
HAL Id: hal-03822471
https://hal.science/hal-03822471v1

Submitted on 20 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mutida: A Rights Management Protocol for Distributed
Storage Systems Without Fully Trusted Nodes

Bastien Confais, Gustavo Rostirolla, Benoît Parrein, Jérôme Lacan, François
Marques

To cite this version:
Bastien Confais, Gustavo Rostirolla, Benoît Parrein, Jérôme Lacan, François Marques. Mutida: A
Rights Management Protocol for Distributed Storage Systems Without Fully Trusted Nodes. Trans-
actions on Large-Scale Data- and Knowledge-Centered Systems, 13470, Springer Berlin Heidelberg,
pp.1-34, 2022, Lecture Notes in Computer Science, �10.1007/978-3-662-66146-8_1�. �hal-03822471�

https://hal.science/hal-03822471v1
https://hal.archives-ouvertes.fr

Mutida: A Rights Management Protocol for
Distributed Storage Systems Without Fully

Trusted Nodes

Bastien Confais1, Gustavo Rostirolla1, Benôıt Parrein2, Jérôme Lacan3, and
François Marques1

1 Inatysco, 30 rue de l’Aiguillerie, 34000 Montpellier, France
{bastien.confais,gustavo.rostirolla,francois.marques}@inatysco.fr

2 Nantes Université, Polytech Nantes, rue Christian Pauc, BP50609, 44306 Nantes,
France

benoit.parrein@univ-nantes.fr
3 ISAE Supaero, 10, Avenue Édouard-Belin, BP 54032, 31055 Toulouse, France

jerome.lacan@isae-supaero.fr

Abstract. Several distributed storage solutions that do not rely on a
central server have been proposed over the last few years. Most of them
are deployed on public networks on the internet. However, these solutions
often do not provide a mechanism for access rights to enable the users to
control who can access a specific file or piece of data. In this article, we
propose Mutida (from the Latin word “Aditum” meaning “access”), a
protocol that allows the owner of a file to delegate access rights to another
user. This access right can then be delegated to a computing node to
process the piece of data. The mechanism relies on the encryption of the
data, public key/value pair storage to register the access control list and
on a function executed locally by the nodes to compute the decryption
key. After presenting the mechanism, its advantages and limitations, we
show that the proposed mechanism has similar functionalities to Wave,
an authorization framework with transitive delegation. However, Wave
does not require fully trusted nodes. We implement our approach in a
Java software program and evaluate it on the Grid’5000 testbed. We
compare our approach to an approach based on a protocol relying on
Shamir key reconstruction, which provides similar features.

1 Introduction

Currently, there are several distributed storage solutions that either rely on a
central metadata server used to locate the data replicas or use a peer-to-peer
(P2P) protocol that is suitable for deployment on public networks with nodes
that are not necessarily trusted. When a trusted metadata server is present,
it is relatively easy to manage the access rights [41]; the server checks if the
user is allowed to access the file before distributing the location. In a full P2P
network [38, 25], with untrusted nodes and pieces of data that are publicly ac-
cessible, managing access rights poses a different challenge. The main challenge

is that there are no servers that we can rely on to be in charge of the protocol
for rights management. Additionally, anonymity is a key point since peers are
communicating directly and additional layers need to be in place to guarantee
it. [19]. In this paper, we propose Mutida (from the Latin word “Aditum” mean-
ing “access” and written from right to left), a protocol that focuses on enabling
users to manage access rights in a network of the second category.

In this paper, we consider the files stored on the Interplanetary File Sys-
tem [11] (IPFS), which is a storage solution that relies on a BitTorrent-like [35]
protocol to exchange the files between the nodes and on a Kademlia [39] Dis-
tributed Hash Table (DHT) to locate the different pieces of data in the network.
The essential characteristic of IPFS is that files are immutable and cannot be
modified once they are written.

Using a DHT forwards all location requests through different nodes. There-
fore, any connected node is involved in the routing of requests and can determine
the identifiers of popular files [26]. Additionally, since the storage solution does
not manage any permission and because IPFS does not provide any encryption
mechanism to protect user privacy [47], every user can access all the files stored
in it if the content identifier (CID) is known.

The consequence of this is that any node in the IPFS network can observe the
DHT requests and access the corresponding files. This illustrates and justifies
the need to manage access permissions in such a network. With Mutida, all users
will still be able to find the files in the network, but only the permitted users
will be able to decrypt the content.

Because of the use of Merkle trees [40] and the use of a root hash as a file
identifier, users of IPFS do not need to trust the storage nodes to be assured
that the retrieved file has not been tampered with. In our protocol, to manage
access rights, we rely on the same level of trust; the exchanged messages are pro-
tected against any disclosure to a third party and are not corrupted on the path.
However, the nodes themselves can be malicious and cannot necessarily behave
as expected. They may go offline with no warning. One essential requirement of
our proposition is that the owner of a file can delegate its access permission to
another user. Similarly, computing nodes should be able to access and decrypt
pieces of data when a user requests them to process their own data.

In Mutida, the files are encrypted before being stored in the distributed data
storage solution. Then, a public Access Control List (ACL) and a local function
that can be executed by each client are used to determine the key required to
decrypt the file. The ACL consists of key/value storage deployed in the same net-
work. The values are public, and the modifications can be controlled by trusted
nodes or consensus algorithms. We also mention that a detailed security analy-
sis of the proposed mechanism is beyond the scope of this paper. Additionally,
data access revocation is contemplated in Mutida but not guaranteed. Ensuring
revocation in a distributed manner is explored in [32, 14] or legally in [33]. The
main contributions of this article are as follows:

– a method for data access control based on a function executed locally on the
client;

– a delegation mechanism to distribute access rights to users or to the nodes
that we want to allow permission to process the data;

– a performance comparison with a solution based on key splitting, including
the impact of network limitations on each method.

It is the protocol to manage decryption keys and delegations, thought it does
not directly provide functionalities of authentication, authorization verification
or accountability. Our approach uses common cryptographic functions to build
the desired features, and its novelty resides in the way that these functions are
combined to form a new protocol for right management.

The remainder of this paper is organized as follows: In Section 2 we present
the related work. In Sections 3 and 4, we introduce the usage scenarios and the
Mutida model, followed by Sections 5 and 6, where we provide the methodology
and the results obtained. Finally, in Section 7, we present the paper conclusions
as well as directions for future works.

2 Related Work

The majority of the approaches that deal with the problem of managing access
rights in a distributed environment rely on data encryption. This problem is
relevant in a wide variety of domains, such as healthcare [31], data sharing [3]
and administrative environments [17]. Several approaches, including a subset
that is detailed below, can be found in the literature. However, to the best of
our knowledge, none of the proposed methods allows an access right delegation
mechanism in a P2P manner with a specificity to grant compute nodes a tempo-
rary permission to access data on behalf of the user requesting the computation.
In our case, we follow the delegation definition of Gasser and McDermott [21],
which describes the process where a user in a distributed environment authorizes
a system to access remote resources on their behalf. We also highlight that in
most of the works where the file key is exchanged through re-encryption using
a public key, such as [29, 30] and [51], the key is generally known by a given
group, and thus, the file owner could give access even without the users consent
or demand.

In 2008, Jawad et al. [29] proposed a solution where files are stored in en-
crypted form. The user must then communicate directly with the owner of the
data to obtain the key. The clear limitation of this approach is that it requires
the presence and simultaneous connection to the network of the owner of the
piece of data and the user wishing to access it. This constraint is present in many
other propositions, as emphasized by Yang et al. [61]. Moreover, sometimes the
key exchange involves a trusted third party [3]. Adya et al. [1] remedied this
constraint by proposing to create a data replica per user. Giving authorization
to a user to access the data entails creating a new replica encrypted with the
user’s public key. As a result, the user and the owner do not have to meet to
exchange keys, but the price to pay is a substantial increase in the use of storage
space.

Another proposal is to manage the keys within a blockchain [54, 10, 52] in-
stead of a trusted third party. For Steichen et al. [54], the blockchain was used
to store the access control list. Storage nodes were responsible for consulting it
before distributing data to the user. The major disadvantage of the approach
was that it assumed that the storage nodes are trusted enough to not deliver
data to unauthorized people. Similarly, Battah et al. [10] proposed the addition
of a multiparty authorization (MPA) scheme, which was also stored in a smart
contract to ensure that a single malicious party could not act alone. The conse-
quence of this scheme was that the whole approach relied on proxy re-encryption
nodes associated with a reputation scheme, as well as shared keys among the
parties where a minimum number must be collected to access the file decryption
key, thus increasing the complexity and time for the exchanges to take place.

To overcome this, Sari and Sipos [51] proposed an approach where data
is encrypted with a symmetric key. This symmetric key is encrypted with the
user’s public key and stored in the blockchain. Xu et al. [60] corrected the trust
problem by not only using the blockchain to store the access control list but
also by implementing the verification of access rights within smart contracts.
The idea is that the nodes of the blockchain come to a consensus on whether a
user can access the requested data and issue them the key. The disadvantages
of such an approach include the induced latency due to the use of a distributed
consensus and the blockchain being an append-only data structure. Thus, it can
be a space problem when access changes regularly: new users are allowed, and
others have their permission revoked. Attribute encryption [58] and proxy re-
encryption [15] are also two other approaches that have been proposed. The first
required complex key management and the second required trust in the machine
that adapted the encrypted data to the user’s key.

Alternatively, broadcast encryption [30] is an encryption technique that con-
sists of encrypting content for a group of users. Each user has a unique set of
keys. A set of keys is used in encryption that allows only a specific group of
users to decrypt the data. This system works well when there are few different
groups and each group has numerous users. In this case, the number of managed
keys is lower than the classic solution using ACLs. In addition, each piece of
data is accessible by a unique group of users, which would lead to the use of a
large number of keys. The main flaw shared by most of these solutions is that
they do not allow permission delegation. A user who has obtained the rights to
the owner’s data cannot authorize a machine to access this data as part of the
execution of a computation. The other limitation is anonymity; access control
lists make it clear who can access what data.

Beyond encryption to manage access rights, some protocols are dedicated to
key management and delegation. Lesueur et al. [36] proposed building a Public
Key Infrastructure (PKI) in a P2P manner. Their protocol relies on key splitting
and partial signatures. This was a major advance in the sense that it enabled
distributed decisions to be made. For instance, nodes can agree to sign the
public key of a new user so that it can be trusted or to sign any request that
requires a consensus, such as a request to access a certain piece of data. The

major drawback of this proposal is that it is difficult to manage redundancy
in key parts and to react when a certain number of nodes leave the network
simultaneously. This idea of distributed signatures was used by Wang et al. [59]
to manage the access rights of data.

Some articles proposed protocols considering specific problems of the right
management in a distributed solution. For instance, Tran, Hitchens and Varad-
harajan [28] considered trusting the nodes because some nodes can act in a ma-
licious way. Similar to our context with data immutability, we have the content
protection of recordable media (CPRM) [23], where the data cannot be modified.
However, the main difference between the protocols is that in our approach, the
access rights should not be given without the request of a user.

Wave [4] is one of the rare protocols that focuses on permission delegation
in distributed applications. The protocol has the specificity that it does not
require any centralization by relying on a blockchain-like solution to store the
access rights. Nevertheless, Wave is more focused on rights management for
applications. In their case, the nodes that provide the service must check if the
client has the right to access a given service. While that is feasible in the service
context, it would be a blocking point for storage components such as IPFS,
meaning that it would need to be modified to verify the rights before delivering
the content. For us, the nodes do not deliver a service besides data, and therefore,
we cannot trust these nodes to manage the rights.

As in our protocol, Wave allows users to create delegation chains with an
anonymity on the created delegations. When a user requests a permission to a
node, the node granting the permission sends a record to the user and stores a
second record encrypted in the blockchain. The external users cannot determine
the permissions by reading the blockchain content, but a specific node to which
the users send the record is able to verify the validity of the chain delegation
from the blockchain. The difference from our protocol and its main drawback
is that the permission check is performed by the node delivering the service.
This difference implies that Wave requires that the nodes delivering the services
be trusted nodes. Some proposals, such as Aura et al [7], used a more straight-
forward implementation using the signature of certificates, similar to what it is
used in Public Key Infrastructure.

Access revocation is also an entire topic to discuss. Revocation has always
been a difficult problem in distributed solutions. One of the best examples of
this is that certificate revocation in browsers trusting different authorities still
does not have an ideal solution [16]. In distributed storage solutions, common
solutions rely on a distributed consensus [34] and generally use a blockchain, but
it is sometimes not enough for a single node to make the decision to deliver the
piece of data to a user. In this case, Schnitzler et al. [52] proposed an incentive
to the nodes to revoke the access and delete the pieces of data when needed, but
it does not guarantee that Byzantine faults are avoided.

In other commercially available approaches for authentication and autho-
rization, such as Kerberos [41] and Oauth [24], the user contacts a server that
delivers a token used to access different services. The server delivering the token

can be seen as an ACL server (similar to the one described in Section 4), and
then the token is used to connect different storage nodes that can send the data.
However, these models imply trust in the server delivering the service.

Finally, some papers focused on the problematic of anonymity. This means
that the nodes should not be able to establish a list of the files a user can access.
Backes et al. [8] proposed such a solution where nodes can only determine if
the user sending a request is allowed to access the piece of data or not, without
revealing any piece of information about the user.

We propose Mutida to fill the gap with a method that allows an access
right delegation mechanism in a P2P manner with a specificity for delegations
to compute nodes that have a temporary permission to access data on behalf
of the user requesting the computation. Our method allows the management,
delegation and revocation of rights over a file in a distributed P2P system. The
goal is to allow the users to recreate all the file keys that they have access to with
a single local function and a key pair. The usage scenarios and assumptions for
Mutida, as well as a detailed model description, are presented in the following
sections.

3 Usage scenarios and assumptions

The first use case we target is a user who stores their own data on their own IPFS
node. Assuming that the user wants to be the only person to access their data,
the right management protocol should protect the data against unauthorized
access and should not have a strong overhead.

The second use case targeted is when the user wants to be able to share the
data with another user. The other user sends a request to the owner to obtain
permission to access the file. The owner accepts the request and enables this
second user to compute the decryption key of the file.

The third use case is a situation where a user that is allowed to access a piece
of data should be able to ask a computing node for processing the data. For this,
the user should be able to temporarily give permission to the compute node to
access and decrypt the file. These two last use cases indicate that the solution
should have a delegation mechanism with the following properties:

i) The owner of a piece of data is the only user who decides which user can
access it.

ii) A delegation can be made only if the user makes a request to the owner to
access it.

iii) Users would be allowed to access a file even if the owner is not currently
connected to the network.

iv) A delegation can be temporarily established from a user to a computing
node.

4 Mutida Model

The Mutida method enables the management, delegation and revocation of file
permissions. The goal is to allow the users to recreate all the file keys they have
access to using a single local function and a key pair (each user possesses a
private key pair KprivUser and KpubUser), with the assumption that the people
we want to exchange with know the KpubUser value. Additionally, access to a
piece of data must be possible even if the owner of this piece of data is not
online. The solution also allows rights delegation to a third-party node for the
execution of a specific task, such as data processing.

Our solution relies on a global ACL, similar to that of Wang et al. [58], which
consists of key/value storage deployed in the same network. The values are pub-
lic, and modifications are controlled by trusted nodes or consensus algorithms.
This enables us to manage the file permissions without a centralized authority
and even when the file owner is offline. We also rely on two local functions called
ID1 and ID2, which are known by all the peers in the networks and will be
detailed later in this section.

We summarize the assumptions of the Mutida protocol as follows:

i The files are stored in a public server and are publicly available.
ii Each file has a unique identifier: a unique filename or a UUID.

iii Each user has a secret key used as an input of the Mutida “ID” functions.
iv The ACL is centralized or distributed key/value storage. Records can be

read by everybody, but modifications are not possible or are controlled by
the key/value storage.

v The network exchanges are encrypted so that an adversary cannot intercept
the messages and gain unauthorized access to files.

Figure 1 illustrates the network on which Mutida is deployed, with the IPFS
storage system deployed at multiple locations and ACL nodes spread on each
site. We assume that users connect to the closest node to store their files. As
the main advantages of the Mutida approach in comparison with a standard
approach, which consists of encrypting the file key with the public key of each
user that wants access to the file, we can list the following:

i) Deleting a record in the ACL removes the access right for a user and for
the computation nodes to which this right has been delegated. In a version
using more traditional cryptography, this dependency is nonexistent.

ii) It is not possible to give access permission that a user has not requested. In
Mutida, each delegation begins with the exchange of IDs that only the user
receiving the delegation is able to calculate. In contrast, in a more “tradi-
tional” approach, knowing a user’s public key is enough to create a record
in the ACL, and therefore, grant rights. Although this can be overcome by
using digital signatures, our approach integrates this functionality natively.

iii) For the performance of the RSA calculation or what Shamir compared to the
additions of Mutida, in our case, the calculation is limited to a simple addi-
tion, whereas an asymmetric RSA-type encryption requires exponentiation.
Quantitative data to justify this point are presented in Subsection 6.1.

iv) As a result of using a hash function, we have anonymity in the ACL; it is not
possible from a record to determine which user and which file it corresponds
to. In an approach using “classic” cryptography, there is no consensus to
achieve such functionality.

ACL
service

IPFS
node

compute
node

site 2

AC
L

ov
er

la
y

ne
tw

or
k

user 4

oxygen

ACL
service

IPFS
node

compute
node

site 1

ACL
service

IPFS
node

compute
node

site 4

ACL
service

IPFS
node

compute
node

site 3

ipfs dht overlay network

user 1

oxygen

user 3

oxygen

user 5

oxygen

user 2

oxygen

user 6

oxygen

Fig. 1: Overview of the Mutida architecture.

4.1 Protocol description

Hereafter, we describe the main operations, as shown in Figure 2, that allow us
to manage the file rights without a centralized authority and leverage from a
distributed storage system. As the main requirements of the proposed protocol,
we highlight the following:

i) The owner of a file chooses who can access it and delegates the right to
selected users.

ii) The users that can access a piece of data can temporarily delegate their
access rights to a computing node to execute some calculation.

iii) The owner should not be able to give to a user the permission to access a
file if the user has not requested it.

iv) The allowed user should be able to access a file even if the owner is not
currently connected to the network.

v) The revocation of access rights should also be available, even if not guaran-
teed, despite the nature of the storage solution.

Fig. 2: Diagram of possible user actions in Mutida.

Writing a new file. Figure 3 shows the sequence diagram when a user wants to
store a new file. The operation is divided into two phases. During the first phase,
the user determines an encryption key and encrypts the file. The user selects a
random value Rowner, denoted R in the diagram, and computes the key with
the help of a previously agreed ID1 function, as the one described in Equation 1.
In the remainder of this text and equations, we refer to file identification as
“filename” for simplicity, but for implementation purposes, a Universal Unique
Identifier (UUID) of each file should be used.

Because the SHA256 function returns 256 bits, all the computations described
below use binary words of that size. In other words, all the computations are
modulo 2256. This function is chosen due to its low collision probability and
computing complexity, as we lack a correlation between the input and the output
bits [18, 45].

From the value computed in Equation 1, the final value used as a key for the
file would be according to Equation 2.

(1)ID1(user private key, filename)

= SHA256(concatenate(user private key, filename, “ID1′′))

file decryption key = (ID1(owner private key, filename) +Rowner) mod 2256

(2)

We note that in Equation 1, the value ID1 between quotes corresponds to the
actual word (it is not a recursive function). This string is used to create different
ID functions (ID1 and ID2) where the values are not correlated between them.
These functions are easy to compute [48] by the user who knows the private key,
though they appear completely random to others.

After encrypting the file, the user should store the value Rowner in the global
and the public ACL (key/value storage). This is the second phase of the op-
eration. Because the ACL is public key/value storage, the ACL key should be
carefully chosen. The obvious solution is to use a couple (“user1”, “file1”), but
this couple has the major drawback of making the system transparent; every
user can determine the files that can be accessed by anybody. To overcome this,
we propose to compute the ACL key using Equation 3. Therefore, an observer
could not determine the user or the file that the record is for.

(3)ID2(user private key, filename)

= SHA256(concatenate(user private key, filename, “ID2′′))

A signature is also added to the ACL record. It will enable the user to deter-
mine if the stored value has been modified or corrupted when it will be retrieved
and allow verification of the user’s the identity that created this record. The
signature is not stored directly in the ACL because it can break the anonymity
or the privacy of the user. Instead, we perform an XOR operation (noted ⊕)
between the signature and the hash of the decryption key to ensure that only
users who know the decryption key are able to extract the signature.

By computing the encryption key in the aforementioned way, we ensure that:

– If someone reads the public ACL and accesses the value Rowner, they cannot
determine the decryption key because they cannot compute the value of
ID1(owner private key, filename) without the private key of the user.

– if someone reads the public ACL and knows the decryption key of a file
(because it is allowed to), they cannot determine the private key of the user.

– If someone knows the value of ID2(owner private key, filename), they can-
not determine the key for the other files that the user can access.

– It is not necessary to keep a local keystore of all the files that the user has
access to.

In Figure 3, for illustrative purposes, we describe Equation 1 as the function
ID1(owner private key, filename). In the figure, user1(owner) creates a new
ACL entry for file1 with the value 20, and the file encryption key would be
the value 20 + 4497, where 4497 corresponds to their own ID1 value calculated
using Equation 1. Similarly, the computed value for the ACL using Equation 3
is 2021.

oxygen

user1 - owner

oxygen

user2 - buyer compute node ACL
(blockchain, dht, ...)

storage node

choose random value
R = 20

file1

private key
u=13 private key

u=31
private key
u=19

put ACL(ID2(, 'file1')) = (R , signature xor sha256())
put ACL(2021) = (20, 38 xor sha256(4517)) = (20, 4351)

computes
ID1(,'file1')
=SHA256(concat(u=13,'file1','ID1'))
=4497

computes the symmetric encryption key
 =(ID1(, 'file1') + R) mod 2256

 =(4497+20) mod 2256=4517

encrypt the file using

store file

computes
ID2(,'file1')
=SHA256(concat(u=13,'file1','ID2')) mod 2256

=2021

signature = signature(R = 20) using (u=13)
signature = 38

K
ey

 c
om

pu
ta

ti
on

 a
nd

 f
ile

 w
ri

ti
ng

A
C
L

up
da

te

Fig. 3: Sequence diagram describing the creation of a new file.

Accessing a file as an owner. The access of a file as an owner is illustrated
in Figure 4. The operation is divided into 4 phases: retrieving the value stored
in the ACL, computing the decryption key, checking the integrity of the value
retrieved in the ACL, and finally, accessing the file and decrypting it.

To access the file, the user must first retrieve the value stored in the global
ACL. The user first computes the value of the ACL key using
ID2(owner private key, filename) = 2021. Afterward, the node retrieves the
couple of values (Equation 4) associated with the key.

(4)Rowner, signature ⊕ SHA256(key)

With the value Rowner, the user computes the decryption key with the same
formula as previously presented in Equation 2. This allows us to recalculate all
the keys for the files that we own or have access to without having to store any
additional value locally. Once the user has recalculated the key, they only have
to retrieve the file from the IPFS public storage and decrypt it.

With the decryption key, the user is able to extract the signature from the
value retrieved from the ACL and check if the Rowner value is not altered in
the ACL storage system. In other words, the user can check that the computed
decryption key is correct and can retrieve the file and decrypt it.

In Figure 4, user1 retrieves the previously stored value in ACL and is able
to reconstruct the key just using this value and the value obtained by their ID1
function. The same would apply for multiple files, without the need to have a
local keystore for each file that belongs to the user.

Access delegation to another user. The idea of the right delegation is to
enable another user (called “buyer”) to decrypt the file without re-encrypting it
(we restate that IPFS stores immutable pieces of data). Therefore, the user who
gains access to it will have to be able to compute the same decryption key as
the owner, but using their own private key.

To accomplish that, the user has to request access to the data, as shown in the
first phase of Figure 5. The user uses Equation 1 to compute a value that is then
sent to the owner of the file. Because the value is sensitive, as it enables any mali-
cious user who could learn it during the exchange to later be able to compute the
decryption key, the user adds a random number (noted k) to it before sending it.
In other words, the buyer sends the value (ID1(buyer private key, filename) +
k) mod 2256 to the owner of the file. The value k also enables the protocol to
work in an asynchronous way by posting the request in a public queue that is
processed once the owner of the file is online.

If the owner of the file agrees to give access, they retrieve the ACL value
(second phase) and compute the delta+k value, which is the difference between
the decryption key and the value sent by the buyer (3rd and 5th phases). The
delta value is computed as in Equation 5.

file decryption key= (ID1(buyer private key, filename)+k+delta) mod 2256

(5)

oxygen

user1 - owner

oxygen

user2 - buyer compute node ACL
(blockchain, dht, ...)

storage node
private key
u=13 private key

u=31
private key
u=19

get ACL(ID2(, 'file1')) = ACL(2021)

ACL(2021)
=(20, 4351)

computes the symmetric decryption key
ID1(,'file1') + ACL(2021)
 =(SHA256(concat(u=13,'file1','ID1')) + 20) mod 2256

 =(4497 + 20) mod 2256

 =4517

ACL(2021)=(20, 4351)

get(file1)

decrypt file using

computes
ID2(, 'file1')
=SHA256(concat(u=13,'file1','ID2'))
=2021

extract signature
signature = 4351 xor SHA256()
signature = 38

check signature
check with the public key of (public key of u=13) that the signature of the value 20
was generated by the key

K
ey

co
m

pu
ta

ti
on

A
C
L

in
te

gr
it
y

ch
ec

k
Fi

le
 a

cc
es

s
A
C
L

ac
ce

ss

Fig. 4: Sequence diagram describing the access of the file by the owner.

In this computation, the owner cannot determine the private key of the user
they give the permission to because of the use of a hashing function and the
random value added to it. The value looks random to the owner, but it can be
computed easily by the buyer. In the same way, the owner cannot use the value
transmitted by the user to access the other files that this user is allowed to access
because the ID1 value depends on the “filename” and the k value is unknown
to the buyer. In the last two phases, the value delta is returned to the user who
removes the random value k, as in Equations 6 and 7

(6)Rbuyer = (delta+ k) mod 2256

(7)Rbuyer = (file decryption key − ID1(buyer private key, filename)− k
+ k) mod 2256

Finally, the user stores the value Rbuyer in the ACL using the same mech-
anism as previously described, computes the key of the ACL record using the
function ID2 and adds a signature to protect the record against any modifica-
tion.

In Figure 5, we illustrate the file access delegation process where user2(buyer)
sends a request to access file1 that belongs to user1(owner), accompanied by
their ID value (3951). To delegate the rights, user1 calculates a delta between
the file decryption key and the ID1+k value of user 2 (561). User2 removes the
k value and stores the Rbuyer value (566) in a new ACL entry.

Accessing a file as a delegated user. The user accesses the file using the
same process previously described for the owner, where the single change is the
value that is read corresponding to this user. The user has to read the value in
the ACL, as in Equation 8, and then compute the key with the same formula as
previously presented, where
key = ID1(buyer private key, filename)+Rbuyer. Finally, the user can extract
the signature, verify it and retrieve the file from the IPFS public storage before
decrypting it

(8)ACL(ID2(buyer private key, filename))

= (Rbuyer, signature ⊕ SHA256(decryption key))

In Figure 6 we illustrate the file access by user2. The process starts by
recovering the corresponding value in the ACL (566) and adding it to their own
ID1 value (3951), which will result in the decryption key of file1 (4517).

Access delegation to a computing node. A specificity of our approach is
that a user can request a computing node to execute a software program that
uses the user’s data. The user can enable the computing node to access the pieces
of data on their behalf to perform the requested computation.

oxygen

user1 - owner

oxygen

user2 - buyer compute node ACL
(blockchain, dht, ...)

storage node
private key
u=13 private key

u=31
private key
u=19

get ACL(2021)

computes
ID1(,'file1')
=SHA256(concat(u=13,'file1','ID1'))
=4497

computes the symmetric key
 =(ID1(, 'file1') + ACL(2021)) mod 2256

 =(4497+20) mod 2256 = 4517

ACL(2021)
=(20, 4351)

computes
ID1(,'file1')
=sha256(concat(u=31,'file1','ID1'))
=3951

ask for access
('user2',3956,'file1')

ACL(2021)=(20, 4351)

computes the ACL+k value for user2
=(4517-3956) mod 2256

=561

select
random k=5
computes
(ID1(,'file1') + 5) mod 2256

= (3951 + 5) mod 2256

= 3956

computes
ID2(,'file1')
=sha256(concat(u=13,'file1','ID2'))
=2021

delta = 561

computes
ID2(,'file1')
=SHA256(concat(,'file1','ID2'))
=4000

computes
delta+k
=(561+5) mod 2256

=566

extract signature
signature = 4351 xor SHA256()
signature = 38

check signature
check with the public key of (public key of u=13) that the
signature of the value 20 was generated by the key

computes the symmetric key
 =(ID1(, 'file1') + 566) mod 2256

 =(3951+566) mod 2256 = 4517

signature = signature(R =566) using (u=31)
signature = 44

put ACL(ID2(, 'file1')) = (R , signature xor sha256())
put ACL(4000) = (566, 44 xor sha256(4517)) = (566, 4341)

A
C
L

ac
ce

ss
A
C
L

in
te

gr
it
y

ch
ec

k
de

lt
a+

k
va

lu
e

co
m

pu
ta

ti
on

A
C
L

va
lu

e
co

m
pu

ta
ti
on

R
eq

ue
st

 c
om

pu
ta

ti
on

de
cr

yp
ti
on

 k
ey

co
m

pu
ta

ti
on

A
C
L

up
da

te

Fig. 5: Sequence diagram describing the rights delegation to a new user.

oxygen

user1 - owner

oxygen

user2 - buyer compute node ACL
(blockchain, dht, ...)

storage node
private key
u=13 private key

u=31
private key
u=19

get ACL(ID2(, 'file1')) = ACL(4000)

ACL(2021)
=(20, 4351)
ACL(4000)
=(566, 4341)

computes the symmetric decryption key
ID1(,'file1') + ACL(2021)
 =(SHA256(concat(u=31,'file1','ID1')) + 566) mod 2256

 =(3951 + 566) mod 2256

 =4517

ACL(4000)=(566, 4341)

get(file1)

decrypt file using

computes
ID2(,'file1')
=SHA256(concat(u=31,'file1','ID2'))
=4000

extract signature
signature = 4341 xor SHA256()
signature = 44

check signature
check twith the public key of (public key associated to u=31) that
the signature of the value 566 was generated by the key

K
ey

co
m

pu
ta

ti
on

A
C
L

in
te

gr
it
y

ch
ec

k
Fi

le
 a

cc
es

s
A
C
L

ac
ce

ss

Fig. 6: Sequence diagram describing the access of the file by a delegated user.

The ideal approach would be to use fully homomorphic encryption [13] on
the compute node so that the computation will be performed directly on the
Encrypted pieces of data. However, due to the lack of maturity and the need for
an operational solution, our delegation mechanism enables the node to compute
the key and decrypt the pieces of data.

Delegating permission to a computing node is quite similar to delegating
permission to a user. The difference is that instead of storing the value in the
ACL, the user transmits it to the node directly. The idea is that the computing
node does not need to access the files over a long period of time. The computing
node can forget the value once the process requested by the user is terminated.
Additionally, if at any moment there are changes in the permission for a given
file, the same will be replicated for the computing node.

Our protocol does not guarantee that the computing node will delete the
key after the computation is finished. However, to the best of our knowledge,
the only way to ensure that there is no replica of the key is to utilize an en-
cryption scheme that, according to Naehrig et al. (2011)) [44], is “somewhat”
homomorphic, where we would support a limited number of homomorphic op-
erations that can be much faster and more compact than fully homomorphic
encryption schemes. While this could solve the issue of the user knowing the
key, only a fully homomorphic scheme can prevent copies of the unencrypted file
when we want to perform any kind of computation on it. Until this moment,
this kind of encryption scheme is unfeasible due to its poor performance, as in-
dicated by Fontaine and Galand (2011)) [20]. An alternative approach and the
only one that seems feasible at the moment would be to rely on the legal side of
the General Data Protection Regulation (GDPR) as proposed by Kieselmann et
al. (2016) [33] and Politou et al. (2018) [46].

To start the process, the user requests the computing node to send the value
of ID1(compute node private key, filename)+k, where k is a random number.
As in the delegation between two users, the k value prevents any leak of the ID1
value and enables the protocol to work asynchronously.

Then, the user computes S according to Equation 9, where Rbuyer is the ACL
value for the user. Finally, the user transmits the delta value to the compute
node, as well as the ACL key by performing ID2(user private key, filename)
to the compute node.

S = decryption key − (ID1(compute node private key, filename)+k+Rbuyer)

(9)

In Figure 7, we illustrate the rights delegation process from user2 to a com-
puting node, where the computing node should use the same entry as the corre-
sponding user. We start by asking for the ID of the respective computing node
(5643) that is added to a random number k to protect the node against any leak
of the ID1 value. Then, Rbuyer is computed, which is obtained by the difference
between the ID1 of user2 and the computing node’s ID1 +k, obtaining (-1554).

oxygen

user1 - owner

oxygen

user2 - buyer compute node ACL
(blockchain, dht, ...)

storage node
private key
u=13 private key

u=31
private key
u=19

ask for ID1+k

computes
(ID1(,'file1')+random k) mod 2256

=(SHA256(concat(u=19,'file1','ID1')) + 42) mod 2256

=(5463 + 42) mod 2256

=55055505

computes delegation value
 ID1(,'file1') - 5505
=(SHA256(concat(u=31,'file1','ID1')) - 5505) mod 2256

=(3951 - 5505) mod 2256

=-1554

delegation
(ACLID=4000, delta+k=-1554)

computes ACL key
 ID2(,'file1')
=SHA256(concat(u=31,'file1','ID2'))
=4000

ACL(2021)
=(20, 4351)
ACL(4000)
=(566, 4341)

R
eq

ue
st

 c
om

pu
ta

ti
on

de
lt
a+

k
va

lu
e

co
m

pu
ta

ti
on

A
C
L

ke
y

co
m

pu
ta

ti
on

Fig. 7: Sequence diagram describing the delegation to a computing node.

Accessing a file from a computing node on behalf of a user. To access
a file, the computing node will read the ACL value of the user: Rbuyer, then
it computes Equation 10, where S is the value transmitted by the user at the
end of the delegation process. Because the node accesses the ACL value of user
Rbuyer, if the user has their access revoked and the ACL value is deleted, the
computing node cannot compute the key and decrypt the files. We also note that
the delegation is on a file basis. Therefore, the computing node cannot access all
the files the user has access to.

(10)file decryption key = ID1(compute node private key, filename)

+Rbuyer + S + k

oxygen

user1 - owner

oxygen

user2 - buyer compute node ACL
(blockchain, dht, ...)

storage node
private key
u=13 private key

u=31
private key
u=19

get ACL(4000)

computes the symmetric key
(ID1(,'file1') + ACL(4000) + delegation value + k) mod 2256

 =(SHA256(concat(u=19,'file1')) + 566 - 1554 + 42) mod 2256

 =(5463 + 566 - 1554 + 42) mod 2256

 =4517

ACL(4000)=(566, 4341)

get(file1)

decrypt file

ACL(2021)
=(20, 4351)
ACL(4000)
=(566, 4341)

(ACLID=4000, delta=-1554)

extract signature
signature = 4341 xor SHA256()
signature = 44

check signature
check with the public key of (the public key of u=31) that
the signature of the value 566 was generated by the key

K
ey

co
m

pu
ta

ti
on

A
C
L

in
te

gr
it
y

ch
ec

k
Fi

le
 a

cc
es

s
A
C
L

ac
ce

ss

Fig. 8: Sequence diagram describing the access of the file by a computing node.

In Figure 8, we show the computing node utilizing the previously calculated
Rbuyer,as well as its own ID1 value and the one in the ACL to recalculate the
file key. As in the previous scenarios, the node can verify that the value retrieved
from the ACL has not been corrupted.

4.2 Storage of the global ACL

The main characteristic of the ACL is being global and public. This means that
each node should be able to access the values stored in it. The idea of using a
public Access Control List is not new and it is used in different articles [37, 2].
Several implementations can be evaluated to store this Access Control List, such
as Distributed Hash Table (DHT), Blockchain, DNS and Gossip-based systems.
Each of these solutions has some advantages and drawbacks. We attempt to
evaluate them in the following sections.

Distributed Hash Table. A distributed hash table is a key/value data storage
spread among several nodes. The nodes are organized around a virtual ring, and
routing tables guarantee that each value can be retrieved by contacting at most
log(N) nodes (with N , the number of nodes). Different variants of distributed
hash tables exist, such as Chord [55], Tapestry [63] and Kademlia [39], which
attempt to optimize the routing process.

To store our ACL values, a DHT has many advantages. First, it guarantees
that each value can be found by contacting a limited number of nodes, which
leads to good performance. It also has the advantage of evenly spreading the
values among all the nodes of the network. There is no node that stores more
keys, and therefore, has more power to control the network.

However, there are two main drawbacks. The first is a classic drawback of
a DHT; replication is not part of the protocol and should be managed on top
of the DHT. Therefore, there is a risk that some keys are lost when nodes dis-
connect from the network. The other drawback is more important; a node that
is responsible for storing a key can do everything with the key: it can delete it,
modify the value or refuse to serve it to some nodes.

In other words, DHT does not natively support Byzantine faults and mali-
cious nodes [57]. This is important for our protocol because if the owner of a
certain file allows a second user to access it, a new key is inserted in the ACL.
However, if the node storing this value does not let the user access it, it means
that the ACL node has the power to limit the access beyond the will of the data
owner.

Domain Name System. A domain name system [42] (DNS) is a distributed
database specifically used on the internet to associate IP addresses with domain
names. The particularity of the protocol is to use a hierarchical namespace, such
as “key.domain.”.

This hierarchical organization leads to the spread of the workload and storage
among different servers. This protocol has the same drawbacks as the distributed
hash table (DHT), but it proposes a deterministic network routing. It also lacks
automatic reconfiguration in the case of network modification [27]. For instance,
when a node is added, an administrator has to create the DNS records to attach
the new node in the tree. However, in the situation of ACL distribution, this
protocol can be a solution in the case of some trusted nodes managing the top
of the hierarchy, preventing users from being unable to access the records.

Blockchain. Another possible implementation for the key/value storing the
ACL values is to use a public [61] or a private [5] blockchain. Blockchains are
immutable data structures that work only as “append-only”, which is replicated
on all the nodes. Therefore, compared to a DHT, there is no risk that a user
cannot retrieve a piece of data stored in it. In the situation of distributing the
Access Control List, this property is important because it means that all of the
nodes store a copy of it and no node is able to prevent any user from accessing
it.

In addition to the data structure, blockchains provide a consensus algorithm.
Each transaction is validated by a majority of nodes before being added to the
blockchain. Therefore, any action of adding or modifying a value is not taken
by one node in particular. The main drawback of a blockchain is the computing
power to achieve a consensus. To overcome this, some proposals replace the
consensus based on proof-of-work [61] with other types of proof, such as proof-
of-stake [50] and proof-of-authority [6].

Another way to overcome this is to use a private blockchain. A private
blockchain is one where nodes need the permission to participate. The nodes
must be trusted and should not be malicious. The other disadvantage of blockchains
is that no value can be deleted because of the append-only structure of the chain.
Therefore, in our situation, it makes the revocation of access rights impossible.

Discussion. From the previous discussion, the choice to store the global ACL
can be seen in the following order of preference:

i Blockchain is first because of its ability to make the ACL available across
all nodes. It is also possible to deploy a hyperledger on all nodes that would
manage ACLs in public transactions and handle the users who are allowed
to join the network in a distributed way. Traceability can be managed by
private transactions stored on trusted nodes.

ii DHT is next because of its ability to dynamically adapt to the network. Fur-
thermore, this technology is already used in IPFS. We can imagine deploying
this solution by inserting keys manually into the DHT of IPFS.

iii DNS is third because of its tree structure and performance. The root nodes
of the tree can be managed by the trusted certifier nodes.

4.3 ACL management

These different systems do not always provide strong consistency. Therefore, two
simultaneous reads on the same record can lead to reading different values if the
record was recently updated. This is particularly true in blockchains when new
blocks have not been propagated to all the nodes or to the DNS when the zone
was not updated on the secondary servers.

We believe this is not a real problem because there is a record for each user.
Therefore, there are no concurrent reads between users. The second reason is
that because data are immutable, ACL records do not vary much. For a user
and a specific file, there are two possibilities: either the record is here and the

user will be able to decrypt the file or the record is not here, which means that
the user’s right has been revoked.

In the worst scenario, the user that just received the permission cannot still
decrypt the file or the user that just saw their permission revoked, though they
can still access the file. There is no situation where the user computes the wrong
key.

The second point is the security of the ACL. We previously described how a
signature can help to determine if the record was tampered with, but it does not
prevent tampering itself. There are two ways of managing this. If right revocation
is not wanted, the ACL storage system can be a system in append-only mode.
Therefore, no modification of the ACL is needed.

Otherwise, there must be a trust between the user and the ACL storage
system that will need to verify some permissions. A simple way to manage the
permission is to use a token that will be specified at the creation of a record and
that must be given to delete it.

5 Methodology

An implementation of all the necessary Mutida components described in the
previous sections is performed in Java Spring Boot. We rely on the standard
MessageDigest library and SHA− 256 for the ID(user, filename) function im-
plementation. Each client is composed of a REST API with all the encryption,
file and ACL endpoints, as well as an IPFS [49] peer for data storage. The plat-
form is deployed using Kubernetes [56], where all the nodes allocated form a
single cluster. This is illustrated in Figure 9.

Kubernetes cluster

ipfs
bootstrap

mutida-api
bootstrap

gatling

ipfs

mutida-api

ipfs

mutida-api

ipfs

mutida-api

ipfs

mutida-api

physical
nodes

virtual nodes
(pods)

gatling threads

writ
e

write

write

write

read

read
read

rea
d

virtual network 100mbps

physical network
25gbps

...

Fig. 9: Deployment of the solution in a Kubernetes cluster.

A single client is always hosted on the same physical node (co-located) using
deployment constraints. The tests are carried out using the Gatling [22] software
program, which sends requests to the aforementioned API. For all the propo-
sitions, the currently-implemented ACL mode is the replication mode, where a
copy of the ACL’s changes are sent in parallel to all nodes, and we wait for the
responses in a synchronous way.

To evaluate the method, we propose three different scenarios: i) the first
scenario entails evaluating the ACL without the impact of the data transfers
and network exchanges, ii) the second scenario entails considering the network
(i.e., data exchanged among different users) while keeping a uniform data access
distribution, and iii) the third scenario is where we take a more realistic file
distribution into consideration. In summary, we can describe the test scenarios
as follows:

– scenario i: We encrypt data, create ACL entries, send files and access them
locally, i.e., no data sharing with other users. The goal of this test is to
evaluate the Mutida overhead in comparison with Shamir without the impact
of the data sharing. In this scenario, 4 clients write n files; afterwards, the
same 4 clients read them locally.

– scenario ii: We encrypt data, create ACL entries, send files, delegate rights
to other users, and they access the files using the delegated values in the ACL.
The goal of this test is to evaluate the total time impact that the Mutida
approach would have in a complete scenario, including the data transaction.
In this scenario, 4 clients write n files, and then 4 other clients read them.

– scenario iii: It is the same as scenario ii but follows a ZipF distribution [62]
for files being accessed, where some files are more searched than others. The
goals are the same as those from Scenario ii but rely on a more realistic file
access distribution. In this scenario, n files are written on a single client and
3 different clients perform 100000 reads among these pieces of data

These scenarios are evaluated in the “Gros” cluster of the Grid’5000 plat-
form [9], located in Nancy, France. The cluster is composed of 124 Intel Xeon
Gold 5220 18 cores/CPU, SSD storage and is interconnected with a 2× 25 Gbps
network. To keep the scenarios closer to what would be a transfer occurring on
the internet, we limit the network communication among different clients to 100
Mbps for Scenarios ii and iii. For each experiment, we allocate one dedicated
machine per client and an extra one where Gatling, the certificate authority and
the bootstrap for IPFS are hosted. In all cases, we consider that the managed
files all have the same size of 1 MB. Each experiment was run 5 times to obtain
consistency in the results.

As a base method for comparing the Mutida proposal, we rely on two different
approaches. The first one is called classical encryption, and the second one is
based on Shamir’s secret sharing algorithm [53]. Details about how each of these
approaches works and how they are implemented are described below.

5.1 Classical Cryptography

The first alternative that we explore is called classical cryptography. It consists
of encrypting the file key with the public key of the user. We want to share
the file with and include it in the public ACL (instead of the ID1 approach
previously presented and used by Mutida). The comparison with this approach
is restricted only to a first set of tests, where we compare the performance of
each operation. We opt to use Shamir as a base comparison method because its
additional functionalities (previously detailed) are closer to those in Mutida’s
method.

5.2 The Base Comparison Method - Shamir’s Secret Sharing

As a base method for comparing Mutida in the previously presented scenarios,
we rely on Shamir’s secret sharing algorithm [53], which is one of the classi-
cal methods to secure a secret in a distributed way. The algorithm consists of
splitting an arbitrary secret S into N parts called shares, and then distributing
them among different peers. Among N parts, we can affirm that at least K is
necessary to reconstruct the original secret S. We use this algorithm to split the
decryption key of the files into multiple parts that are kept by different nodes.
This way of sharing a secret enables us to ensure that a single malicious peer
will not be able to reconstruct the secret (given thatK > 1). The CodeHale4

implementation of Shamir’s operations is the one used in the experiments.
In Figure 10, the file is encrypted using a symmetric key. Then, the key is split

into several parts that are spread among different ACL servers. The ACL servers
also keep track of the users who are allowed to access the file. In Figure 11, we
show the process to read a file, where the user has to contact different servers.
Each server independently checks the user’s permission before sending the key
part. Then, when enough key parts are retrieved, the user can reconstruct the
key and decrypt the file. This method is used in the next section to evaluate the
performance of the proposal even if the security provided is different.

6 Results Evaluation

In this section, we start by presenting a brief comparison in a single node of each
one of the operations that the protocol requires, compared to a classic public
key encryption of the file key to highlight the protocol performance without any
data exchange. Furthermore, we show a fully deployed solution for the three
aforementioned scenarios and how to perform the Mutida method compared to
a Shamir-based approach on those scenarios. The choice to use the Shamir ap-
proach relies on the similar functionalities that the method has, but we must
keep in mind the increased level of security provided by Shamir during this com-
parison. In other words, if a single share of Shamir leaks, the whole key cannot
be reconstructed. However, in the Mutida case, if one user with permissions on a
specific file sees their private key stolen, the file accesses would be compromised.

4 https://github.com/codahale/shamir

oxygen

user1 - owner

oxygen

user2 - buyer compute node ACL storage node

choose random key
 = 20

file1

encrypt the file using

store file

split key into 4 parts
k1=1654353755, k2=2446731834,k3=2214716692,k4=2001510517

K
ey

 c
om

pu
ta

ti
on

 a
nd

 f
ile

 w
ri

ti
ng

A
C
L

up
da

te

ACL ACL ACL

put k1=1654353755 / user1 is allowed

put k2=2446731834 / user1 is allowed

put k3=2214716692 / user1 is allowed

put k4=2001510517 / user1 is allowed

Fig. 10: Writing process using a protocol based on the Shamir algorithm.

oxygen

user1 - owner

oxygen

user2 - buyer compute node ACL storage node

reconstruct key
 = 20

A
C
L

ac
ce

ss

ACL ACL ACL

get k1

k1=1654353755

get k2

k2=2446731834

get k3

k3=2214716692

k1=1654353755
user1 is allowed

k2=2446731834
user1 is allowed

k3=2214716692
user1 is allowed

k4=2001510517
user1 is allowed

get(file1)

decrypt file using

Fi
le

 a
cc

es
s

get(file1)

check if user1 is allowed

check if user1 is allowed

check if user1 is allowed

Fig. 11: Reading process using a protocol based on the Shamir algorithm.

6.1 Method calculation performance

Before evaluating the protocol in a distributed environment, we propose eval-
uating a single node, each operation necessary to accomplish the creation of a
new entry, rights delegation and recalculating the encryption key. In Table 1, we
present the average of 1000 runs for the Mutida approach, Shamir and what we
consider to be classical cryptography.

We can observe that the standard deviation is often close to the average
value (for instance, the time for “creating” in the classical approach with an
average of 123.78µs and a standard deviation of 751.83µs). This imprecision
of the measure is due to the process scheduler of the operating system and the
timescale of the measurements. The total time corresponds to a basic scenario
where a user creates a file, delegates the rights to a second user, and this second
user computes the decryption key to perform a read.

Table 1 shows that the Mutida method is 57% faster than the classical ap-
proach to create a new entry in the ACL, and it is considerably faster to delegate
and recalculate the file key. When comparing it to Shamir, which is used for the
remaining experiments in this paper, we can see that the creation of a new ACL
entry and the recalculation of the key are 80% and 97% faster, respectively, when
compared with the Mutida method.

Operation Mutida Classical Shamir
Time (µs)

Avg Stdev Avg Stdev Avg Stdev

Create 53.02 97.28 123.78 751.83 272.06 199.23
Delegate 10.05 31.91 1770.82 382.11 N/A N/A
Recalculate 10.57 44.19 1677.20 317.32 424.89 368.61

Total 73.64 3571.8 696.95

Table 1: Time comparison of each operation for the Mutida, Shamir and classic
cryptography

6.2 Scenario i: No data sharing

We begin by first evaluating how the two evaluated methods compare to one
another with regard to the time spent writing, granting rights and reading a
file stored in the local IPFS node. In Figure 12, we show that the difference in
writing times between the two protocols is not substantial. This is because most
of the time is spent in data transfer and i/o access in both approaches.

In Figures 13a and 13b, we present the time to write and read a new file
using each proposition, without considering the file transfer operations and only
considering the ones concerning the ACL and rights management operations.
The operations that are considered in each case are described below.

When considering the protocol based on Shamir’s method, the operations
are (i) splitting the key, (ii) distribution of the parts on the different nodes, and
(iii) encryption of the file. For reading, the operations are (i) retrieval of the key
parts from the nodes, (ii) reconstruction of the key, and (iii) decryption of the
file.

For Mutida’s method, the operations considered for writing are (i) choosing
a random number K for the ACL, (ii) computing the value of
SHA256(private key, filename)+K, (iii) Storing the value K in the distributed
ACL (on the different nodes), and (iv) Encryption of the file. For reading, the
operations are (i) Computing the value of
SHA256(private key, filename) + K and (ii) Decryption of the file. We note
that the ACL values and the key parts are spread in a synchronous way.

0

20

40

60

80

0 250 500 750 1000

Ti
m

e
(s

)

Number of files manipulated by each of the 4 clients

Shamir(split key) Mutida (local function)

Fig. 12: Time for each client to encrypt {250,500,750,1000} files, to write them
on their local server and to spread the key parts (Shamir) or the ACL value in
the nodes.

Figures 13a and 13b show the access rights operations for the two solutions.
It is between 5-10 seconds in writing and less than 1 second while reading. This
is an important result because it means that when data are not shared, adding
a protocol to manage access rights does not impact the performance.

In writing, our proposal has the same overhead as Shamir’s solution because
in the two approaches, ACL values need to be spread to all nodes. This network
exchange is the operation that takes the most time and has more of an impact
on the overhead. However, during the reading process, our approach has a lower
overhead than the approach relying on a splitting key. This is because in our ap-
proach, the node only has to perform local operations (retrieving the ACL value
and computing the ID (ID(private key, filename) value), but in the Shamir
approach, the node has to contact other nodes to retrieve the key parts.

0

20

40

60

80

0 250 500 750 1000

Ti
m

e
(s

)

Number of files manipulated by each of the 4 clients

Shamir(split key) Mutida (local function)

0

5

10

15

20

25

0 250 500 750 1000

Ti
m

e
(s

)

Number of files manipulated by each of the 4 clients

(a) Write

0

1

2

3

4

5

0 250 500 750 1000

Ti
m

e
(s

)

Number of files manipulated by each of the 4 clients

(b) Read

Fig. 13: Overhead of time due to the access right management.

6.3 Scenario ii: Sharing data with a single user

In this scenario, we evaluate the performance of the delegation of access rights
and the performance when a user reads a file that it is not the owner of and the
data are located in another peer.

3.24

13.94

34.72

58.01

4.00

15.78

36.40

64.06

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00

250 500 750 1000

Ti
m

e
(s

)

Files per client

Shamir (split key) Mutida (local function)

Fig. 14: Time to delegate the rights for the readers

Delegation of the access rights to the readers With regard to Shamir, the
delegation consists of sending a request to the node that has previously written
the file. The node propagates the request to all the nodes to ensure that they can
record the fact that the reader is allowed to retrieve the key parts. In Mutida,
the delegation is the protocol presented in Section 4. It consists of the reader
computing the value ID ID(private key, filename) and transmitting it to the
node that wrote the file. The node computes the ACL value using its own private
key and propagates this ACL value to all nodes that store it.

In the two propositions, we consider the time to realize the propagation to
all the nodes. The main difference is that in our proposal, we have an extra
exchange because the user has to compute a value that is transmitted to the file
owner. Then, the file owner performs the propagation of the ACL value. This
process is confirmed in Figure 14, which shows that the time to delegate access
rights is more important with Mutida and is linear with the number of files.

6.53E-01

1.93E-01
9.15E-02 1.10E-01

6.50E-03 4.25E-03 4.75E-03 4.75E-03
0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0E-01

1.0E+00

250 500 750 1000

Ti
m

e
(s

)

Files per client

Shamir (split key) Mutida (local function)

Fig. 15: Time to get the key to decrypt the file.

Reading of the files Figure 15 shows the amount of time that is required to
obtain the key needed to decrypt the file using 4 clients. In Shamir, it corre-
sponds to the time to obtain the key parts from other nodes and the time to
execute the Shamir reconstruction algorithm. In Mutida, it is the time to com-
pute ID(private key, filename) and to add it to the local value of the ACL.

Despite the less time that rights delegation and key recalculation might take
in comparison with data transfer and more costly network operations, this is
still an important time and cost saving improvement.

6.4 Scenario iii: Real-world use case

In this scenario, each client writes 1000 files. Then, among all the files that have
been written, each client generates 100,000 read requests using a zipf function
(skew = 0.5). The zipf function represents the workload of a “real world” appli-
cation [12, 62]. The delegation of access rights is performed during the first read,
only once per couple (client, file). Then, only read operations are performed. The
clients do not store the decryption key of the file recently read and reconstruct
the key for each access.

Table 2 shows that in writing, Mutida is slightly slower than Shamir, but as
shown by the standard deviation, this is not because Mutida is fundamentally
slower; it is because of a lack of consistency in the test execution. Table 2 also
shows that the approach using Mutida takes 8 times longer (1.23 s vs 0.16 s) to

delegate access rights than the approach using Shamir due to the calculation of
the ID by the buyer and its transfer to the node of the owner.

However, this extra time is compensated by the different reads, since the time
spent to recover the key parts needed by Shamir amount on average to 719.24
s compared to the 4.39 s spent by Mutida. Because some files are read several
times but access delegation needs to be performed once, the total access time
is shorter in the Mutida version than in the Shamir version when considering
the full interaction of write, delegation and read. The average difference when
considering the full scenario is more than 17 times slower (747.37 s vs 41.68 s) if
we choose the Shamir approach.

Shamir Mutida
Average Stdev Average Stdev

Write ACL 12.03 5.77 24.60 7.98
IPFS 15.54 6.62 10.50 3.89
Total 27.57 8.82 35.10 10.96

Delegation 0.16 0.06 1.23 0.51

Read ACL 719.24 141.68 4.39 9.15
IPFS 0.40 0.14 0.96 0.17
Total 719.64 141.62 5.35 9.47

Total 747.37 41.68

Table 2: Time (in seconds) of write (1000 operations per client), delegation and
read operations (100 000 operations per client).

6.5 Discussion of Results

The conducted experiments show that the amount of time to manage access
rights and reconstruct the decryption keys is very small, leading to a small over-
head. We start by highlighting that the Mutida method has a better performance
when compared to classic cryptography, as well as when compared to Shamir’s
method. It requires less computational resources and has useful features, such as
the impossibility of delegating access rights to a user who did not request it, as
well as the possibility of giving temporary access to a computing node without
adding a permanent record in the ACL.

Our first tests show that the most important overhead is not related to the
computation but is due to the network traffic spreading ACL records between
nodes. Further results show that Shamir and Mutida have a similar performance
in writing a new entry because they execute similar operations, including gener-
ating a random key and propagating the ACL across all nodes. We also observe
that Mutida has a considerably better performance in reading and reconstruct-
ing the file key. This is because the ACL is replicated on all the nodes, so Mutida
is able to compute the decryption key without any network exchange, in contrast
to Shamir, where all the key shares need to be recovered from the other peers.

Soliciting fewer of the other nodes means that it allows them fewer possibilities
to act maliciously.

One of the main drawbacks observed in the method is related to rights re-
vocation, but in this specific structure, it would be the same for all the current
approaches. The difficulty of revoking the rights is related to the storage method
for the ACL records and the use of immutable pieces of data rather than a weak-
ness in the right management protocol.

Finally, we are also able to observe that the largest overhead of the whole
process is related to the file transfer itself. Even if in this first moment we
focus on the delegation mechanisms of Mutida, its performance compared to
other methods from the literature, as well as the additional functionalities and
the anonymization of the rights management, this overhead can make Mutida
suitable for IoT environments that use files of only a few kilobytes [43].

7 Conclusion

In this paper, we introduce Mutida, a protocol to manage access rights in a
distributed storage solution, which allows us to delegate these rights to other
users and compute the nodes.

In comparison to standard approaches, Mutida differs in the following as-
pects: (i) Mutida has the ability to distrust the storage nodes to manage access
rights; (ii) it has a low computational cost; (iii) it has low requirements for the
users that only have to store their key to be able to decrypt all the pieces of
data they can access; (iv) it has the ability to delegate access rights to users
and compute nodes; and (v) it has the ability to remove the rights of compute
nodes when the access rights of the user have been revoked. Additionally, we can
use our approach coupled with a distributed P2P storage system allowing us to
access the files even when the user is disconnected, without having to rely on
them in a centralized server.

We begin by showing the time spent on each individual operation of the
Mutida method compared with Shamir and the classical Public Key Cryptog-
raphy, where Mutida takes almost half of the time in comparison with these
other methods. After we present a quantitative analysis between the Mutida
and Shamir approaches considering three different scenarios, the first scenario
is without data sharing, where we can clearly see the overhead of Shamir, espe-
cially when we want to read a file. After the second and third scenarios where
the data exchange takes place, we see, especially in scenario iii, the difference
in the total time of the file exchange when comparing the two methods, where
Shamir can be up to 17 times slower than Mutida.

As limitations of the protocol, because data are stored in an immutable and
distributed way and despite the rights revocation, there is no way to ensure that
there is no copy of the data stored and that a malicious user that once had access
at some point did not store the keys; the revocation is not guaranteed. Finally,
we aim to continue this work by performing a detailed security analysis of the

proposed mechanism and evaluating the long-term effects of this proposition in
a production environment.

Acknowledgements Experiments presented in this paper were carried out
using the Grid’5000 testbed, supported by a scientific interest group hosted by
Inria and including CNRS, RENATER and several Universities as well as other
organizations (see https://www.grid5000.fr).

References

1. Adya, A., Bolosky, W.J., Castro, M., Cermak, G., Chaiken, R., Douceur, J.R.,
Howell, J., Lorch, J.R., Theimer, M., Wattenhofer, R.P.: Farsite: Federated, avail-
able, and reliable storage for an incompletely trusted environment. SIGOPS
Oper. Syst. Rev. 36(SI), 1–14 (Dec 2003). https://doi.org/10.1145/844128.844130,
https://doi.org/10.1145/844128.844130

2. Ali, G., Ahmad, N., Cao, Y., Asif, M., Cruickshank, H., Ali,
Q.E.: Blockchain based permission delegation and access control
in internet of things (baci). Computers & Security 86, 318 –
334 (2019). https://doi.org/https://doi.org/10.1016/j.cose.2019.06.010,
http://www.sciencedirect.com/science/article/pii/S0167404819301208

3. Ali, M., Dhamotharan, R., Khan, E., Khan, S.U., Vasilakos, A.V., Li, K., Zomaya,
A.Y.: Sedasc: Secure data sharing in clouds. IEEE Systems Journal 11(2), 395–404
(2017). https://doi.org/10.1109/JSYST.2014.2379646

4. Andersen, M.P., Kumar, S., AbdelBaky, M., Fierro, G., Kolb, J., Kim, H.S., Culler,
D.E., Popa, R.A.: Wave: A decentralized authorization framework with transitive
delegation. In: Proceedings of the 28th USENIX Conference on Security Sympo-
sium. p. 1375–1392. SEC’19, USENIX Association, USA (2019)

5. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro,
A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan,
S., Murthy, C., Nguyen, B., Sethi, M., Singh, G., Smith, K., Sorniotti, A.,
Stathakopoulou, C., Vukolić, M., Cocco, S.W., Yellick, J.: Hyperledger fabric:
A distributed operating system for permissioned blockchains. In: Proceedings of
the Thirteenth EuroSys Conference. EuroSys ’18, Association for Computing Ma-
chinery, New York, NY, USA (2018). https://doi.org/10.1145/3190508.3190538,
https://doi.org/10.1145/3190508.3190538

6. Angelis, S.D., Aniello, L., Baldoni, R., Lombardi, F., Margheri, A., Sassone,
V.: Pbft vs proof-of-authority: applying the cap theorem to permissioned
blockchain. In: Italian Conference on Cyber Security (06/02/18) (January 2018),
https://eprints.soton.ac.uk/415083/

7. Aura, T.: Distributed Access-Rights Management with Delegation Certificates, pp.
211–235. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

8. Backes, M., Camenisch, J., Sommer, D.: Anonymous yet accountable ac-
cess control. In: Proceedings of the 2005 ACM Workshop on Privacy in
the Electronic Society. p. 40–46. WPES ’05, Association for Computing Ma-
chinery, New York, NY, USA (2005). https://doi.org/10.1145/1102199.1102208,
https://doi.org/10.1145/1102199.1102208

9. Balouek, D., Carpen Amarie, A., Charrier, G., Desprez, F., Jeannot, E., Jean-
voine, E., Lèbre, A., Margery, D., Niclausse, N., Nussbaum, L., Richard, O., Pérez,

C., Quesnel, F., Rohr, C., Sarzyniec, L.: Adding virtualization capabilities to the
Grid’5000 testbed. In: Ivanov, I.I., van Sinderen, M., Leymann, F., Shan, T. (eds.)
Cloud Computing and Services Science, Communications in Computer and In-
formation Science, vol. 367, pp. 3–20. Springer International Publishing (2013).
https://doi.org/10.1007/978-3-319-04519-1 1

10. Battah, A.A., Madine, M.M., Alzaabi, H., Yaqoob, I., Salah, K.,
Jayaraman, R.: Blockchain-based multi-party authorization for ac-
cessing ipfs encrypted data. IEEE Access 8, 196813–196825 (2020).
https://doi.org/10.1109/ACCESS.2020.3034260

11. Benet, J.: IPFS - Content Addressed, Versioned, P2P File System. Tech. rep.,
Protocol Labs, Inc. (2014), http://arxiv.org/abs/1407.3561

12. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and
zipf-like distributions: evidence and implications. In: IEEE INFOCOM ’99.
Conference on Computer Communications. Proceedings. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. The
Future is Now (Cat. No.99CH36320). vol. 1, pp. 126–134 vol.1 (1999).
https://doi.org/10.1109/INFCOM.1999.749260

13. Chaudhary, P., Gupta, R., Singh, A., Majumder, P.: Analysis and comparison of
various fully homomorphic encryption techniques. In: 2019 International Confer-
ence on Computing, Power and Communication Technologies (GUCON). pp. 58–62
(2019)

14. Chen, J., Ma, H.: Efficient decentralized attribute-based access control for cloud
storage with user revocation. In: 2014 IEEE International Conference on Commu-
nications (ICC). pp. 3782–3787 (2014). https://doi.org/10.1109/ICC.2014.6883910

15. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy
re-encryption. In: Bernstein, D.J., Lange, T. (eds.) Progress in Cryptology –
AFRICACRYPT 2010. pp. 316–332. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2010)

16. Chuat, L., Abdou, A., Sasse, R., Sprenger, C., Basin, D., Perrig, A.: Sok: Delega-
tion and revocation, the missing links in the web’s chain of trust. In: 2020 IEEE
European Symposium on Security and Privacy (EuroS P). pp. 624–638 (2020).
https://doi.org/10.1109/EuroSP48549.2020.00046

17. Crampton, J., Khambhammettu, H.: Delegation in role-based access control. In:
European Symposium on Research in Computer Security. pp. 174–191. Springer
(2006)

18. Dang, Q.: Secure hash standard (2015-08-04 2015).
https://doi.org/https://doi.org/10.6028/NIST.FIPS.180-4

19. Daswani, N., Garcia-Molina, H., Yang, B.: Open problems in data-sharing peer-
to-peer systems. In: Proceedings of the 9th International Conference on Database
Theory. p. 1–15. ICDT ’03, Springer-Verlag, Berlin, Heidelberg (2003)

20. Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists.
EURASIP J. Inf. Secur. 2007(1) (dec 2007)

21. Gasser, M., McDermott, E.: An architecture for practical delega-
tion in a distributed system. In: 2012 IEEE Symposium on Se-
curity and Privacy. p. 20. IEEE Computer Society, Los Alami-
tos, CA, USA (may 1990). https://doi.org/10.1109/RISP.1990.63835,
https://doi.ieeecomputersociety.org/10.1109/RISP.1990.63835

22. Gatling Corp: Gatling. https://gatling.io/ (2021), [Online; accessed 28-June-2021]
23. Gengler, B.: Content protection for recordable media

(cprm). Computer Fraud & Security 2001(2), 5–6 (2001).

https://doi.org/https://doi.org/10.1016/S1361-3723(01)02011-5,
https://www.sciencedirect.com/science/article/pii/S1361372301020115

24. Hardt, D., et al.: The oauth 2.0 authorization framework (2012)
25. Heckmann, O., Bock, A., Mauthe, A., Steinmetz, R.: The edonkey file-sharing

network. In: Dadam, P., Reichert, M. (eds.) Informatik 2004, Informatik verbindet,
Band 2, Beiträge der 34. Jahrestagung der Gesellschaft für Informatik e.V. (GI).
pp. 224–228. Gesellschaft für Informatik e.V., Bonn (2004)

26. Henningsen, S., Rust, S., Florian, M., Scheuermann, B.: Crawling the ipfs network.
In: 2020 IFIP Networking Conference (Networking). pp. 679–680 (2020)

27. Hesselman, C., Moura, G.C., De Oliveira Schmidt, R., Toet, C.: Increas-
ing dns security and stability through a control plane for top-level do-
main operators. IEEE Communications Magazine 55(1), 197–203 (2017).
https://doi.org/10.1109/MCOM.2017.1600521CM

28. Huu Tran, Hitchens, M., Varadharajan, V., Watters, P.: A trust based access con-
trol framework for p2p file-sharing systems. In: Proceedings of the 38th Annual
Hawaii International Conference on System Sciences. pp. 302c–302c (2005)

29. Jawad, M., Alvarado, P.S., Valduriez, P.: Design of priserv, a privacy service
for dhts. In: Proceedings of the 2008 International Workshop on Privacy and
Anonymity in Information Society. p. 21–25. PAIS ’08, Association for Computing
Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1379287.1379293,
https://doi.org/10.1145/1379287.1379293

30. Jin, H., Lotspiech, J.: Broadcast encryption for differently privileged. In: Gritzalis,
D., Lopez, J. (eds.) Emerging Challenges for Security, Privacy and Trust. pp. 283–
293. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

31. Katzarova, M., Simpson, A.: Delegation in a distributed healthcare context: A
survey of current approaches. In: Katsikas, S.K., López, J., Backes, M., Gritzalis,
S., Preneel, B. (eds.) Information Security. pp. 517–529. Springer Berlin Heidelberg,
Berlin, Heidelberg (2006)

32. Kaushik, S., Gandhi, C.: Capability based outsourced data ac-
cess control with assured file deletion and efficient revocation with
trust factor in cloud computing. Int. J. Cloud Appl. Comput.
10(1), 64–84 (jan 2020). https://doi.org/10.4018/IJCAC.2020010105,
https://doi.org/10.4018/IJCAC.2020010105

33. Kieselmann, O., Kopal, N., Wacker, A.: A novel approach to data revocation on
the internet. In: Garcia-Alfaro, J., Navarro-Arribas, G., Aldini, A., Martinelli, F.,
Suri, N. (eds.) Data Privacy Management, and Security Assurance. pp. 134–149.
Springer International Publishing, Cham (2016)

34. Lasla, N., Younis, M., Znaidi, W., Ben Arbia, D.: Efficient distributed admission
and revocation using blockchain for cooperative its. In: 2018 9th IFIP International
Conference on New Technologies, Mobility and Security (NTMS). pp. 1–5 (2018).
https://doi.org/10.1109/NTMS.2018.8328734

35. Legout, A., Urvoy-Keller, G., Michiardi, P.: Understanding BitTorrent: An Ex-
perimental Perspective. Technical report, Inria (2005), https://hal.inria.fr/inria-
00000156

36. Lesueur, F., Me, L., Tong, V.V.T.: An efficient distributed pki for structured p2p
networks. In: 2009 IEEE Ninth International Conference on Peer-to-Peer Comput-
ing. pp. 1–10 (2009)

37. Liu, J., Li, X., Ye, L., Zhang, H., Du, X., Guizani, M.: Bpds: A blockchain based
privacy-preserving data sharing for electronic medical records. In: 2018 IEEE
Global Communications Conference (GLOBECOM). pp. 1–6 (2018)

38. Manousakis, K., Eswaran, S., Shur, D., Naik, G., Kantharaju, P., Regli, W., Adam-
son, B.: Torrent-based dissemination in infrastructure-less wireless networks. Jour-
nal of Cyber Security and Mobility 4(1), 1–22 (2015)

39. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based
on the xor metric. In: Revised Papers from the First International Workshop on
Peer-to-Peer Systems. pp. 53–65. IPTPS ’01, Springer-Verlag, London, UK, UK
(2002), http://dl.acm.org/citation.cfm?id=646334.687801

40. Merkle, R.C.: Protocols for public key cryptosystems. In: 1980 IEEE Symposium on
Security and Privacy. pp. 122–122 (1980). https://doi.org/10.1109/SP.1980.10006

41. Miller, S.P., Neuman, B.C., Schiller, J.I., Saltzer, J.H.: Kerberos authentication
and authorization system. In: In Project Athena Technical Plan (1988)

42. Mockapetris, P.: Domain names - concepts and facilities. RFC 1034 (Nov 1987).
https://doi.org/10.17487/RFC1034, https://rfc-editor.org/rfc/rfc1034.txt

43. Muralidharan, S., Ko, H.: An interplanetary file system (ipfs) based iot framework.
In: 2019 IEEE International Conference on Consumer Electronics (ICCE). pp. 1–2
(2019). https://doi.org/10.1109/ICCE.2019.8662002

44. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing
Security Workshop. p. 113–124. CCSW ’11, Association for Computing Ma-
chinery, New York, NY, USA (2011). https://doi.org/10.1145/2046660.2046682,
https://doi.org/10.1145/2046660.2046682

45. Nakatani, Y.: Structured allocation-based consistent hashing with improved bal-
ancing for cloud infrastructure. IEEE Transactions on Parallel and Distributed
Systems 32(9), 2248–2261 (2021). https://doi.org/10.1109/TPDS.2021.3058963

46. Politou, E., Alepis, E., Patsakis, C.: Forgetting personal data and revok-
ing consent under the GDPR: Challenges and proposed solutions. Jour-
nal of Cybersecurity 4(1) (03 2018). https://doi.org/10.1093/cybsec/tyy001,
https://doi.org/10.1093/cybsec/tyy001, tyy001

47. Politou, E., Alepis, E., Patsakis, C., Casino, F., Alazab, M.: Delegated
content erasure in ipfs. Future Generation Computer Systems 112, 956–
964 (2020). https://doi.org/https://doi.org/10.1016/j.future.2020.06.037,
https://www.sciencedirect.com/science/article/pii/S0167739X19323003

48. Preneel, B.: Cryptographic hash functions. European Transactions on Telecommu-
nications 5(4), 431–448 (1994)

49. Protocol Labs: IPFS. https://ipfs.io/ (2021), [Online; accessed 28-June-2021]
50. Saleh, F.: Blockchain without Waste: Proof-of-Stake. The Review of Finan-

cial Studies 34(3), 1156–1190 (07 2020). https://doi.org/10.1093/rfs/hhaa075,
https://doi.org/10.1093/rfs/hhaa075

51. Sari, L., Sipos, M.: Filetribe: Blockchain-based secure file sharing on ipfs. In: Eu-
ropean Wireless 2019; 25th European Wireless Conference. pp. 1–6 (2019)

52. Schnitzler, T., Dürmuth, M., Pöpper, C.: Towards contractual agreements for re-
vocation of online data. In: Dhillon, G., Karlsson, F., Hedström, K., Zúquete, A.
(eds.) ICT Systems Security and Privacy Protection. pp. 374–387. Springer Inter-
national Publishing, Cham (2019)

53. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (Nov 1979).
https://doi.org/10.1145/359168.359176, https://doi.org/10.1145/359168.359176

54. Steichen, M., Fiz, B., Norvill, R., Shbair, W., State, R.: Blockchain-based, decen-
tralized access control for ipfs. In: 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData). pp. 1499–1506 (2018)

55. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for inter-
net applications. IEEE/ACM Transactions on Networking 11(1), 17–32 (2003).
https://doi.org/10.1109/TNET.2002.808407

56. The Linux Foundation: Kubernetes. https://kubernetes.io/ (2021), [Online; ac-
cessed 28-June-2021]

57. Urdaneta, G., Pierre, G., Steen, M.V.: A survey of dht security techniques.
ACM Comput. Surv. 43(2) (Feb 2011). https://doi.org/10.1145/1883612.1883615,
https://doi.org/10.1145/1883612.1883615

58. Wang, S., Zhang, Y., Zhang, Y.: A blockchain-based framework for data sharing
with fine-grained access control in decentralized storage systems. IEEE Access 6,
38437–38450 (2018)

59. Wang, X., Sun, X., Sun, G., Luo, D.: Cst: P2p anonymous authen-
tication system based on collaboration signature. In: 2010 5th Inter-
national Conference on Future Information Technology. pp. 1–7 (2010).
https://doi.org/10.1109/FUTURETECH.2010.5482740

60. Xu, R., Chen, Y., Blasch, E., Chen, G.: Blendcac: A smart contract enabled de-
centralized capability-based access control mechanism for the iot. Computers 7(3)
(2018). https://doi.org/10.3390/computers7030039, https://www.mdpi.com/2073-
431X/7/3/39

61. Yang, W., Garg, S., Raza, A., Herbert, D., Kang, B.: Blockchain: Trends and
future. In: Yoshida, K., Lee, M. (eds.) Knowledge Management and Acquisition for
Intelligent Systems. pp. 201–210. Springer International Publishing, Cham (2018)

62. Yang, Y., Zhu, J.: Write skew and zipf distribution: Evidence and implica-
tions. ACM Trans. Storage 12(4) (Jun 2016). https://doi.org/10.1145/2908557,
https://doi.org/10.1145/2908557

63. Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph, A., Kubiatow-
icz, J.: Tapestry: a resilient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communications 22(1), 41–53 (2004).
https://doi.org/10.1109/JSAC.2003.818784

