensitive to
higher-order distributional properties. It clearly sounds a note
of caution for the use of distributions not inspired by real-life
measurements.

IV. MODEL SOLUTION

As mentioned in earlier sections, we adopt a two-level view
of the system. Correspondingly, we have two models. At the
higher level, a model of the VM life-time cycle. At the lower
level, a model of the end-user task performance on a VM,
taking into account live migration. We now briefly outline the
solution approach used to solve these two models.

(a) Task response time.

(b) Energy consumption per time unit.

(c) Wear metric.

Fig. 5: Influence of the inter-arrivals distribution of VM
requests.

A. Upper-level model solution

Our upper-level model represents the life cycle of VMs
on the set of the PMs. It includes initial load balancing at
VM launch as well as VM migrations for PM consolidation.
To allow for easy study of a range of PM consolidation and
initial VM placement algorithms, discrete-event simulation is
by far the most appropriate solution method for this upper-
level model.

Since this model does not include explicit representation of
task execution, we need to simulate only a small number of



events for each VM life cycle. This makes a simulation of
even a large number of VM creations and departures quite
nimble. In our simulation, written in C, we distinguish the
following five events: arrival of a new VM launch request;
initial placement of new VM on a PM; start of a VM lifetime;
end of a VM lifetime; end of migration for a VM. Other than
increasing the length of the simulation appropriately, there are
few issues in scaling such a simulation to a large number of
PMs.

The simulation produces statistical estimates for the follow-
ing quantities:
• m̄i: mean number of VMs at PM i;
• qi: probability that at launch a VM is assigned to PM i;
• 1/αi: mean time between migrations out of PM i;
• pij : probability that a migration out of PM i is directed to

PM j;
• θmig,i: number of migrations per time unit out of PM i;
• θon,i: number of times PM i is switched on per time unit;
• θoff,i: number of times PM i is switched off per time unit;
• fact,i: fraction of time PM i is active.

We use the independent replications method with 7 indepen-
dent replications each representing 9,000,000 VM life cycles.
As a result, confidence intervals at 95% confidence level tend
to be very narrow so that we feel one can safely use the middle
point estimates.

B. Lower-level model solution

Our lower-level model represents the execution of tasks on
a VM where the latter may be subject to migrations. With the
distributional assumptions at this level, the state of a VM is
defined by the couple (n, i) where n is the current number
of tasks at this VM, i refers to the PM on which the VM
resides. We use positive values of i = 1, . . . ,K if the VM is
in its “normal” execution mode, and negative values (−i) if
the VM is being migrated from PM number i to another PM.
We denote by p(n, i) the steady state probability, assuming it
exists, that the VM is in state (n, i). For n = 1, . . . , N − 1 it
is a straightforward matter to obtain the balance equations for
our model

p(n, i)[λ(n) + µi(n) + αi] = p(n− 1, i)λ(n− 1)

+ p(n+ 1, i)µi(n+ 1) +
∑
j 6=i

p(n,−j)γpji (2)

p(n,−i)[λ(n) + ηi(n) + γ] = p(n− 1,−i)λ(n− 1)

+ p(n+ 1,−i)ηi(n+ 1) + p(n, i)αi. (3)

The equations for n = N are similar except that there are
no terms for n+ 1 and λ(N) is replaced by 0.

To account for the finite duration of VM lifetime in our
lower-level model, we assume that a VM can only end its life
at a moment when there are no user tasks at the VM (n = 0)
and the VM is in its normal state. To account for the initial VM
placement of VMs on PMs, we assume that a new instance of
a VM is created following the end of life of a VM and placed
on PM number i with probability qi. Denote by δi the rate

with which a VM ends its life given that the current system
state is (0, i). Assuming the life of a VM ends only when the
VM is in its normal state, we must have

∑K
i=1 δip(0, i) =∑K

i=1 νi
∑N

n=0 p(n, i)/
∑K

j=1

∑N
n=0 p(n, j). In order to sat-

isfy this relationship, we let

δi = νi

N∑
n=0

p(n, i)/

(
p(0, i)

K∑
j=1

N∑
n=0

p(n, j)

)
for i = 1, . . . ,K.

(4)
With this in mind, we can obtain the following balance

equations for i = 1, . . . ,K

p(0, i)[λ(0) + αi + δi(1 − qi)] = p(1, i)µi(1)

+
∑
j 6=i

p(0,−j)γpji +
∑
j 6=i

p(0, j)δjqi (5)

p(0,−i)[λ(0) + γ] = p(1,−i)ηi + p(0, i)αi. (6)

If solved directly, these balance equations are best solved
using an iterative approach [24] where the computation of the
values of δi using formula (4) is embedded into the iteration.

The above balance equations are well suited for interactive
workloads. For a VM running predominantly batch workloads,
a better approach is to study the performance with a constant
number of jobs N ≥ C. The goal is to obtain the mean
execution time for a job and the job throughput.

Since with a constant number of jobs the system is never
empty (p(n, i) = p(n,−i) = 0 for n = 0, . . . , N−1), we now
assume that a VM may end its life only at the completion of
a job when running in normal mode. We denote by τi the
probability that the VM finishes its life after completing a job
in normal mode on PM i. Assuming that µi(N) ≥ νi, we
have τi = νi/µi(N). We then obtain the following balance
equations for a VM with a batch workload for i = 1, . . . ,K.

p(N, i)[µi(N)τi(1 − qi) + αi] =
∑
j 6=i

p(N,−j)γpji

+
∑
j 6=i

p(N, j)µj(N)τjqi (7)

p(N,−i)γ = p(N, i)αi. (8)

Formulas 7 and 8 together with the normalizing condition∑K
i=1[p(N, i) + p(N,−i)] = 1 can be solved using any of a

number of methods suited for systems of linear equations.

C. Combined criterion components

Having obtained the steady-state probability distribution
p(n, i), we readily derive our performance indices. The overall
attained throughput θ can be expressed as

θ =

K∑
i=1

N−1∑
n=0

[p(n, i) + p(n,−i)]λ(n). (9)

The overall expected response time can then be obtained
using Little’s formula as



R =

∑K
i=1

∑N
n=1 n[p(n, i) + p(n,−i)]

θ
. (10)

Similarly, the overall expected execution time can be ob-
tained as

X =

∑K
i=1

∑N
n=1 min(n,C)[p(n, i) + p(n,−i)]

θ
. (11)

In summary, we solve first the simulation model. Several of
the simulation results are then used as input parameters in our
lower-level model. Finally, we use the results of both models
to compute our combined energy-performance-wear criterion.
In particular, we use simulation results to compute the power
consumption and the equipment wear components (cP and
cω , respectively) of our combined criterion. The performance
component (cR) is obtained from the results of our lower-level
model, i.e., from the expected response time R or the expected
execution time, as the case may be. As a final point, note that
one could use discrete-event simulation to solve our lower-
level model. With this solution method we could readily relax
the assumptions on memoryless distributions in the end-user
task model.

V. CONCLUSIONS

In this paper we have presented a a study of the combined
impact of server consolidation and live VM migration on en-
ergy consumption, end-user task performance and equipment
wear. Our hierarchical view comprises at an upper level the
VM life cycle on a set of PMs and at a lower level end-user
tasks executing on a VM. In our opinion, for the purposes of
the evaluation of live VM migration, the relative simplicity of
our approach is an advantage compared with more elaborate
cloud simulators such as CloudSim [25] and Simgrid [26]. In
particular, the effort required to test a new allocation/migration
policy, will be much smaller with our approach than with
CloudSim or SimGrid

Our numerical studies address the question of how aggres-
sive should the consolidation be. With the parameter values
used in our study, a moderate level of VM live migration
appears to be the best when taking into account in equal
proportions energy saving, task performance and equipment
wear. Note that we use s linear model of energy consumption
(vs. the number of VMs on a PM). In essence, we assume that,
on average, the processor utilization is a linear function of the
number of VMs and so is the energy consumption. Polynomi-
als of higher degree (e.g. cube) have been proposed by some
authors [27] as fitting better observed energy characteristics.
Intuitively, it would seem that such models would result in an
even less aggressive PM consolidation (energy use increases
more than linearly as the number of VMs on a PM increases).
As a final point in our study, we show that it is important to
use distributions inspired by measurements as distributional
assumptions can matter. While we did use ”realistic” distri-
butions of the time between VM launch requests and of VM
lifetime duration, we used memoryless distributions for end-
user tasks. We hope to address this shortcoming of our study
in a future work.
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