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ABSTRACT
This paper presents a path-following combinatorial framework

based on systems of polynomial equations to compute a mixed

Nash equilibrium in 𝑁 -person games. We provide the first detailed

implementable description of Wilson’s path-following method, ex-

tending Lemke-Howson’s algorithm to N-person games and han-

dling degenerate games. Our approach resembles, in some respects,

support enumeration methods. We thus compare both approaches,

theoretically and experimentally. Then, we show that the path-

following approach allows to deal with a large family of succinctly

expressed games: hypergraphical games, graphical games and poly-

matrix games. The described algorithms have been implemented

in Python, making use of Sagemath libraries to solve systems of

polynomial equations, allowing an experimental comparison of the

different combinatorial approaches on a large variety of games.
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1 INTRODUCTION
The geometric path-following approach of [23] extends Lemke and

Howson’s 2-player games algorithm [17] and theoretically allows

for the computation of exact mixed Nash equilibria of 𝑁 -person

games. However, while implementations of Lemke-Howson’s type

algorithms do exist for bimatrix and polymatrix games [14], Wil-

son’s approach has never been implemented. Wilson only showed

that computing a mixed Nash equilibrium amounts to finding a so-

lution to a Polynomial Complementary Problem (PCP) and provided

a high-level informal mathematical description of his approach. On

different grounds, [21] provided a simple Nash equilibrium compu-

tation algorithm based on an exhaustive exploration of strategies’

supports, exploiting polynomial systems and dominated strategies

computation. This method is still state of the art for practical exact

NE computation in 𝑁 -person games. In this article, we compare

both approaches theoretically. Then we extend the path-following

approach in order to handle (i) degenerate games and (ii) polymatrix
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[24], graphical [16] and hypergraphical games [20]. Finally, we pro-

vide implementations of support enumeration and path-following

approaches, allowing comparisons on different classes of games.

In Section 2, we present the PCP formulation of the Nash equi-

librium search problem introduced in [23] and show how [21]’s

support enumeration method can also be cast in the PCP frame-

work. In Section 3 we present an original "combinatorial" view of

[23]’s path-following algorithm and in Section 4 we extend it to

handle degenerate PCP (approximately, in some cases). In Section

5, we show that Nash equilibrium computation in graphical and

hypergraphical games [16, 20] can be formulated as a PCP of size

polynomial in the concise expression of the games. Finally, Section

6 provides an experimental comparison of both approaches
1
.

2 N-PLAYER GAMES AND POLYNOMIAL
COMPLEMENTARITY PROBLEMS (PCP)

2.1 Nash equilibria as solutions of a PCP
Let us consider a 𝑁 -player game Γ𝑁 = (𝑃, 𝜋, 𝑎). 𝑃 = {1, . . . , 𝑁 }
is the set of players. 𝜋 = 𝑆1 × . . . × 𝑆𝑁 is the set of joint pure

strategies of the game (𝑆𝑛 is the finite set of pure strategies available

to player 𝑛 ∈ 𝑃 ). 𝑎𝑛𝜔 is the strictly positive disutility
2
received by

player 𝑛 when the joint pure strategy is 𝜔 ∈ 𝜋 . 𝑎 = (𝑎𝑛𝜔 )𝜔 ∈𝜋,𝑛∈𝑃
can thus be represented as a matrix with |𝜋 | = ∏

𝑛=1..𝑁 |𝑆𝑛 | lines
and 𝑁 columns. A mixed strategy 𝜉𝑛 = (𝜉𝑛

𝑖
)𝑖∈𝑆𝑛 is a probability

distribution over the pure strategies of player 𝑛. A joint mixed

strategy is a tuple 𝜉 = (𝜉𝑛)𝑛∈𝑃 of mixed strategies. 𝜉−𝑛 denotes the

mixed strategies of all players except 𝑛. Hence, 𝜉 = (𝜉𝑛, 𝜉−𝑛).
A mixed Nash equilibrium of a game Γ𝑁 is defined as:

Definition 2.1 (Mixed Nash equilibrium). Joint mixed strategy 𝜉 =

(𝜉𝑛
𝑖
)𝑛∈𝑃,𝑖∈𝑆𝑛 is a mixed Nash equilibrium of game Γ𝑁 = (𝑃, 𝜋, 𝑎) if

and only if: ∀𝑛 ∈ 𝑃, 𝐷𝑖𝑠𝑛 [𝜉] ≤ 𝐷𝑖𝑠𝑛 [( ¯𝜉𝑛, 𝜉−𝑛)],∀ ¯𝜉𝑛 ≠ 𝜉𝑛 , where

𝐷𝑖𝑠𝑛 [𝜉] =𝑑𝑒𝑓
∑

𝜔=(𝜔1,...,𝜔𝑛) ∈𝜋
𝑎𝑛𝜔

𝑁∏
𝜈=1

𝜉𝜈𝜔𝜈

and ( ¯𝜉𝑛, 𝜉−𝑛) is the joint mixed strategy where the mixed strategy

𝜉𝑛 has been replaced with mixed strategy
¯𝜉𝑛 .

[23] showed that a mixed Nash equilibrium can be computed

from a solution of a Polynomial Complementarity Problem (PCP) .
Let us define 𝐸𝜋 , the Euclidian space of dimension 𝐷 =

∑
𝑛∈𝑃
|𝑆𝑛 |.

Joint mixed strategies will be indirectly represented by lists of

1
Python/Sagemath codes as well as tutorial Jupyter notebooks are available online:

https://forgemia.inra.fr/game-theory-tools-group/gtnash-git/.

2
The PCP formulation considers that players are disutility minimizers. This is without

loss of generality since any utility maximization game can be equivalently expressed

as a disutility minimization game.
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vectors 𝑥 = (𝑥𝑛)𝑛∈𝑃 of coordinates (𝑥𝑛
𝑖
)𝑖∈𝑆𝑛 ∈ 𝐸𝜋 . The 𝑥𝑛 ’s are

non-negative but generally not normalized (we will build a proba-

bility distribution by normalization of 𝑥𝑛). Let us define multilinear

polynomials 𝐴𝑛
𝑖
:

𝐴𝑛
𝑖 (𝑥
−𝑛) =𝑑𝑒𝑓

∑
𝜔 ∈𝜋
𝜔𝑛=𝑖

𝑎𝑛𝜔

∏
𝜈≠𝑛

𝑥𝜈𝜔𝜈
,∀𝑛 ∈ 𝑃, 𝑖 ∈ 𝑆𝑛 (1)

and 𝐴𝑛 (𝑥) =𝑑𝑒𝑓

∑
𝑖∈𝑆𝑛

𝐴𝑛
𝑖 (𝑥
−𝑛)𝑥𝑛𝑖 ,∀𝑛 ∈ 𝑃 (2)

Where, by definition, 𝑥−𝑛 = (𝑥𝜈
𝑖
)𝜈∈𝑃\{𝑛},𝑖∈𝑆𝜈 .

When every 𝑥𝑛 is normalized, i.e. 𝑥𝑛 = 𝜉𝑛 are mixed strategies,

𝐴𝑛 (𝜉) is the expected disutility of joint mixed strategy 𝜉 to player

𝑛 and 𝐴𝑛
𝑖
(𝜉−𝑛) is the expected disutility of player 𝑛 when 𝑛 plays

pure strategy 𝑖 ∈ 𝑆𝑛 instead of mixed strategy 𝜉𝑛 .

By definition of a mixed Nash equilibrium, 𝜉 is a mixed NE iff:{
𝐴𝑛 (𝜉) ≤ 𝐴𝑛

𝑖
(𝜉−𝑛),∀𝑛 ∈ 𝑃, 𝑖 ∈ 𝑆𝑛,

𝐴𝑛 (𝜉) = 𝐴𝑛
𝑖
(𝜉−𝑛),∀𝑛 ∈ 𝑃, 𝑖 ∈ 𝑆𝑛, s.t. 𝜉𝑛𝑖 > 0.

(3)

By a change of variables, system (3) can be represented by the

following Polynomial Complementarity Problem [23]:

Definition 2.2 (Polynomial Complementarity Problem). The PCP
corresponding to Γ𝑁 = (𝑃, 𝜋, 𝑎) is a system of equations/inequations

in variables (𝑥𝑛
𝑖
)𝑛∈𝑃,𝑖∈𝑆𝑛 ∈ 𝐸𝜋 :

∀(𝑛, 𝑖) ∈ 𝐼𝑁 ,


𝑥𝑛
𝑖
≥ 0

𝐴𝑛
𝑖
(𝑥−𝑛) ≥ 1

𝑥𝑛
𝑖
·
(
𝐴𝑛
𝑖
(𝑥−𝑛) − 1

)
= 0

(
S𝑁

)
where 𝐼𝑁 =𝑑𝑒𝑓 {(𝑛, 𝑖), 𝑛 ∈ 𝑃, 𝑖 ∈ 𝑆𝑛}.

D𝑁
denotes the set of points 𝑥 ∈ 𝐸𝜋 satisfying the set of inequa-

tions of the PCP:D𝑁 =
{
𝑥 ∈ 𝐸𝜋 , 𝑥𝑛

𝑖
≥ 0, 𝐴𝑛

𝑖
(𝑥−𝑛) ≥ 1,∀(𝑛, 𝑖) ∈ 𝐼𝑁

}
.

Problem S𝑁 is called a polynomial complementarity problem since

we look for a non-negative solution 𝑥 such that for any (𝑛, 𝑖) ∈ 𝐼𝑁 ,

either 𝑥𝑛
𝑖

= 0 or 𝐴𝑛
𝑖
(𝑥−𝑛) = 1 holds (hence a complementary

solution) and 𝐴𝑛
𝑖
(𝑥−𝑛) are multivariate polynomials in variables(

𝑥𝑛
𝑖

)
𝑛∈𝑃,𝑖∈𝑆𝑖

. 𝑥𝑛 representing an unnormalized probability distri-

bution, the equalities in S𝑁 correspond to usual best response

arguments: if 𝑖 is not a best response to a NE for player 𝑛 (i.e.

𝐴𝑛
𝑖
(𝑥−𝑛) > 1), its probability should be 0 (thus, also 𝑥𝑛

𝑖
).

In the case where there are only two players (𝑁 = 2), one can

check that, ∀(𝑛, 𝑖) ∈ 𝐼𝑁 ,𝐴𝑛
𝑖
(𝑥−𝑛) = 1 is a linear equation. Hence, in

this case the obtained problem S2
is a Linear Complementarity Prob-

lem [17]. [23] shows the equivalence between the Nash equilibria

of a game and the solutions of the corresponding PCP:

Proposition 2.3 (NE / PCP eqivalence [23]). Let Γ𝑁 be a
𝑁 -player game and S𝑁 its PCP transformation. Then, the Nash equi-
libria of Γ𝑁 and the solutions of S𝑁 are in one-to-one correspondence,
i.e.:

(1) If 𝑥 is a solution of S𝑁 , then 𝜉 defined by 𝜉𝑛
𝑖

=
𝑥𝑛
𝑖∑

𝑗∈𝑆𝑛 𝑥𝑛
𝑗

,

∀(𝑛, 𝑖) ∈ 𝐼𝑁 is a Nash equilibrium of Γ𝑁 .
(2) If 𝜉 is a mixed Nash equilibrium of Γ𝑁 , 𝑥 defined as

𝑥𝑛𝑖 =

(∏
𝜈≠𝑛 𝐴

𝜈 (𝜉)
𝐴𝑛 (𝜉)𝑁−2

) −1

𝑁−1

𝜉𝑛𝑖 ,∀(𝑛, 𝑖) ∈ 𝐼𝑁 is a solution of S𝑁 .

A solution 𝑥 ∈ 𝐸𝜋 of a PCP is called a complementary point.
A point 𝑥 ∈ 𝐸𝜋 is called a (𝑛, 𝑖)-almost complementary point if it
satisfies every constraints in S𝑁 , except possibly3 for the equation

𝑥𝑛
𝑖
·
(
𝐴𝑛
𝑖
(𝑥−𝑛) − 1

)
= 0.

In the view of this result, finding a mixed Nash equilibrium of a

game Γ𝑁 amounts to finding a solution to the PCP S𝑁 .

2.2 Solving PCP through support enumeration
[21] suggested a simple support enumeration method to find a Nash

equilibrium of a game, which can be described very simply in terms

of PCP solution. This approach consists in enumerating every set

of joint supports𝑊 ⊆ 𝐼𝑁 (such that𝑊 contains at least one pair

(𝑛, 𝑖),∀𝑛 ∈ 𝑃 ) and trying to solve a system of equations/inequations,

which we write S𝑊,𝑊
for a reason which will be made clear in

the following section. S𝑊,𝑊
is equal to the system S𝑁 where the

equalities are replaced with two distinct sets of equalities:


𝑥 ∈ D𝑁 ,

𝑥𝑛
𝑖
= 0, ∀(𝑛, 𝑖) ∈𝑊,

𝐴𝑛
𝑖
(𝑥−𝑛) = 1, ∀(𝑛, 𝑖) ∈𝑊

(S𝑊,𝑊 )

A solution 𝑥 of system S𝑊,𝑊
, if it exists, will correspond to an

equilibrium 𝜉 . However, there are exactly
∏𝑁

𝑖=1

(
2
|𝑆𝑖 | − 1

)
possible

supports𝑊 ⊆ 𝐼𝑁 , so trying to solve a system of polynomial equa-

tions/inequations for every𝑊 is not a good idea. [21] suggest to

enumerate supports in increasing size of𝑊 , in an order compatible

with inclusion (if𝑊 ⊂𝑊 ′𝑊 ′ will be explored after𝑊 ). As soon

as a system S𝑊,𝑊
with a solution is found, the algorithm exits and

returns the corresponding Nash equilibrium. Iterated Removal of
Dominated Alternatives [9] is applied before any new system S𝑊,𝑊

is actually solved. If any alternative is removed, this means that

we can reduce support𝑊 to𝑊 ′′ ⊂ 𝑊 . However, given the enu-

meration order, the algorithm has already tried to solve S𝑊 ′′,𝑊 ′′

and failed. So,𝑊 is skipped before solving S𝑊,𝑊
. The algorithm is

guaranteed to find a mixed Nash equilibrium of the game (or a con-

tinuum of solutions if a degenerate system S𝑊,𝑊
is encountered).

Support enumeration is quite efficient in general, especiallywhen

an equilibriumwith support of small size exists. However, for games

with no NE of small support size, many joint supports may be ex-

plored and many systems of equations may have to be solved. Next,

we describe an alternative approach to [21] to solve polynomial

complementarity problems. This approach is inspired from [23]’s

method, itself extending Lemke-Howson’s algorithm [17]. The idea

is, instead of enumerating blindly all possible pairs (𝑊,𝑊 ) until
we find a solvable system, to solve an ordered sequence of systems

S𝑍,𝑊 , where 𝑍 may be different from𝑊 and the union 𝑍 ∪𝑊
may be strictly included in 𝐼𝑁 . This approach generally explores

fewer pairs (𝑍,𝑊 ) than [21] but cannot exploit IRDA, so a larger

proportion of systems may have to be solved.

3
Thus, a complementary point is (𝑛, 𝑖)-almost complementary for every pair (𝑛, 𝑖) .
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3 A COMBINATORIAL PATH-FOLLOWING
ALGORITHM TO SOLVE PCP

Wilson [23], following the approach proposed by [17] to solve linear

complementarity problems, proposed amathematical path following
approach to solve a non-degenerate PCP.Wilson’s description leaves

some steps of the algorithm undefined and does not deal with

degenerate games. In this Section, we propose an original and

operational rewriting of Wilson’s approach.

The approach we propose is based on a definition of (almost-

complementary) nodes, arcs and paths, in terms of sets of multilin-

ear equations - we detail these definitions in Section 3.1. Then, we

show how paths can be extended through different levels of sub-

PCP (Sections 3.2 and 3.3). Section 3.4 is devoted to the arc-traversal

problem and Section 3.5 describes the full PCP solution algorithm.

3.1 Almost-complementary nodes, arcs and
paths

Assume that PCP S𝑁 is given. For any 𝑥 ∈ D𝑁
, let us write 𝑍 (𝑥) =

{(𝑛, 𝑖) ∈ 𝐼𝑁 , 𝑥𝑛
𝑖

= 0} and 𝑊 (𝑥) = {(𝑛, 𝑖) ∈ 𝐼𝑁 , 𝐴𝑛
𝑖
(𝑥−𝑛) = 1}.

Then, by definition, 𝑥 ∈ D𝑁
is a solution of S𝑁 if and only if

𝑍 (𝑥) ∪𝑊 (𝑥) = 𝐼𝑁 . A non-degenerate PCP at level 𝑁 is defined as:

Definition 3.1 (Non-degenerate PCP). PCP S𝑁 is non-degenerate

iff the following conditions hold:

(1) No point in D𝑁
satisfies more than |𝐼𝑁 | equations.

(2) No two distinct points satisfy the same set of |𝐼𝑁 | equations.

In mathematical terms, condition 1 is equivalent to

∀𝑥 ∈ D𝑁 , |𝑍 (𝑥) | + |𝑊 (𝑥) | ≤ 𝐷 = |𝐼𝑁 |
and condition 2 is equivalent to: ∀𝑥,𝑦 ∈ D𝑁

,

𝑍 (𝑥) = 𝑍 (𝑦) = 𝑍

𝑊 (𝑥) =𝑊 (𝑦) = 𝑊

|𝑍 | + |𝑊 | = |𝐼𝑁 |

 ⇒ 𝑥 = 𝑦 (4)

Intuitively, a PCP is non-degenerate if none of its polynomial

constraints are redundant (it involves |𝐼𝑁 | independent equations
in a space of dimension |𝐼𝑁 |). For the moment, we assume non-

degeneracy. Considering a non-degenerate PCP allows to distin-

guish particular points of interest, almost complementary nodes:

Definition 3.2 (Almost-complementary nodes). 𝑥 ∈ D𝑁
is an

almost-complementary node of S𝑁 , if and only if:

|𝑍 (𝑥) | + |𝑊 (𝑥) | = |𝐼𝑁 | and |𝑍 (𝑥) ∩𝑊 (𝑥) | ≤ 1

In particular, an almost-complementary node is said comple-

mentary if 𝑍 (𝑥) ∪𝑊 (𝑥) = 𝐼𝑁 and (𝑛, 𝑖)-almost complementary if

(𝑛, 𝑖) ∉ 𝑍 (𝑥)∪𝑊 (𝑥). Note that ifS𝑁 is non-degenerate, the almost-

complementary nodes of D𝑁
are in one-to-one correspondence

with the pairs 𝑍,𝑊 ⊆ 𝐼𝑁 such that |𝑍 | + |𝑊 | = |𝐼𝑁 |, |𝑍 ∩𝑊 | ≤ 1

and such that the system:
𝑥 ∈ D𝑁 ,

𝑥𝑛
𝑖
= 0, ∀(𝑛, 𝑖) ∈ 𝑍,

𝐴𝑛
𝑖
(𝑥−𝑛) = 1, ∀(𝑛, 𝑖) ∈𝑊

(S𝑍,𝑊 )

has a solution. In the following we identify (𝑛, 𝑖)-almost comple-

mentary node 𝑥 (denoted 𝜌 (𝑍,𝑊 )) with the pair (𝑍,𝑊 ) which
defines the system S𝑍,𝑊 that 𝑥 solves.

We also define (𝑛, 𝑖)-almost complementary arcs.

Definition 3.3 (Almost complementary arcs). The (𝑛, 𝑖)-almost

complementary arcs of non-degenerate PCP S𝑁 are the subsets

𝛾 (𝑍,𝑊 ) ⊆ D𝑁
, for all pairs (𝑍,𝑊 ) ⊆ 𝐼𝑁 such that 𝑍 ∩𝑊 = ∅

and 𝑍 ∪𝑊 = 𝐼𝑁 \ {(𝑛, 𝑖)}, where 𝛾 (𝑍,𝑊 ) is formed by the points

𝑥 ∈ D𝑁
such that 𝑍 (𝑥) = 𝑍 and𝑊 (𝑥) =𝑊 .

If almost complementary arc𝛾 (𝑍,𝑊 ) is non-empty and the game

is non degenerate, 𝛾 (𝑍,𝑊 ) is included in the set of solutions of a

system of𝐷−1 equations over𝐷 variables. Non-degeneracy implies

that this set has dimension 1 and can be parameterized by a single

real-valued parameter. The extreme points of 𝛾 (𝑍,𝑊 ), belonging to
the frontier of domain D𝑁

are almost complementary nodes. An

arc will typically have two extreme points (if bounded) or a single

one if unbounded.

Wilson’s approach consists in following a one-dimensional path

in D𝑁
, by traversing arcs and nodes, until we eventually reach a

complementary node. It relies on the following proposition
4
:

Proposition 3.4 (Arcs neighbouring nodes). Let S𝑁 be a
non-degenerate PCP and 𝑖 ∈ 𝑆𝑁 . Two (𝑁, 𝑖)-almost complementary
arcs neighbour a (𝑁, 𝑖)-almost-complementary node of S𝑁 which is
not complementary and a single (𝑁, 𝑖)-almost complementary arc
neighbours a complementary node.

The two arcs neighbouring almost complementary node 𝜌 (𝑍,𝑊 )
are 𝛾 (𝑍 \𝑊,𝑊 ) and 𝛾 (𝑍,𝑊 \ 𝑍 ), as shown in the proof of Propo-

sition 3.4. Remark that Proposition 3.4 implies the following propo-

sition:

Proposition 3.5 (Finite path). Let (S𝑁 ) be a non-degenerate
PCP and 𝑖 ∈ 𝑆𝑁 . There is a unique non-directed path, made of a
finite sequence of (𝑁, 𝑖)-almost complementary nodes and arcs, which
reaches any complementary node of S𝑁 .

Proposition 3.5 does not tell us about the other end of the path.

The path can end with another complementary node or with a

(𝑁, 𝑖)-almost complementary unbounded arc which neighbours

a single (𝑁, 𝑖)-almost complementary node. Let us see how this

unique non-directed path can be extended through different "layers"

of sub-PCP of the initial PCP, until it reaches an "easy-to-compute"

initial node.

3.2 Defining a sequence of PCP
Let us consider a PCP S𝑁 , an arbitrary pure joint strategy 𝜔0 =

(𝜔0

1
, . . . , 𝜔0

𝑁
) ∈ 𝜋 , two integers 1 ≤ 𝑛 ≤ 𝑘 ≤ 𝑁 and a pure strategy

𝑖 ∈ 𝑆𝑛 . We write 𝐴
𝑛,𝑘
𝑖

(
𝑥 {1,..,𝑘 }\{𝑛}

)
the multivariate polynomial

obtained from 𝐴𝑛
𝑖
(𝑥−𝑛) by fixing all values 𝑥𝜈

𝑗
to 0 whenever 𝜈 > 𝑘

and 𝑗 ≠ 𝜔0

𝜈 and to 1 whenever 𝜈 > 𝑘 and 𝑗 = 𝜔0

𝜈 . Then,

𝐴
𝑛,𝑘
𝑖

(
𝑥 {1,..,𝑘 }\{𝑛}

)
=

∑
𝜔 ∈𝜋,𝜔𝑛=𝑖

𝜔𝑚=𝜔0

𝑚,∀𝑚>𝑘

𝑎𝑛𝜔

∏
𝜈≤𝑘,
𝜈≠𝑛

𝑥𝜈𝜔𝜈
. (5)

𝐴
𝑛,𝑘
𝑖

is a multilinear polynomial of degree 𝑘 − 1. Note that if 𝜉 is a

joint mixed strategy, 𝐴
𝑛,𝑘
𝑖

(
𝜉 {1,...,𝑘 }\{𝑛}

)
is the expected disutility

4
The proofs of this Section are modern rewritings of the proofs of Wilson’s original pa-

per. The reader will find them, as well as a tutorial example and additional experiments

in https://doi.org/10.5281/zenodo.5850463.
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of player 𝑛 playing action 𝑖 ∈ 𝑆𝑛 when players 1, . . . , 𝑘 except

𝑛 play their mixed strategy in 𝜉 , while players 𝑘 + 1, . . . , 𝑁 play

their pure strategy in 𝜔0
. For any 1 ≤ 𝑘 ≤ 𝑁 , let us define 𝐼𝑘 =

{(𝑛, 𝑖), 1 ≤ 𝑛 ≤ 𝑘, 𝑖 ∈ 𝑆𝑛}. We also let 𝐸𝜋
𝑘
denote the Euclidian space

spanned by the variables 𝑥𝑛
𝑖
with (𝑛, 𝑖) ∈ 𝐼𝑘 . The dimension of 𝐸𝜋

𝑘

is 𝐷𝑘 = |𝐼𝑘 | (thus 𝐷 = 𝐷𝑁 ). Then, from PCP S𝑁 , we can define the

following sequence of sub-PCP S𝑘 , for 𝑘 = 1, . . . , 𝑁 − 1:

Definition 3.6 (Sub-PCP). Let S𝑁 be a PCP and 𝜔0
a fixed pure

joint strategy. Then, for 2 ≤ 𝑘 < 𝑁 , we define sub-PCP S𝑘 as the

following system of polynomial equations/inequations over 𝐸𝜋
𝑘
:

∀(𝑛, 𝑖) ∈ 𝐼𝑘 ,


𝑥𝑛
𝑖
≥ 0

𝐴
𝑛,𝑘
𝑖

(
𝑥 {1,..,𝑘 }\{𝑛}

)
≥ 1

𝑥𝑛
𝑖
·
(
𝐴
𝑛,𝑘
𝑖

(
𝑥 {1,..,𝑘 }\{𝑛}

)
− 1

)
= 0

(
S𝑘

)
For 𝑛 = 1, PCP S1

is slightly different, although deduced from best

responses principles as well:
𝑥1

𝑖
≥ 0,∀𝑖 ∈ 𝑆1

𝑥1

𝑖
·
( 𝑎1

(𝑖,𝜔0

−1
)

min𝑗∈𝑆
1
𝑎1

( 𝑗,𝜔0

−1
)
− 1

)
= 0,∀𝑖 ∈ 𝑆1∑

𝑖∈𝑆1
𝑥1

𝑖
= 1

(
S1

)
Sub-PCP S𝑘 is constructed from Γ𝑘 (𝜔0), the game played by the

first 𝑘 players of Γ𝑁 when the remaining players play following

𝜔0
, in the same way as S𝑁 was constructed from Γ𝑁 . As for the

initial PCP, we assume that all sub-PCP S𝑘 are non-degenerate.

In particular, assuming that S1
is non-degenerate implies that the

minimum min𝑗 ∈𝑆1
𝑎1

( 𝑗,𝜔0

−1
) is attained for a single index 𝑗∗. Thus,

we easily get the complementary point at level 1, characterized by

𝑍 1 = 𝑆1 \ { 𝑗∗} and𝑊 1 = { 𝑗∗}. Then, we can define the polynomial

systems S𝑍,𝑊
𝑘

for any pair 𝑍,𝑊 ⊆ 𝐼𝑘 :
𝑥 ∈ D𝑘 ,

𝑥𝑛
𝑖
= 0, ∀(𝑛, 𝑖) ∈ 𝑍,

𝐴
𝑛,𝑘
𝑖
(𝑥 {1..𝑘 }\{𝑛}) = 1, ∀(𝑛, 𝑖) ∈𝑊,

(
S𝑍,𝑊
𝑘

)
where D𝑘

is defined by the inequations of Definition 3.6.

3.3 Complementary nodes and initial nodes
We can now exploit the combinatorial point of view of the above

sequence of systems of equations in order to design an algorithm

computing a sequence of almost-complementary nodes until a com-

plementary node at level 𝑁 is reached.

Proposition 3.7 (Complementary node lifting). Let S𝑘 be a
sub-PCP of S𝑁 at level 1 ≤ 𝑘 < 𝑁 and arbitrary pure joint strategy
𝜔0. Assume that, for 𝑍,𝑊 ⊆ 𝐼𝑘 , S𝑍,𝑊𝑘

defines a complementary node

of S𝑘 in 𝐸𝜋
𝑘
. Then, S𝑍

′,𝑊
𝑘+1 defines a (𝑘 + 1, 𝜔0

𝑘+1)-almost complemen-

tary arc of sub-PCP S𝑘+1, where 𝑍 ′ = 𝑍 ∪
{
(𝑘 + 1, 𝑗), 𝑗 ≠ 𝜔0

𝑘+1

}
.

Furthermore, this arc neighbours a single (𝑘 + 1, 𝜔0

𝑘+1)-almost com-
plementary node at level 𝑘 + 1 (it is an unbounded arc).

The (𝑘 + 1, 𝜔0

𝑘+1)-almost complementary node at level 𝑘 + 1

can be computed by trying to solve all systems S𝑍
′∪{(𝜈,𝑗) },𝑊

𝑘+1 with

(𝜈, 𝑗) ∈ 𝐼𝑘 \ 𝑍 ′ and S
𝑍 ′,𝑊∪{(𝜈,𝑗) }
𝑘+1 with (𝜈, 𝑗) ∈ 𝐼𝑘+1 \𝑊 until

we find a solution. Such a system with a solution exists (this is a

consequence of Lemma 2 in [23]). Furthermore, it is unique, due to

non-degeneracy. This solution is called initial node at level 𝑘 + 1.

Definition 3.8 (Initial node). An initial node at level 𝑘 + 1 is a

(𝑘 + 1, 𝜔0

𝑘+1)-almost complementary node, solution to S𝑍,𝑊
𝑘+1 , with

𝑍,𝑊 ⊆ 𝐼𝑘+1, such that only one of its neighbouring arcs is bounded.
It also satisfies: (𝑘 + 1, 𝜔0

𝑘+1) ∉ 𝑍 and (𝑘 + 1, 𝑗) ∈ 𝑍,∀𝑗 ≠ 𝜔0

𝑘+1.

With this characterization in mind, Proposition 3.5 can be rein-

terpreted. It states that from any complementary node at level 𝑁

there is a unique path, leading either to another complementary

node, or to an initial node at level 𝑁 . This is obviously true at any

level 𝑘 ∈ {2, . . . , 𝑁 }, since sub-PCP are derived from subgames.

Complementary nodes are at one end of a path of (𝑘,𝜔0

𝑘
)-almost

complementary points which other end is either another comple-

mentary node or an initial node. The set of almost-complementary

points in 𝐸𝜋
𝑘
which satisfy S𝑘 form disjoint paths (see Figure 1).

Complementary node

Almost complementary node

Initial node

Bounded arc

Unbounded arc

Initial+complementary node

Figure 1: Example almost-complementary paths at level 𝑘 .

Then, we can define a descent procedure from an initial node at

level 𝑘 to a complementary node at level 𝑘 − 1, reciprocal to the

previous lifting procedure.

Proposition 3.9 (Initial node descent). Let S𝑍,𝑊
𝑘

define an
initial node at level 𝑘 > 1. Let 𝑍 ′ = 𝑍 ∩ 𝐼𝑘−1

and𝑊 ′ =𝑊 ∩ 𝐼𝑘−1
.

Then, either 𝑍 ′ ∩𝑊 ′ = {(𝜈, 𝑗)} or 𝑍 ′ ∩𝑊 ′ = ∅.
In the first case, either S𝑍

′\{(𝜈,𝑗) },𝑊 ′

𝑘−1
or S𝑍

′,𝑊 ′\{(𝜈,𝑗) }
𝑘−1

defines a

complementary node at level 𝑘 − 1. In the second case, S𝑍
′,𝑊 ′

𝑘−1
defines

a complementary node.

3.4 Algebraic arc traversal
Our path-following algorithm heavily relies on the problem of

traversing a (𝑘,𝜔0

𝑘
)-almost complementary arc

5 𝛾𝑘 (𝑍,𝑊 ), at level 𝑘
(𝑍,𝑊 ⊆ 𝐼𝑘 ), that leaves an almost-complementary node 𝜌𝑘 (𝑍 ′,𝑊 ′)
with either (i) 𝑍 = 𝑍 ′ \𝑊 ′ and 𝑊 = 𝑊 ′ or (ii) 𝑍 = 𝑍 ′ and
𝑊 =𝑊 ′ \ 𝑍 ′. This arc traversal problem can be stated in algebraic

terms. First, remark that, by definition:

5
The exponent 𝑘 in 𝛾𝑘 or 𝜌𝑘 indicates that we are at level 𝑘 .
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𝛾𝑘 (𝑍,𝑊 ) = V
(
S𝑍,𝑊
𝑘

)
∩D𝑘

and 𝜌𝑘 (𝑍 ′,𝑊 ′) = V
(
S𝑍

′,𝑊 ′

𝑘

)
∩D𝑘

,

where V (S) is the set of solutions of (S), ignoring the domain

constraint. In algebraic terms,V (S) is called an affine variety [5].

When the system (S) is non-degenerate, the variety is a single

point for a node and has dimension 1 for an arc. The systems can

be solved approximately numerically using off-the-shelf solvers.

Instead, we use an "exact" algebraic solver, based on Groebner basis

computation. This kind of solver may be slower in practice and

may limit the size of games which can be solved. However, it pro-

vides guaranteed "exact" finite representations of node coordinates

and is especially useful in the case of degenerate games. We will

discuss in the conclusion how to adapt our approach in order to use

faster, approximate solvers. In our implementation, we use the func-

tions implemented in the Singular toolbox, accessible from the

Sagemath environment
6
, to compute Groebner bases and varieties.

The arc traversal problem at level 𝑘 consists, given the two pairs

(𝑍 ′,𝑊 ′) and (𝑍,𝑊 ), in computing (𝑍 ′′,𝑊 ′′) ∈ 𝐼𝑘 corresponding

to the following (𝑛, 𝑖)-almost complementary node 𝜌𝑘 (𝑍 ′′,𝑊 ′′).
Algorithm 1 computes this almost-complementary node by trying

every possible constraint additions
7
.

Algorithm 1: TraverseArc((𝑍,𝑊 ), (𝑍 ′,𝑊 ′), 𝐼𝑘 ).
/* Computes the end node of arc 𝛾𝑘 (𝑍,𝑊 ),
given starting almost-complementary node
𝜌𝑘 (𝑍 ′,𝑊 ′). */

/* Initialization */

1 𝑆𝑜𝑙 ← ∅;
2 for (𝜈, 𝑗) ∈ 𝐼𝑘 do
3 if (𝜈, 𝑗) ∈ 𝐼𝑘 \ 𝑍 ′ then
4 𝑍𝑙𝑜𝑐 ← 𝑍 ∪ {(𝜈, 𝑗)},𝑊𝑙𝑜𝑐 ←𝑊 ;

5 if 𝑑𝑖𝑚
(
V

(
S𝑍𝑙𝑜𝑐 ,𝑊𝑙𝑜𝑐

𝑘

))
= 0 then

6 𝜌𝑙𝑜𝑐 ←V
(
S𝑍𝑙𝑜𝑐 ,𝑊𝑙𝑜𝑐

𝑘

)
∩ D𝑘

;

7 if 𝜌𝑙𝑜𝑐 ≠ ∅ then
𝑆𝑜𝑙 ← 𝑆𝑜𝑙 ∪ {(𝑍𝑙𝑜𝑐 ,𝑊𝑙𝑜𝑐 , 𝜌𝑙𝑜𝑐 )};

8 if (𝜈, 𝑗) ∈ 𝐼𝑘 \𝑊 ′ then
9 𝑍𝑙𝑜𝑐 ← 𝑍 ,𝑊𝑙𝑜𝑐 ←𝑊 ∪ {(𝜈, 𝑗)};

10 if 𝑑𝑖𝑚
(
V

(
S𝑍𝑙𝑜𝑐 ,𝑊𝑙𝑜𝑐

𝑘

))
= 0 then

11 𝜌𝑙𝑜𝑐 ←V
(
S𝑍𝑙𝑜𝑐 ,𝑊𝑙𝑜𝑐

𝑘

)
∩ D𝑘

;

12 if 𝜌𝑙𝑜𝑐 ≠ ∅ then
𝑆𝑜𝑙 ← 𝑆𝑜𝑙 ∪ {(𝑍𝑙𝑜𝑐 ,𝑊𝑙𝑜𝑐 , 𝜌𝑙𝑜𝑐 )};

13 return Sol

When the game is non-degenerate, a unique constraint addition

will lead to an almost-complementary node:

Proposition 3.10 (Arc traversal correctness). When the PCP
is non-degenerate, Algorithm 1 returns a single triple

(
𝑍 ′′,𝑊 ′′,V

(
S𝑍

′′,𝑊 ′′

𝑘

))
,

andV
(
S𝑍

′′,𝑊 ′′

𝑘

)
is a single point.

6https://www.sagemath.org/index.html.
7
In practice, as soon as a solution 𝜌𝑙𝑜𝑐 is found in line 9 of Algorithm 1, the main loop

is exited and it is tested whether the current node is degenerate, by checking whether

additional constraints indexed in 𝑍 or𝑊 are satisfied by the coordinates of 𝜌𝑙𝑜𝑐 .

3.5 The path-following procedure
Now, we have nearly all the elements necessary to build a path-

following procedure to reach a complementary node of a PCP. We

only lack an initialization procedure. This procedure uses the arbi-

trary pure joint strategy 𝜔0
and consists in solving

(
S1

)
, decribed

in Definition 3.6. Once we have this complementary node at level 1,

we compute the corresponding initial node at level 2, using Propo-

sition 3.7 and follow a path at level 2, starting from this node. If

we reach a complementary node at level 2, we climb to level 3, etc.

If, at some level 𝑘 , we reach an initial node, then we compute a

new complementary node at level 𝑘 − 1, using node descent (Propo-

sition 3.9), from which we go on. In the case where the game is

non-degenerate, since we start from a complementary node at level

1 and since the property that every node except the initial node at

level 1 and complementary node at level 𝑁 has exactly two neigh-

bours, the path followed is unique, for a given 𝜔0
. Furthermore, it

can only end in a complementary node at level 𝑁 : A solution of

the PCP/game. Figure 2 illustrates a few steps of the algorithm.

k+1

k

k-1

Bounded arc

Unbounded arc

Initial+compl. nodeComplementary node

Almost compl. node

Initial node

Change of level

Figure 2: Portion of a path followed by the algorithm.

4 HANDLING DEGENERATE PCP
Recall (Definition 3.1) that there are two ways in which a PCP at

level 𝑘 can be degenerate: (i) if there are points satisfying more than

|𝐼𝑘 | equations and (ii) if some systems admit more than one solution.

In the first case, which is far more frequent than the second, things

may go wrong with the arc traversal algorithm (Algorithm 1). When

we follow, during arc traversal or node lifting, an arc 𝛾𝑘 (𝑍,𝑊 ), we
normally encounter a unique feasible almost complementary node,

either 𝜌𝑘 (𝑍 ∪ {𝑧},𝑊 ) or 𝜌𝑘 (𝑍,𝑊 ∪ {𝑤}). However, for some PCP,

it may happen that an arc-traversal makes more than one new

constraint binding. For example, there may exist𝑤1 and𝑤2, such

that 𝜌𝑘 (𝑍,𝑊 ∪{𝑤1}) and 𝜌𝑘 (𝑍,𝑊 ∪{𝑤2}) define the same feasible

solution (identical coordinates). Such a node is degenerate. While

traversal of non-degenerate nodes is unambiguous, it is ambiguous

for degenerate nodes, since they neighbour three or more almost-

complementary arcs. In this case, an arbitrary choice of the next

arc may lead the algorithm to cycle. Figure 3 shows an example

game with some degenerate nodes, and paths linking them.

In this example, nodes 1, 2, 3 and 4 are degenerate. The corre-

sponding graph contains cycles ({1, 2, 3}, {2, 3, 4}, {1, 2, 4, 3}). How-
ever, this graph always contains at least one path from the initial
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1 2

Figure 3: A PCP where four degenerate almost-
complementary nodes are encountered. Node 5 is a
complementary node.

node at level 0 toward a complementary node at level 𝑁 8
. Taking

this fact into account, we may alter the path-following algorithm

by applying depth-first search over arcs issued from degenerate

nodes, as shown in Algorithm 2.

Algorithm 2: Depth-First Graph Traversal

Data: A PCP and a first degenerate almost-complementary

node, 𝑓 𝑖𝑟𝑠𝑡𝑑𝑒𝑔𝑒𝑛𝑛𝑜𝑑𝑒

Result: A complementary node

1 𝑙𝑖𝑠𝑡𝑜 𝑓 𝑎𝑟𝑐𝑠 ← ∅;
2 𝑙𝑖𝑠𝑡𝑜 𝑓 𝑎𝑟𝑐𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓 𝑖𝑟𝑠𝑡𝑑𝑒𝑔𝑒𝑛𝑛𝑜𝑑𝑒.𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑎𝑟𝑐𝑠);
3 while listofarcs≠ ∅ do
4 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑎𝑟𝑐 ← 𝑙𝑖𝑠𝑡𝑜 𝑓 𝑎𝑟𝑐𝑠.𝑝𝑜𝑝 ();
5 𝑛𝑒𝑥𝑡𝑛𝑜𝑑𝑒 ← 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑝𝑎𝑡ℎ(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑎𝑟𝑐);
6 if 𝑛𝑒𝑥𝑡𝑛𝑜𝑑𝑒.𝑖𝑠_𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 then break;
7 if 𝑛𝑒𝑥𝑡𝑛𝑜𝑑𝑒 = ∅ then 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑎𝑟𝑐 ← 𝑙𝑖𝑠𝑡𝑜 𝑓 𝑎𝑟𝑐𝑠.𝑝𝑜𝑝 ();
8 else 𝑙𝑖𝑠𝑡𝑜 𝑓 𝑎𝑟𝑐𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑛𝑒𝑥𝑡𝑛𝑜𝑑𝑒.𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑎𝑟𝑐𝑠);
9 return 𝑛𝑒𝑥𝑡𝑛𝑜𝑑𝑒

The procedure 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑝𝑎𝑡ℎ() performs node traversal along a

path of non-degenerate nodes, until either (i) the complementary

node is reached, (ii) a new degenerate node is reached or (iii) a

degenerate node which has already been explored is reached. In

cases (i) and (ii) the variable 𝑛𝑒𝑥𝑡𝑛𝑜𝑑𝑒 is set to the corresponding

node, while in case (iii) it takes value ∅.
Applying Algorithm 2 to the example of Figure 3, assuming that

we append degenerate nodes’ outgoing arcs from top to bottom in

𝑙𝑖𝑠𝑡𝑜 𝑓 𝑎𝑟𝑐𝑠 (different heuristics may be used to decide in which order

arcs should be appended), we get the following sequence of lists of

arcs: {(1, 𝑢𝑝), (1, 𝑑𝑜𝑤𝑛)} → {(1, 𝑢𝑝), (2, 𝑢𝑝), (2,𝑚𝑖𝑑𝑑𝑙𝑒), (2, 𝑏𝑜𝑡𝑡𝑜𝑚)}
→ {(1, 𝑢𝑝), (2, 𝑢𝑝), (2,𝑚𝑖𝑑𝑑𝑙𝑒)} → {(1, 𝑢𝑝), (2, 𝑢𝑝), (4, 𝑢𝑝), (4, 𝑏𝑜𝑡𝑡𝑜𝑚)}
→ Node 5 is returned.

Note that in the case of LCP (i.e. for bimatrix games or poly-

matrix games), a heuristic to order the arcs to append to the list

is known that allows Algorithm 2 to never backtrack [22]. This

heuristic, based on a lexicographic perturbation of linear systems,

is useful since it avoids unnecessary arc traversals, which are costly.

The same kind of approach is likely to be applicable to PCP as

well. However, computing the heuristic for PCP would require to

solve polynomial systems, so the overall benefit is unclear. We leave

8
This is a consequence of the fact that a random infinitesimal perturbation of the coef-

ficients of the PCP will resolve degeneracy by making some of the binding constraints

non-binding. In the process, the new non-degenerate nodes will be defined by pairs

(𝑍 ′,𝑊 ′) where 𝑍 ′ ⊆ 𝑍 and𝑊 ′ ⊆𝑊 .

the design of a lexicographic approach for PCP and its evaluation

for further research. We should also mention the second case of

degeneracy, corresponding to the case where someV
(
S𝑍,𝑊
𝑘

)
en-

countered in the course of the algorithm is a variety of strictly

positive dimension (an arc, an hypersurface...) because its defin-

ing equations are redundant. While the use of a Groebner basis

approach allows to exactly represent such positive-dimensional

varieties in parameterized form, it is not clear how such varieties

should be traversed in the course of our procedure
9
. We defer the

design of a non-zero dimensional varieties traversal method to fur-

ther work. Instead, what we suggest to do in this case of degeneracy

is to apply a small (non-infinitesimal) random perturbation to the

coefficients of the initial PCP and solve this new perturbed PCP. The

perturbed PCPwill generally not be degenerate. So doing, we obtain

an approximate Nash equilibrium when this form of degeneracy

occurs.

5 GRAPHICAL/HYPERGRAPHICAL GAMES
The PCP approach extends naturally to polymatrix games [24],

graphical games [16] and hypergraphical games [20]. These are

succinct representations of 𝑁 -player games where the utilities of

the players are local, i.e. depend on the strategies of subsets of 𝑃

only. Hypergraphical games are defined as follows:

Definition 5.1 (Hypergraphical game). A 𝑁 -player hypergraphi-

cal game, Γ𝑁 , is defined as:

Γ𝑁 =

(
(𝑃𝑔 )𝑔=1,...,𝐺 , (𝑆𝑛)𝑛∈𝑃 ,

(
𝑎𝑔 = (𝑎𝑔,𝑛𝜔𝑃𝑔

)𝑛∈𝑃𝑔,𝜔𝑃𝑔 ∈𝜋𝑃𝑔

)
𝑔=1,...,𝐺

)
.

• 𝑃𝑔 ⊆ 𝑃 = {1, . . . , 𝑁 },∀𝑔 ∈ 1, . . . ,𝐺 . 𝑃𝑔 is the set of players

of the 𝑔𝑡ℎ local game and ∪𝑔=1,...,𝐺𝑃𝑔 = 𝑃 .

• (𝑆𝑛)𝑛∈𝑃 is the list of players pure strategies sets.

• 𝑎
𝑔,𝑛
𝜔𝑃𝑔

is the (positive) disutility that player 𝑛 gets in local

game number 𝑔 (provided that 𝑛 belongs to 𝑃𝑔 ), when the

joint strategy of all players in game 𝑔 is 𝜔𝑃𝑔 .

The disutility of player𝑛 ∈ 𝑃 for joint strategy𝜔 is𝑎𝑛𝜔 =
∑
𝑔,𝑛∈𝑃𝑔 𝑎

𝑔,𝑛
𝜔𝑃𝑔

.

Polymatrix games and graphical games are specific cases of

hypergraphical games. Polymatrix games are characterized by the

fact that any local game 𝑔 involves exactly two players: |𝑃𝑔 | =
2,∀𝑔 = 1, . . . ,𝐺 . Graphical games are hypergraphical games where

the utility of any player 𝑛 ∈ 𝑃 only depends on the strategies of a

subset 𝑃𝑛 ∈ 𝑃 of players. They are characterized by the fact that

𝐺 = 𝑁 (there is one local game attached to each player) and that

𝑎
𝑔,𝑛
𝜔𝑃𝑔

= 0,∀𝜔 ∈ 𝜋,∀𝑛 ≠ 𝑔.

Since a hypergraphical game can be represented as a normal

form game (potentially exponentially larger to express), NE com-

putation in hypergraphical games admits an exponential size PCP

formulation. Fortunately, we can exploit the factorisation of the

disutility functions of a hypergraphical game in order to compute

a corresponding PCP of "reasonable" size. First, we can show that:

Proposition 5.2 (PCP factorization).

𝐴𝑛
𝑖 (𝑥
−𝑛) =

∑
𝑔,𝑛∈𝑔

𝑄𝑔

(
𝑥𝑃\𝑃𝑔

)
𝑅𝑛,𝑖,𝑔

(
𝑥𝑃𝑔\{𝑛}

)
, where

9
When such varieties correspond to sets of complementary points at level 𝑁 , we can

directly provide the continuous set of equilibrium strategies in parameterized form.
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𝑄𝑔

(
𝑥𝑃\𝑃𝑔

)
=

∏
𝜈∈𝑃\𝑃𝑔

©­«
∑

𝜔𝜈 ∈𝑆𝜈
𝑥𝜈𝜔𝜈

ª®¬ and

𝑅𝑛,𝑖,𝑔

(
𝑥𝑃𝑔\{𝑛}

)
=

∑
𝜔𝑃𝑔

𝜔𝑛=𝑖

𝑎
𝑔,𝑛
𝜔𝑃𝑔

∏
𝜈∈𝑃𝑔\{𝑛}

𝑥𝜈𝜔𝜈
.

Proof of Proposition 5.2: The disutility of player 𝑛 ∈ 𝑁 for

joint strategy 𝜔 is:

𝑎𝑛𝜔 =
∑

𝑔,𝑛∈𝑃𝑔
𝑎
𝑔,𝑛
𝜔𝑃𝑔

Using this expression of 𝑎𝑛𝜔 , we can rewrite 𝐴𝑛
𝑖
(𝑥−𝑛):

𝐴𝑛
𝑖 (𝑥
−𝑛) =

∑
𝜔 ∈𝜋
𝜔𝑛=𝑖

©­«
∑

𝑔,𝑛∈𝑃𝑔
𝑎
𝑔,𝑛
𝜔𝑃𝑔

ª®¬
∏
𝜈≠𝑛

𝑥𝜈𝜔𝜈
,∀𝑛 ∈ 𝑃, 𝑖 ∈ 𝑆𝑛,

=
∑

𝑔,𝑛∈𝑃𝑔

∑
𝜔 ∈𝜋
𝜔𝑛=𝑖

𝑎
𝑔,𝑛
𝜔𝑃𝑔

∏
𝜈≠𝑛

𝑥𝜈𝜔𝜈
,

=
∑

𝑔,𝑛∈𝑃𝑔

∑
𝜔𝑃𝑔

𝜔𝑛=𝑖

𝑎
𝑔,𝑛
𝜔𝑃𝑔

©­«
∏

𝜈∈𝑃𝑔\{𝑛}
𝑥𝜈𝜔𝜈

ª®¬
∑

𝜔𝑃\𝑃𝑔

∏
𝜈∈𝑃\𝑃𝑔

𝑥𝜈𝜔𝜈
,

=
∑

𝑔,𝑛∈𝑃𝑔

∑
𝜔𝑃𝑔

𝜔𝑛=𝑖

𝑎
𝑔,𝑛
𝜔𝑃𝑔

©­«
∏

𝜈∈𝑃𝑔\{𝑛}
𝑥𝜈𝜔𝜈

ª®¬ ©­«
∏

𝜈∈𝑃\𝑃𝑔

©­«
∑

𝜔𝜈 ∈𝑆𝜈
𝑥𝜈𝜔𝜈

ª®¬ª®¬ .

Remark that equality

∑
𝜔𝑃\𝑃𝑔

∏
𝜈∈𝑃\𝑃𝑔

𝑥𝜈𝜔𝜈
=

∏
𝜈∈𝑃\𝑃𝑔

©­«
∑

𝜔𝜈 ∈𝑆𝜈
𝑥𝜈𝜔𝜈

ª®¬
results from the repeated application of the distributivity of the

product over the addition. The proposition follows. □
Note that 𝐴𝑛

𝑖
(𝑥−𝑛) is still a polynomial in variables 𝑥𝑚

𝑗
, (𝑚, 𝑗) ≠

(𝑛, 𝑖) with a number of terms of degree 𝑁 − 1 equal to |𝜋−𝑛 |. But it
is known, for example, that polymatrix games admit a linear com-
plementarity problem formulation [14]. We show that it is possible

to get similar savings in representation size and solution complex-

ity for hypergraphical games, through the addition of auxiliary

variables.

Definition 5.3 (PCP auxiliary variables). In addition to the vari-

ables {𝑥𝑛
𝑖
}, let us consider an additional set of variables,

{
𝑦𝑛𝑔

}
𝑔=1..𝐺,𝑛∈𝑃

.

We define these variables as:

𝑦𝑛𝑔 =

𝑛∏
𝜈=1

𝛼𝜈𝑔 , where 𝛼
𝜈
𝑔 = 1 if 𝜈 ∈ 𝑃𝑔 and 𝛼

𝑔
𝜈 =

∑
𝜔𝜈 ∈𝑆𝜈

𝑥𝜈𝜔𝜈
if 𝜈 ∈ 𝑃\𝑃𝑔 .

With this definition, we have 𝑄𝑔

(
𝑥𝑃\𝑃𝑔

)
= 𝑦𝑁𝑔 and

𝑦1

𝑔 = 𝛼1

𝑔 and 𝑦𝑛𝑔 = 𝑦𝑛−1

𝑔 × 𝛼𝑛𝑔 ,∀𝑛 = 2, . . . , 𝑁 . (6)

Note that there are exactly 𝐺 × 𝑁 additional variables 𝑦𝑛𝑔 and their

values are defined by equations of degree 1 when 𝑛 ∈ 𝑃𝑔 and degree

2 when 𝑛 ∈ 𝑃 \ 𝑃𝑔 . This gives the following expression for 𝐴𝑛
𝑖
:

𝐴𝑛
𝑖

(
𝑥−𝑛,

{
𝑦𝑁𝑔

}
𝑔=1,..,𝐺

)
=

∑
𝑔,𝑛∈𝑃𝑔

𝑦𝑁𝑔

∑
𝜔𝑃𝑔

𝜔𝑛=𝑖

𝑎
𝑔,𝑛
𝜔𝑃𝑔

∏
𝜈∈𝑃𝑔\{𝑛}

𝑥𝜈𝜔𝜈
. (7)

Remark that the polynomials 𝐴𝑛
𝑖

(
𝑥−𝑛,

{
𝑦𝑁𝑔

}
𝑔=1,..,𝐺

)
now have de-

gree at most𝑚𝑎𝑥𝑔=1,..,𝐺 |𝑃𝑔 | and the size of the expression of these

polynomials is comparable to that of the hypergraphical game.

Our algorithm can now be extended to deal with this new expres-

sion with additional variables. The only change in the algorithm is

the definition of the polynomial subsystems which now have to con-

sider the 𝑦𝑛𝑔 variables. We extend the definition of the polynomial

systems S𝑍,𝑊
𝑘

to S𝑍,𝑊𝑘 for pairs 𝑍,𝑊 ⊆ 𝐼𝑘 :

𝑥 ∈ D,

𝑥𝑛
𝜔0

𝑛

= 1 and 𝑥𝑛
𝑖
= 0, ∀𝑛 > 𝑘,∀𝑖 ≠ 𝜔0

𝑛

𝑥𝑛
𝑖
= 0, ∀(𝑛, 𝑖) ∈ 𝑍,

𝑦1

𝑔 = 𝛼1

𝑔 , ∀𝑔 = 1, . . . ,𝐺

𝑦𝑛𝑔 = 𝑦𝑛−1

𝑔 × 𝛼𝑛𝑔 , ∀𝑔 = 1..𝐺,∀𝑛 = 2..𝑘 .

𝐴
𝑛,𝑘
𝑖

(
𝑥 {1..𝑘 }\{𝑛},

{
𝑦𝑘𝑔

}
𝑔=1,..,𝐺

)
= 1, ∀(𝑛, 𝑖) ∈𝑊,

With this generalization to hypergraphical games, it results that the

number of terms of the polynomials of the systems is reduced and

their degrees are bounded by the number of players of the largest

subgame. This has an importance when it comes to computing

Groebner bases. The Ideal Membership Problem, which is the core

problem of the Groebner basis computation problem is known to

be ExpSpace-complete. However, when the ideal has dimension 0

(which is the case when

(
S𝑍,𝑊𝑘

)
has a finite number of solutions),

it is solvable in single exponential time [7]. Furthermore, being able

to upper bound the degrees of the polynomials involved in the PCP

has a positive impact on the complexity of the algorithm:

Proposition 5.4 (Complexity of the path-following algo-

rithm). The time complexity of the path-following algorithm for a
non-degenerate graphical/hypergraphical game is simply exponential
in |𝐼𝑁 | and doubly exponential in the maximal number of players of
any local game.

Proof of Proposition 5.4: Indeed, The worst-case time com-

plexity of the best known Groebner basis computation algorithm is

doubly exponential in the maximal degree of the involved polyno-

mials (see e.g. [19]). The number of arc traversal steps is bounded

by the number of almost complementary nodes at any level (with

respect to a fixed 𝜔0. Thus, at level 𝑘 it is bounded by #𝑁𝑜𝑑𝑒𝑠 (𝑘) =
| {(𝑍,𝑊 ), |𝑍 | + |𝑊 | = |𝐼𝑘 |, |𝑍 ∩𝑊 | ≤ 1} |. Then, remark that, for

any hypergraphical game, including normal form games: #𝑁𝑜𝑑𝑒𝑠 (𝑘) ≤
|𝐼𝑘 |2 |𝐼𝑘 | . Indeed, potential nodes can be built by choosing an ar-

bitrary 𝑍 ⊆ 𝐼𝑘 and then there exist at most |𝐼𝑘 | 𝑊 potentially

leading to a (𝑘, 𝑗)-almost complementary node. So, the total num-

ber of almost-complementary nodes for all levels is𝑂

(
𝑁 |𝐼𝑁 |2 |𝐼𝑁 |

)
.

Since each arc traversal requires at most 𝑂 ( |𝐼𝑁 |) Groebner basis
computations, we get the result

10
. □

6 EXPERIMENTS
The support enumeration and path-following algorithms were im-

plemented in Python 3 using the Sagemath software for the com-

putation of varieties. Each game was solved on a single node of a

10
This complexity bound is theoretical. In practice the length of the paths is often

small.
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HPC platform. Nodes were identical Intel Xeon E5-2680 v4 2,4 Ghz

bi-processors with 128 Gb of RAM, under Linux OS.

The benchmark was composed of normal-form and hypergraph-

ical games with 3 to 7 players, 2 to 4 actions and hyperedges of

size 3 (for HGG). They were generated using the GAMUT
11

suite.

We generated Covariant and Random games with integer valued

utilities in range 0..100. In total, 100 games were solved for each

configuration, using support enumeration (SE) and path-following

(PF). Hypergraphical games were converted to normal-form prior

to being solved using support enumeration. Before applying SE or

PF, pure equilibrium search was performed. After this step there

remained from 10 to 40 unsolved games in each configuration. For

these, we computed the average NE support size per player found

using SE or PF, as well as the time required to solve them. A timeout

of 5 minutes per run was used for SE and PF. Figure 4 shows the

results obtained for random games with 5 players and 3 actions (3

local games of size 3 for hypergraphical games). All other tested

configurations are shown in the supplementary material.

Figure 4: Experiment on 100 Random game. 66 games with
PNE in NFG, 60 in HGG.

Figure 4, top, shows some features generally observed for all

configurations. First, as can be expected, PF solutions will present a

larger variety of support sizes than SE and larger in general. Still, it

happens, rarely, that PF finds solutions of smaller support size than

SE. This can (and does) happen in the case of degenerate games

where the equilibrium with smallest support is at one end of an

arc of solutions of dimension 1. SE will not find this solution while

PF may encounter this complementary node. This is why PF finds

equilibria of support size 6 when SE does not, in Figure 4.

Globally, we found that SE was more efficient than PF for games

with no more than 6 players and 2 actions. PF is more efficient for

games with at least 3 actions per player. With 7 players, 2 actions,

11
http://gamut.stanford.edu/

both approaches have similar performances. It confirms that when

the total number of potential supports increases, Wilson’s approach

becomes more efficient than blind enumeration and removal of

dominated alternatives. Similar conclusions hold for random and

covariant games. As far as HGG are concerned, we found that the

direct PF approach did not outperform a prior translation to NFG.

In the study cases, it looks like the cost of adding variables 𝑦 is not

compensated by the decreased polynomial degrees and number of

terms. Studying whether it is possible to improve the PF approach’s

performance in case of HGG is left for further research.

7 CONCLUDING REMARKS
There is an abundant literature on algorithms for approximate equi-

librium search in 𝑁 -player games, including homotopy methods
[3, 10, 11, 13]. These are based on the definition of a parametrized

continuum of games, joining an arbitrary game with known equilib-

rium, to the game of interest. An "arc" of equilibria of the parametrized

games is followed and [6] have used Groebner bases to solve the

specifically designed (easy) initial game. Homotopy approaches are

prone to numerical errors and potential non-convergence. Uniform

strategy enumeration methods [1, 2, 18], on the other hand, suggest

to enumerate a space of discretized mixed strategies in order to find

a 𝜀-approximate strategy. Polynomial systems-based approaches,

such as [21, 23] also rely on a form of enumeration. [21] enumerates

and solves a sequence of systems formed from mixed strategies

supports of increasing size, when [23] explores a deterministic se-

quence of systems. We provided the first implementation of [23],

extended to degenerate and succinct games. Our approach explores

a sequence of neighbour almost-complementary points defined as

solutions of systems of equations at different levels. It differs from

[21] which blindly explores every possible systems in increasing

order of supports’ sizes. When there exists a NE with small support,

the method [21] is faster, while in other cases [23] is more efficient.

The building block of PCP methods, the polynomial system

solver, can be easily adapted to follow the progresses in solvers’

development. We used an exact algebraic solver. So doing, node’s

coordinates are algebraic numbers [4] that is, roots of polynomials

which coefficients are either rational numbers, or algebraic num-

bers themselves. Thus they are finitely exactly represented. While

exactness is desirable in Wilson’s algorithm in order to distinguish

degenerate from non-degenerate nodes, it comes at a computational

cost. Wilson’s arc traversal procedure can be adapted to use approx-

imate solvers, by using depth-first search in the way we use it for

dealing with degeneracy. It is enough to relax the condition that a

node is degenerate whenever it corresponds to points 𝜌𝑘 (𝑍,𝑊 ) and
𝜌𝑘 (𝑍 ′,𝑊 ′) of identical coordinates: We may consider that (𝑍,𝑊 )
and (𝑍 ′,𝑊 ′) correspond to a single degenerate node whenever the

coordinates of 𝜌𝑘 (𝑍,𝑊 ) and 𝜌𝑘 (𝑍 ′,𝑊 ′) are close enough. So doing,
system solving will be faster, but the number of explored almost

complementary nodes may increase, due to "false" degeneracy.

Finally, our approach may be naturally extended to other kinds

of games, including Bayesian games [12] and stochastic games

[8]. Indeed, it is known that two-player bayesian games can be

represented as polymatrix games [15]. The same relation is likely to

hold between 𝑁 -player bayesian games and hypergraphical games,

making a concise PCP formulation possible.
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