Hélène Fargier 
email: helene.fargier@irit.fr
  
Paul Jourdan 
email: paul.jourdan@inrae.fr
  
Régis Sabbadin 
email: regis.sabbadin@inrae.fr
  
A Path-following Polynomial Equations Systems Approach for Computing Nash Equilibria

Keywords: Game Theory, Nash Equilibrium, Path Following Algorithm

This paper presents a path-following combinatorial framework based on systems of polynomial equations to compute a mixed Nash equilibrium in 𝑁 -person games. We provide the first detailed implementable description of Wilson's path-following method, extending Lemke-Howson's algorithm to N-person games and handling degenerate games. Our approach resembles, in some respects, support enumeration methods. We thus compare both approaches, theoretically and experimentally. Then, we show that the pathfollowing approach allows to deal with a large family of succinctly expressed games: hypergraphical games, graphical games and polymatrix games. The described algorithms have been implemented in Python, making use of Sagemath libraries to solve systems of polynomial equations, allowing an experimental comparison of the different combinatorial approaches on a large variety of games.

INTRODUCTION

The geometric path-following approach of [START_REF] Wilson | Computing equilibria of N-person games[END_REF] extends Lemke and Howson's 2-player games algorithm [START_REF] Lemke | Equilibrium points of bimatrix games[END_REF] and theoretically allows for the computation of exact mixed Nash equilibria of 𝑁 -person games. However, while implementations of Lemke-Howson's type algorithms do exist for bimatrix and polymatrix games [START_REF] Howson | Equilibria of polymatrix games[END_REF], Wilson's approach has never been implemented. Wilson only showed that computing a mixed Nash equilibrium amounts to finding a solution to a Polynomial Complementary Problem (PCP) and provided a high-level informal mathematical description of his approach. On different grounds, [START_REF] Porter | Simple search methods for finding a Nash equilibrium[END_REF] provided a simple Nash equilibrium computation algorithm based on an exhaustive exploration of strategies' supports, exploiting polynomial systems and dominated strategies computation. This method is still state of the art for practical exact NE computation in 𝑁 -person games. In this article, we compare both approaches theoretically. Then we extend the path-following approach in order to handle (i) degenerate games and (ii) polymatrix Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13, 2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved. [START_REF] Yanovskaya | Equilibrium points in polymatrix games[END_REF], graphical [START_REF] Kearns | Graphical Models for Game Theory[END_REF] and hypergraphical games [START_REF] Papadimitriou | Computing correlated equilibria in multi-player games[END_REF]. Finally, we provide implementations of support enumeration and path-following approaches, allowing comparisons on different classes of games.

In Section 2, we present the PCP formulation of the Nash equilibrium search problem introduced in [START_REF] Wilson | Computing equilibria of N-person games[END_REF] and show how [START_REF] Porter | Simple search methods for finding a Nash equilibrium[END_REF]'s support enumeration method can also be cast in the PCP framework. In Section 3 we present an original "combinatorial" view of [START_REF] Wilson | Computing equilibria of N-person games[END_REF]'s path-following algorithm and in Section 4 we extend it to handle degenerate PCP (approximately, in some cases). In Section 5, we show that Nash equilibrium computation in graphical and hypergraphical games [START_REF] Kearns | Graphical Models for Game Theory[END_REF][START_REF] Papadimitriou | Computing correlated equilibria in multi-player games[END_REF] can be formulated as a PCP of size polynomial in the concise expression of the games. Finally, Section 6 provides an experimental comparison of both approaches1 .

N-PLAYER GAMES AND POLYNOMIAL COMPLEMENTARITY PROBLEMS (PCP) 2.1 Nash equilibria as solutions of a PCP

Let us consider a 𝑁 -player game Γ 𝑁 = (𝑃, 𝜋, 𝑎). 𝑃 = {1, . . . , 𝑁 } is the set of players. 𝜋 = 𝑆 1 × . . . × 𝑆 𝑁 is the set of joint pure strategies of the game (𝑆 𝑛 is the finite set of pure strategies available to player 𝑛 ∈ 𝑃). 𝑎 𝑛 𝜔 is the strictly positive disutility 2 received by player 𝑛 when the joint pure strategy is 𝜔 ∈ 𝜋. 𝑎 = (𝑎 𝑛 𝜔 ) 𝜔 ∈𝜋,𝑛 ∈𝑃 can thus be represented as a matrix with |𝜋 | = 𝑛=1..𝑁 |𝑆 𝑛 | lines and 𝑁 columns. A mixed strategy 𝜉 𝑛 = (𝜉 𝑛 𝑖 ) 𝑖 ∈𝑆 𝑛 is a probability distribution over the pure strategies of player 𝑛. A joint mixed strategy is a tuple 𝜉 = (𝜉 𝑛 ) 𝑛 ∈𝑃 of mixed strategies. 𝜉 -𝑛 denotes the mixed strategies of all players except 𝑛. Hence, 𝜉 = (𝜉 𝑛 , 𝜉 -𝑛 ).

A mixed Nash equilibrium of a game Γ 𝑁 is defined as: and ( ξ𝑛 , 𝜉 -𝑛 ) is the joint mixed strategy where the mixed strategy 𝜉 𝑛 has been replaced with mixed strategy ξ𝑛 . [START_REF] Wilson | Computing equilibria of N-person games[END_REF] showed that a mixed Nash equilibrium can be computed from a solution of a Polynomial Complementarity Problem (PCP) . Let us define 𝐸 𝜋 , the Euclidian space of dimension 𝐷 =

𝑛 ∈𝑃 |𝑆 𝑛 |.
Joint mixed strategies will be indirectly represented by lists of vectors 𝑥 = (𝑥 𝑛 ) 𝑛 ∈𝑃 of coordinates (𝑥 𝑛 𝑖 ) 𝑖 ∈𝑆 𝑛 ∈ 𝐸 𝜋 . The 𝑥 𝑛 's are non-negative but generally not normalized (we will build a probability distribution by normalization of 𝑥 𝑛 ). Let us define multilinear polynomials 𝐴 𝑛 𝑖 :

𝐴 𝑛 𝑖 (𝑥 -𝑛 ) = 𝑑𝑒 𝑓 𝜔 ∈𝜋 𝜔 𝑛 =𝑖 𝑎 𝑛 𝜔 𝜈≠𝑛 𝑥 𝜈 𝜔 𝜈 , ∀𝑛 ∈ 𝑃, 𝑖 ∈ 𝑆 𝑛 (1) 
and

𝐴 𝑛 (𝑥) = 𝑑𝑒 𝑓 𝑖 ∈𝑆 𝑛 𝐴 𝑛 𝑖 (𝑥 -𝑛 )𝑥 𝑛 𝑖 , ∀𝑛 ∈ 𝑃 (2) 
Where, by definition, 𝑥 -𝑛 = (𝑥 𝜈 𝑖 ) 𝜈 ∈𝑃 \{𝑛 },𝑖 ∈𝑆 𝜈 . When every 𝑥 𝑛 is normalized, i.e. 𝑥 𝑛 = 𝜉 𝑛 are mixed strategies, 𝐴 𝑛 (𝜉) is the expected disutility of joint mixed strategy 𝜉 to player 𝑛 and 𝐴 𝑛 𝑖 (𝜉 -𝑛 ) is the expected disutility of player 𝑛 when 𝑛 plays pure strategy 𝑖 ∈ 𝑆 𝑛 instead of mixed strategy 𝜉 𝑛 .

By definition of a mixed Nash equilibrium, 𝜉 is a mixed NE iff:

𝐴 𝑛 (𝜉) ≤ 𝐴 𝑛 𝑖 (𝜉 -𝑛 ), ∀𝑛 ∈ 𝑃, 𝑖 ∈ 𝑆 𝑛 , 𝐴 𝑛 (𝜉) = 𝐴 𝑛 𝑖 (𝜉 -𝑛 ), ∀𝑛 ∈ 𝑃, 𝑖 ∈ 𝑆 𝑛 , s.t. 𝜉 𝑛 𝑖 > 0.
(

) 3 
By a change of variables, system (3) can be represented by the following Polynomial Complementarity Problem [START_REF] Wilson | Computing equilibria of N-person games[END_REF]:

Definition 2.2 (Polynomial Complementarity Problem). The PCP corresponding to Γ 𝑁 = (𝑃, 𝜋, 𝑎) is a system of equations/inequations in variables (𝑥 𝑛 𝑖 ) 𝑛 ∈𝑃,𝑖 ∈𝑆 𝑛 ∈ 𝐸 𝜋 : ∀(𝑛, 𝑖) ∈ 𝐼 𝑁 ,          𝑥 𝑛 𝑖 ≥ 0 𝐴 𝑛 𝑖 (𝑥 -𝑛 ) ≥ 1 𝑥 𝑛 𝑖 • 𝐴 𝑛 𝑖 (𝑥 -𝑛 ) -1 = 0 S 𝑁
where 𝐼 𝑁 = 𝑑𝑒 𝑓 {(𝑛, 𝑖), 𝑛 ∈ 𝑃, 𝑖 ∈ 𝑆 𝑛 }.

D 𝑁 denotes the set of points 𝑥 ∈ 𝐸 𝜋 satisfying the set of inequations of the PCP: D 𝑁 = 𝑥 ∈ 𝐸 𝜋 , 𝑥 𝑛 𝑖 ≥ 0, 𝐴 𝑛 𝑖 (𝑥 -𝑛 ) ≥ 1, ∀(𝑛, 𝑖) ∈ 𝐼 𝑁 . Problem S 𝑁 is called a polynomial complementarity problem since we look for a non-negative solution 𝑥 such that for any (𝑛, 𝑖) ∈ 𝐼 𝑁 , either 𝑥 𝑛 𝑖 = 0 or 𝐴 𝑛 𝑖 (𝑥 -𝑛 ) = 1 holds (hence a complementary solution) and 𝐴 𝑛 𝑖 (𝑥 -𝑛 ) are multivariate polynomials in variables 𝑥 𝑛 𝑖 𝑛 ∈𝑃,𝑖 ∈𝑆 𝑖 . 𝑥 𝑛 representing an unnormalized probability distribution, the equalities in S 𝑁 correspond to usual best response arguments: if 𝑖 is not a best response to a NE for player 𝑛 (i.e. 𝐴 𝑛 𝑖 (𝑥 -𝑛 ) > 1), its probability should be 0 (thus, also 𝑥 𝑛 𝑖 ). In the case where there are only two players (𝑁 = 2), one can check that, ∀(𝑛, 𝑖) ∈ 𝐼 𝑁 , 𝐴 𝑛 𝑖 (𝑥 -𝑛 ) = 1 is a linear equation. Hence, in this case the obtained problem S 2 is a Linear Complementarity Problem [START_REF] Lemke | Equilibrium points of bimatrix games[END_REF]. [START_REF] Wilson | Computing equilibria of N-person games[END_REF] shows the equivalence between the Nash equilibria of a game and the solutions of the corresponding PCP: Proposition 2.3 (NE / PCP eqivalence [START_REF] Wilson | Computing equilibria of N-person games[END_REF]). Let Γ 𝑁 be a 𝑁 -player game and S 𝑁 its PCP transformation. Then, the Nash equilibria of Γ 𝑁 and the solutions of S 𝑁 are in one-to-one correspondence, i.e.:

(1) If 𝑥 is a solution of S 𝑁 , then 𝜉 defined by

𝜉 𝑛 𝑖 = 𝑥 𝑛 𝑖 𝑗 ∈𝑆𝑛 𝑥 𝑛 𝑗 , ∀(𝑛, 𝑖) ∈ 𝐼 𝑁 is a Nash equilibrium of Γ 𝑁 . (2) If 𝜉 is a mixed Nash equilibrium of Γ 𝑁 , 𝑥 defined as 𝑥 𝑛 𝑖 = 𝜈≠𝑛 𝐴 𝜈 (𝜉) 𝐴 𝑛 (𝜉) 𝑁 -2 -1 𝑁 -1 𝜉 𝑛 𝑖 , ∀(𝑛, 𝑖) ∈ 𝐼 𝑁 is a solution of S 𝑁 .
A solution 𝑥 ∈ 𝐸 𝜋 of a PCP is called a complementary point. A point 𝑥 ∈ 𝐸 𝜋 is called a (𝑛, 𝑖)-almost complementary point if it satisfies every constraints in S 𝑁 , except possibly3 for the equation

𝑥 𝑛 𝑖 • 𝐴 𝑛 𝑖 (𝑥 -𝑛 ) -1 = 0.
In the view of this result, finding a mixed Nash equilibrium of a game Γ 𝑁 amounts to finding a solution to the PCP S 𝑁 .

2.2 Solving PCP through support enumeration [START_REF] Porter | Simple search methods for finding a Nash equilibrium[END_REF] suggested a simple support enumeration method to find a Nash equilibrium of a game, which can be described very simply in terms of PCP solution. This approach consists in enumerating every set of joint supports 𝑊 ⊆ 𝐼 𝑁 (such that 𝑊 contains at least one pair (𝑛, 𝑖), ∀𝑛 ∈ 𝑃) and trying to solve a system of equations/inequations, which we write S 𝑊 ,𝑊 for a reason which will be made clear in the following section. S 𝑊 ,𝑊 is equal to the system S 𝑁 where the equalities are replaced with two distinct sets of equalities:

       𝑥 ∈ D 𝑁 , 𝑥 𝑛 𝑖 = 0, ∀(𝑛, 𝑖) ∈ 𝑊 , 𝐴 𝑛 𝑖 (𝑥 -𝑛 ) = 1, ∀(𝑛, 𝑖) ∈ 𝑊 (S 𝑊 ,𝑊 )
A solution 𝑥 of system S 𝑊 ,𝑊 , if it exists, will correspond to an equilibrium 𝜉. However, there are exactly 𝑁 𝑖=1 2 |𝑆 𝑖 | -1 possible supports 𝑊 ⊆ 𝐼 𝑁 , so trying to solve a system of polynomial equations/inequations for every 𝑊 is not a good idea. [START_REF] Porter | Simple search methods for finding a Nash equilibrium[END_REF] suggest to enumerate supports in increasing size of 𝑊 , in an order compatible with inclusion (if 𝑊 ⊂ 𝑊 ′ 𝑊 ′ will be explored after 𝑊 ). As soon as a system S 𝑊 ,𝑊 with a solution is found, the algorithm exits and returns the corresponding Nash equilibrium. Iterated Removal of Dominated Alternatives [START_REF] Gilboa | The Complexity of Eliminating Dominated Strategies[END_REF] is applied before any new system S 𝑊 ,𝑊 is actually solved. If any alternative is removed, this means that we can reduce support 𝑊 to 𝑊 ′′ ⊂ 𝑊 . However, given the enumeration order, the algorithm has already tried to solve S 𝑊 ′′ ,𝑊 ′′ and failed. So, 𝑊 is skipped before solving S 𝑊 ,𝑊 . The algorithm is guaranteed to find a mixed Nash equilibrium of the game (or a continuum of solutions if a degenerate system S 𝑊 ,𝑊 is encountered).

Support enumeration is quite efficient in general, especially when an equilibrium with support of small size exists. However, for games with no NE of small support size, many joint supports may be explored and many systems of equations may have to be solved. Next, we describe an alternative approach to [START_REF] Porter | Simple search methods for finding a Nash equilibrium[END_REF] to solve polynomial complementarity problems. This approach is inspired from [START_REF] Wilson | Computing equilibria of N-person games[END_REF]'s method, itself extending Lemke-Howson's algorithm [START_REF] Lemke | Equilibrium points of bimatrix games[END_REF]. The idea is, instead of enumerating blindly all possible pairs (𝑊 ,𝑊 ) until we find a solvable system, to solve an ordered sequence of systems S 𝑍,𝑊 , where 𝑍 may be different from 𝑊 and the union 𝑍 ∪ 𝑊 may be strictly included in 𝐼 𝑁 . This approach generally explores fewer pairs (𝑍,𝑊 ) than [START_REF] Porter | Simple search methods for finding a Nash equilibrium[END_REF] but cannot exploit IRDA, so a larger proportion of systems may have to be solved.

A COMBINATORIAL PATH-FOLLOWING ALGORITHM TO SOLVE PCP

Wilson [START_REF] Wilson | Computing equilibria of N-person games[END_REF], following the approach proposed by [START_REF] Lemke | Equilibrium points of bimatrix games[END_REF] to solve linear complementarity problems, proposed a mathematical path following approach to solve a non-degenerate PCP. Wilson's description leaves some steps of the algorithm undefined and does not deal with degenerate games. In this Section, we propose an original and operational rewriting of Wilson's approach.

The approach we propose is based on a definition of (almostcomplementary) nodes, arcs and paths, in terms of sets of multilinear equations -we detail these definitions in Section 3.1. Then, we show how paths can be extended through different levels of sub-PCP (Sections 3.2 and 3.3). Section 3.4 is devoted to the arc-traversal problem and Section 3.5 describes the full PCP solution algorithm.

Almost-complementary nodes, arcs and paths

Assume that PCP S 𝑁 is given. For any 𝑥 ∈ D 𝑁 , let us write In mathematical terms, condition 1 is equivalent to

𝑍 (𝑥) = {(𝑛, 𝑖) ∈ 𝐼 𝑁 , 𝑥 𝑛 𝑖 = 0} and 𝑊 (𝑥) = {(𝑛, 𝑖) ∈ 𝐼 𝑁 , 𝐴 𝑛 𝑖 (𝑥 -𝑛 ) = 1}. Then, by definition, 𝑥 ∈ D 𝑁 is a solution of S 𝑁 if and only if 𝑍 (𝑥) ∪ 𝑊 (𝑥) = 𝐼 𝑁 . A non-degenerate
∀𝑥 ∈ D 𝑁 , |𝑍 (𝑥)| + |𝑊 (𝑥)| ≤ 𝐷 = |𝐼 𝑁 |
and condition 2 is equivalent to: ∀𝑥, 𝑦 ∈ D 𝑁 ,

𝑍 (𝑥) = 𝑍 (𝑦) = 𝑍 𝑊 (𝑥) = 𝑊 (𝑦) = 𝑊 |𝑍 | + |𝑊 | = |𝐼 𝑁 |        ⇒ 𝑥 = 𝑦 (4) 
Intuitively, a PCP is non-degenerate if none of its polynomial constraints are redundant (it involves |𝐼 𝑁 | independent equations in a space of dimension |𝐼 𝑁 |). For the moment, we assume nondegeneracy. Considering a non-degenerate PCP allows to distinguish particular points of interest, almost complementary nodes: Definition 3.2 (Almost-complementary nodes). 𝑥 ∈ D 𝑁 is an almost-complementary node of S 𝑁 , if and only if:

|𝑍 (𝑥)| + |𝑊 (𝑥)| = |𝐼 𝑁 | and |𝑍 (𝑥) ∩ 𝑊 (𝑥)| ≤ 1
In particular, an almost-complementary node is said comple-

mentary if 𝑍 (𝑥) ∪ 𝑊 (𝑥) = 𝐼 𝑁 and (𝑛, 𝑖)-almost complementary if (𝑛, 𝑖) ∉ 𝑍 (𝑥) ∪𝑊 (𝑥). Note that if S 𝑁 is non-degenerate, the almost- complementary nodes of D 𝑁 are in one-to-one correspondence with the pairs 𝑍,𝑊 ⊆ 𝐼 𝑁 such that |𝑍 | + |𝑊 | = |𝐼 𝑁 |, |𝑍 ∩ 𝑊 | ≤ 1
and such that the system:

       𝑥 ∈ D 𝑁 , 𝑥 𝑛 𝑖 = 0, ∀(𝑛, 𝑖) ∈ 𝑍, 𝐴 𝑛 𝑖 (𝑥 -𝑛 ) = 1, ∀(𝑛, 𝑖) ∈ 𝑊 (S 𝑍,𝑊 )
has a solution. In the following we identify (𝑛, 𝑖)-almost complementary node 𝑥 (denoted 𝜌 (𝑍,𝑊 )) with the pair (𝑍,𝑊 ) which defines the system S 𝑍,𝑊 that 𝑥 solves.

We also define (𝑛, 𝑖)-almost complementary arcs.

Definition 3.3 (Almost complementary arcs).

The (𝑛, 𝑖)-almost complementary arcs of non-degenerate PCP S 𝑁 are the subsets 𝛾 (𝑍,𝑊 ) ⊆ D 𝑁 , for all pairs (𝑍,𝑊 ) ⊆ 𝐼 𝑁 such that 𝑍 ∩ 𝑊 = ∅ and 𝑍 ∪ 𝑊 = 𝐼 𝑁 \ {(𝑛, 𝑖)}, where 𝛾 (𝑍,𝑊 ) is formed by the points 𝑥 ∈ D 𝑁 such that 𝑍 (𝑥) = 𝑍 and 𝑊 (𝑥) = 𝑊 .

If almost complementary arc 𝛾 (𝑍,𝑊 ) is non-empty and the game is non degenerate, 𝛾 (𝑍,𝑊 ) is included in the set of solutions of a system of 𝐷 -1 equations over 𝐷 variables. Non-degeneracy implies that this set has dimension 1 and can be parameterized by a single real-valued parameter. The extreme points of 𝛾 (𝑍,𝑊 ), belonging to the frontier of domain D 𝑁 are almost complementary nodes. An arc will typically have two extreme points (if bounded) or a single one if unbounded.

Wilson's approach consists in following a one-dimensional path in D 𝑁 , by traversing arcs and nodes, until we eventually reach a complementary node. It relies on the following proposition4 : Proposition 3.4 (Arcs neighbouring nodes). Let S 𝑁 be a non-degenerate PCP and 𝑖 ∈ 𝑆 𝑁 . Two (𝑁 , 𝑖)-almost complementary arcs neighbour a (𝑁 , 𝑖)-almost-complementary node of S 𝑁 which is not complementary and a single (𝑁 , 𝑖)-almost complementary arc neighbours a complementary node.

The two arcs neighbouring almost complementary node 𝜌 (𝑍,𝑊 ) are 𝛾 (𝑍 \ 𝑊 ,𝑊 ) and 𝛾 (𝑍,𝑊 \ 𝑍 ), as shown in the proof of Proposition 3.4. Remark that Proposition 3.4 implies the following proposition: Proposition 3.5 (Finite path). Let (S 𝑁 ) be a non-degenerate PCP and 𝑖 ∈ 𝑆 𝑁 . There is a unique non-directed path, made of a finite sequence of (𝑁 , 𝑖)-almost complementary nodes and arcs, which reaches any complementary node of S 𝑁 . Proposition 3.5 does not tell us about the other end of the path. The path can end with another complementary node or with a (𝑁 , 𝑖)-almost complementary unbounded arc which neighbours a single (𝑁 , 𝑖)-almost complementary node. Let us see how this unique non-directed path can be extended through different "layers" of sub-PCP of the initial PCP, until it reaches an "easy-to-compute" initial node.

Defining a sequence of PCP

Let us consider a PCP S 𝑁 , an arbitrary pure joint strategy 𝜔 0 = (𝜔 0 1 , . . . , 𝜔 0 𝑁 ) ∈ 𝜋, two integers 1 ≤ 𝑛 ≤ 𝑘 ≤ 𝑁 and a pure strategy 𝑖 ∈ 𝑆 𝑛 . We write 𝐴 𝑛,𝑘 𝑖 𝑥 {1,..,𝑘 }\{𝑛 } the multivariate polynomial obtained from 𝐴 𝑛 𝑖 (𝑥 -𝑛 ) by fixing all values 𝑥 𝜈 𝑗 to 0 whenever 𝜈 > 𝑘 and 𝑗 ≠ 𝜔 0 𝜈 and to 1 whenever 𝜈 > 𝑘 and 𝑗 = 𝜔 0 𝜈 . Then,

𝐴 𝑛,𝑘 𝑖 𝑥 {1,..,𝑘 }\{𝑛 } = 𝜔 ∈𝜋,𝜔 𝑛 =𝑖 𝜔 𝑚 =𝜔 0 𝑚 ,∀𝑚>𝑘 𝑎 𝑛 𝜔 𝜈 ≤𝑘, 𝜈≠𝑛 𝑥 𝜈 𝜔 𝜈 . (5) 
𝐴 𝑛,𝑘 𝑖 is a multilinear polynomial of degree 𝑘 -1. Note that if 𝜉 is a joint mixed strategy, 𝐴 𝑛,𝑘 𝑖 𝜉 {1,...,𝑘 }\{𝑛 } is the expected disutility of player 𝑛 playing action 𝑖 ∈ 𝑆 𝑛 when players 1, . . . , 𝑘 except 𝑛 play their mixed strategy in 𝜉, while players 𝑘 + 1, . . . , 𝑁 play their pure strategy in 𝜔 0 . For any 1 ≤ 𝑘 ≤ 𝑁 , let us define 𝐼 𝑘 = {(𝑛, 𝑖), 1 ≤ 𝑛 ≤ 𝑘, 𝑖 ∈ 𝑆 𝑛 }. We also let 𝐸 𝜋 𝑘 denote the Euclidian space spanned by the variables 𝑥 𝑛 𝑖 with (𝑛, 𝑖) ∈ 𝐼 𝑘 . The dimension of 𝐸 𝜋 𝑘 is 𝐷 𝑘 = |𝐼 𝑘 | (thus 𝐷 = 𝐷 𝑁 ). Then, from PCP S 𝑁 , we can define the following sequence of sub-PCP S 𝑘 , for 𝑘 = 1, . . . , 𝑁 -1:

Definition 3.6 (Sub-PCP). Let S 𝑁 be a PCP and 𝜔 0 a fixed pure joint strategy. Then, for 2 ≤ 𝑘 < 𝑁 , we define sub-PCP S 𝑘 as the following system of polynomial equations/inequations over 𝐸 𝜋 𝑘 :

∀(𝑛, 𝑖) ∈ 𝐼 𝑘 ,            𝑥 𝑛 𝑖 ≥ 0 𝐴 𝑛,𝑘 𝑖 𝑥 {1,..,𝑘 }\{𝑛 } ≥ 1 𝑥 𝑛 𝑖 • 𝐴 𝑛,𝑘 𝑖 𝑥 {1,..,𝑘 }\{𝑛 } -1 = 0 S 𝑘
For 𝑛 = 1, PCP S 1 is slightly different, although deduced from best responses principles as well:

             𝑥 1 𝑖 ≥ 0, ∀𝑖 ∈ 𝑆 1 𝑥 1 𝑖 • 𝑎 1 (𝑖,𝜔 0 -1 ) min 𝑗 ∈𝑆 1 𝑎 1 ( 𝑗,𝜔 0 -1 ) -1 = 0, ∀𝑖 ∈ 𝑆 1 𝑖 ∈𝑆 1 𝑥 1 𝑖 = 1 S 1
Sub-PCP S 𝑘 is constructed from Γ 𝑘 (𝜔 0 ), the game played by the first 𝑘 players of Γ 𝑁 when the remaining players play following 𝜔 0 , in the same way as S 𝑁 was constructed from Γ 𝑁 . As for the initial PCP, we assume that all sub-PCP S 𝑘 are non-degenerate. In particular, assuming that S 1 is non-degenerate implies that the minimum min 𝑗 ∈𝑆 1 𝑎 1

( 𝑗,𝜔 0 -1 )
is attained for a single index 𝑗 * . Thus, we easily get the complementary point at level 1, characterized by 𝑍 1 = 𝑆 1 \ { 𝑗 * } and 𝑊 1 = { 𝑗 * }. Then, we can define the polynomial systems S 𝑍,𝑊 𝑘 for any pair 𝑍,𝑊 ⊆ 𝐼 𝑘 :

       𝑥 ∈ D 𝑘 , 𝑥 𝑛 𝑖 = 0, ∀(𝑛, 𝑖) ∈ 𝑍, 𝐴 𝑛,𝑘 𝑖 (𝑥 {1..𝑘 }\{𝑛 } ) = 1, ∀(𝑛, 𝑖) ∈ 𝑊 , S 𝑍,𝑊 𝑘
where D 𝑘 is defined by the inequations of Definition 3.6.

Complementary nodes and initial nodes

We can now exploit the combinatorial point of view of the above sequence of systems of equations in order to design an algorithm computing a sequence of almost-complementary nodes until a complementary node at level 𝑁 is reached. with (𝜈, 𝑗) ∈ 𝐼 𝑘+1 \ 𝑊 until we find a solution. Such a system with a solution exists (this is a consequence of Lemma 2 in [START_REF] Wilson | Computing equilibria of N-person games[END_REF]). Furthermore, it is unique, due to non-degeneracy. This solution is called initial node at level 𝑘 + 1.

Definition 3.8 (Initial node).

An initial node at level 𝑘 + 1 is a (𝑘 + 1, 𝜔 0 𝑘+1 )-almost complementary node, solution to S 𝑍,𝑊 𝑘+1 , with 𝑍,𝑊 ⊆ 𝐼 𝑘+1 , such that only one of its neighbouring arcs is bounded. It also satisfies: (𝑘 + 1, 𝜔 0 𝑘+1 ) ∉ 𝑍 and (𝑘 + 1, 𝑗) ∈ 𝑍, ∀𝑗 ≠ 𝜔 0 𝑘+1 . With this characterization in mind, Proposition 3.5 can be reinterpreted. It states that from any complementary node at level 𝑁 there is a unique path, leading either to another complementary node, or to an initial node at level 𝑁 . This is obviously true at any level 𝑘 ∈ {2, . . . , 𝑁 }, since sub-PCP are derived from subgames.

Complementary nodes are at one end of a path of (𝑘, 𝜔 0 𝑘 )-almost complementary points which other end is either another complementary node or an initial node. The set of almost-complementary points in 𝐸 𝜋 𝑘 which satisfy S 𝑘 form disjoint paths (see Figure 1). Then, we can define a descent procedure from an initial node at level 𝑘 to a complementary node at level 𝑘 -1, reciprocal to the previous lifting procedure. Proposition 3.9 (Initial node descent). Let S 𝑍,𝑊 𝑘 define an initial node at level 𝑘 > 1.

Let 𝑍 ′ = 𝑍 ∩ 𝐼 𝑘-1 and 𝑊 ′ = 𝑊 ∩ 𝐼 𝑘-1 . Then, either 𝑍 ′ ∩ 𝑊 ′ = {(𝜈, 𝑗)} or 𝑍 ′ ∩ 𝑊 ′ = ∅.
In the first case, either S

𝑍 ′ \{ (𝜈,𝑗) },𝑊 ′ 𝑘-1 or S 𝑍 ′ ,𝑊 ′ \{ (𝜈,𝑗) } 𝑘-1
defines a complementary node at level 𝑘 -1. In the second case, S 𝑍 ′ ,𝑊 ′ 𝑘-1 defines a complementary node.

Algebraic arc traversal

Our path-following algorithm heavily relies on the problem of traversing a (𝑘, 𝜔 0 𝑘 )-almost complementary arc5 𝛾 𝑘 (𝑍,𝑊 ), at level 𝑘 (𝑍,𝑊 ⊆ 𝐼 𝑘 ), that leaves an almost-complementary node 𝜌 𝑘 (𝑍 ′ ,𝑊 ′ ) with either (i) 𝑍 = 𝑍 ′ \ 𝑊 ′ and 𝑊 = 𝑊 ′ or (ii) 𝑍 = 𝑍 ′ and 𝑊 = 𝑊 ′ \ 𝑍 ′ . This arc traversal problem can be stated in algebraic terms. First, remark that, by definition:

𝛾 𝑘 (𝑍,𝑊 ) = V S 𝑍,𝑊 𝑘 ∩ D 𝑘 and 𝜌 𝑘 (𝑍 ′ ,𝑊 ′ ) = V S 𝑍 ′ ,𝑊 ′ 𝑘 ∩ D 𝑘 ,
where V (S) is the set of solutions of (S), ignoring the domain constraint. In algebraic terms, V (S) is called an affine variety [START_REF] Cox | Ideals, Varieties, and Algorithms[END_REF]. When the system (S) is non-degenerate, the variety is a single point for a node and has dimension 1 for an arc. The systems can be solved approximately numerically using off-the-shelf solvers. Instead, we use an "exact" algebraic solver, based on Groebner basis computation. This kind of solver may be slower in practice and may limit the size of games which can be solved. However, it provides guaranteed "exact" finite representations of node coordinates and is especially useful in the case of degenerate games. We will discuss in the conclusion how to adapt our approach in order to use faster, approximate solvers. In our implementation, we use the functions implemented in the Singular toolbox, accessible from the Sagemath environment 6 , to compute Groebner bases and varieties.

The arc traversal problem at level 𝑘 consists, given the two pairs (𝑍 ′ ,𝑊 ′ ) and (𝑍,𝑊 ), in computing (𝑍 ′′ ,𝑊 ′′ ) ∈ 𝐼 𝑘 corresponding to the following (𝑛, 𝑖)-almost complementary node 𝜌 𝑘 (𝑍 ′′ ,𝑊 ′′ ). Algorithm 1 computes this almost-complementary node by trying every possible constraint additions 7 .

Algorithm 1: TraverseArc((𝑍,𝑊 ), (𝑍 ′ ,𝑊 ′ ), 𝐼 𝑘 ). 

/*

𝜌 𝑙𝑜𝑐 ← V S 𝑍 𝑙𝑜𝑐 ,𝑊 𝑙𝑜𝑐 𝑘 ∩ D 𝑘 ; 12 if 𝜌 𝑙𝑜𝑐 ≠ ∅ then 𝑆𝑜𝑙 ← 𝑆𝑜𝑙 ∪ {(𝑍 𝑙𝑜𝑐 ,𝑊 𝑙𝑜𝑐 , 𝜌 𝑙𝑜𝑐 )}; 13 return Sol
When the game is non-degenerate, a unique constraint addition will lead to an almost-complementary node: Proposition 3.10 (Arc traversal correctness). When the PCP is non-degenerate, Algorithm 1 returns a single triple 𝑍 ′′ ,𝑊 ′′ , V S 𝑍 ′′ ,𝑊 ′′ 𝑘 , and V S 𝑍 ′′ ,𝑊 ′′ 𝑘 is a single point.

The path-following procedure

Now, we have nearly all the elements necessary to build a pathfollowing procedure to reach a complementary node of a PCP. We only lack an initialization procedure. This procedure uses the arbitrary pure joint strategy 𝜔 0 and consists in solving S 1 , decribed in Definition 3.6. Once we have this complementary node at level 1, we compute the corresponding initial node at level 2, using Proposition 3.7 and follow a path at level 2, starting from this node. If we reach a complementary node at level 2, we climb to level 3, etc. If, at some level 𝑘, we reach an initial node, then we compute a new complementary node at level 𝑘 -1, using node descent (Proposition 3.9), from which we go on. In the case where the game is non-degenerate, since we start from a complementary node at level 1 and since the property that every node except the initial node at level 1 and complementary node at level 𝑁 has exactly two neighbours, the path followed is unique, for a given 𝜔 0 . Furthermore, it can only end in a complementary node at level 𝑁 : A solution of the PCP/game. Figure 2 illustrates a few steps of the algorithm. 

HANDLING DEGENERATE PCP

Recall (Definition 3.1) that there are two ways in which a PCP at level 𝑘 can be degenerate: (i) if there are points satisfying more than |𝐼 𝑘 | equations and (ii) if some systems admit more than one solution. In the first case, which is far more frequent than the second, things may go wrong with the arc traversal algorithm (Algorithm 1). When we follow, during arc traversal or node lifting, an arc 𝛾 𝑘 (𝑍,𝑊 ), we normally encounter a unique feasible almost complementary node, either 𝜌 𝑘 (𝑍 ∪ {𝑧},𝑊 ) or 𝜌 𝑘 (𝑍,𝑊 ∪ {𝑤 }). However, for some PCP, it may happen that an arc-traversal makes more than one new constraint binding. For example, there may exist 𝑤 1 and 𝑤 2 , such that 𝜌 𝑘 (𝑍,𝑊 ∪ {𝑤 1 }) and 𝜌 𝑘 (𝑍,𝑊 ∪ {𝑤 2 }) define the same feasible solution (identical coordinates). Such a node is degenerate. While traversal of non-degenerate nodes is unambiguous, it is ambiguous for degenerate nodes, since they neighbour three or more almostcomplementary arcs. In this case, an arbitrary choice of the next arc may lead the algorithm to cycle. Figure 3 shows an example game with some degenerate nodes, and paths linking them.

In this example, nodes 1, 2, 3 and 4 are degenerate. The corresponding graph contains cycles ({1, 2, 3}, {2, 3, 4}, {1, 2, 4, 3}). However, this graph always contains at least one path from the initial The procedure 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑝𝑎𝑡ℎ() performs node traversal along a path of non-degenerate nodes, until either (i) the complementary node is reached, (ii) a new degenerate node is reached or (iii) a degenerate node which has already been explored is reached. In cases (i) and (ii) the variable 𝑛𝑒𝑥𝑡𝑛𝑜𝑑𝑒 is set to the corresponding node, while in case (iii) it takes value ∅.

Applying Algorithm 2 to the example of Figure 3, assuming that we append degenerate nodes' outgoing arcs from top to bottom in 𝑙𝑖𝑠𝑡𝑜 𝑓 𝑎𝑟𝑐𝑠 (different heuristics may be used to decide in which order arcs should be appended), we get the following sequence of lists of arcs:

{(1, 𝑢𝑝), (1, 𝑑𝑜𝑤𝑛)} → {(1, 𝑢𝑝), (2, 𝑢𝑝), (2, 𝑚𝑖𝑑𝑑𝑙𝑒), (2, 𝑏𝑜𝑡𝑡𝑜𝑚)} → {(1, 𝑢𝑝), (2, 𝑢𝑝), (2, 𝑚𝑖𝑑𝑑𝑙𝑒)} → {(1, 𝑢𝑝), (2, 𝑢𝑝), (4, 𝑢𝑝), (4, 𝑏𝑜𝑡𝑡𝑜𝑚)} → Node 5 is returned.
Note that in the case of LCP (i.e. for bimatrix games or polymatrix games), a heuristic to order the arcs to append to the list is known that allows Algorithm 2 to never backtrack [START_REF] Stengel | Computing equilibria for two-person games[END_REF]. This heuristic, based on a lexicographic perturbation of linear systems, is useful since it avoids unnecessary arc traversals, which are costly. The same kind of approach is likely to be applicable to PCP as well. However, computing the heuristic for PCP would require to solve polynomial systems, so the overall benefit is unclear. We leave 8 This is a consequence of the fact that a random infinitesimal perturbation of the coefficients of the PCP will resolve degeneracy by making some of the binding constraints non-binding. In the process, the new non-degenerate nodes will be defined by pairs (𝑍 ′ ,𝑊 ′ ) where 𝑍 ′ ⊆ 𝑍 and 𝑊 ′ ⊆ 𝑊 . the design of a lexicographic approach for PCP and its evaluation for further research. We should also mention the second case of degeneracy, corresponding to the case where some V S 𝑍,𝑊 𝑘 encountered in the course of the algorithm is a variety of strictly positive dimension (an arc, an hypersurface...) because its defining equations are redundant. While the use of a Groebner basis approach allows to exactly represent such positive-dimensional varieties in parameterized form, it is not clear how such varieties should be traversed in the course of our procedure 9 . We defer the design of a non-zero dimensional varieties traversal method to further work. Instead, what we suggest to do in this case of degeneracy is to apply a small (non-infinitesimal) random perturbation to the coefficients of the initial PCP and solve this new perturbed PCP. The perturbed PCP will generally not be degenerate. So doing, we obtain an approximate Nash equilibrium when this form of degeneracy occurs.

GRAPHICAL/HYPERGRAPHICAL GAMES

The PCP approach extends naturally to polymatrix games [START_REF] Yanovskaya | Equilibrium points in polymatrix games[END_REF], graphical games [START_REF] Kearns | Graphical Models for Game Theory[END_REF] and hypergraphical games [START_REF] Papadimitriou | Computing correlated equilibria in multi-player games[END_REF]. These are succinct representations of 𝑁 -player games where the utilities of the players are local, i.e. depend on the strategies of subsets of 𝑃 only. Hypergraphical games are defined as follows: Definition 5.1 (Hypergraphical game). A 𝑁 -player hypergraphical game, Γ 𝑁 , is defined as:

Γ 𝑁 = (𝑃 𝑔 ) 𝑔=1,...,𝐺 , (𝑆 𝑛 ) 𝑛 ∈𝑃 , 𝑎 𝑔 = (𝑎 𝑔,𝑛 𝜔 𝑃𝑔 ) 𝑛 ∈𝑃 𝑔 ,𝜔 𝑃𝑔 ∈𝜋 𝑃𝑔 𝑔=1,...,𝐺 .
• 𝑃 𝑔 ⊆ 𝑃 = {1, . . . , 𝑁 }, ∀𝑔 ∈ 1, . . . , 𝐺. 𝑃 𝑔 is the set of players of the 𝑔 𝑡ℎ local game and ∪ 𝑔=1,...,𝐺 𝑃 𝑔 = 𝑃.

• (𝑆 𝑛 ) 𝑛 ∈𝑃 is the list of players pure strategies sets.

• 𝑎 𝑔,𝑛 𝜔 𝑃𝑔 is the (positive) disutility that player 𝑛 gets in local game number 𝑔 (provided that 𝑛 belongs to 𝑃 𝑔 ), when the joint strategy of all players in game 𝑔 is 𝜔 𝑃 𝑔 .

The disutility of player 𝑛 ∈ 𝑃 for joint strategy 𝜔 is 𝑎 𝑛 𝜔 = 𝑔,𝑛 ∈𝑃 𝑔 𝑎 𝑔,𝑛 𝜔 𝑃𝑔 .

Polymatrix games and graphical games are specific cases of hypergraphical games. Polymatrix games are characterized by the fact that any local game 𝑔 involves exactly two players: |𝑃 𝑔 | = 2, ∀𝑔 = 1, . . . , 𝐺. Graphical games are hypergraphical games where the utility of any player 𝑛 ∈ 𝑃 only depends on the strategies of a subset 𝑃 𝑛 ∈ 𝑃 of players. They are characterized by the fact that 𝐺 = 𝑁 (there is one local game attached to each player) and that 𝑎 𝑔,𝑛

𝜔 𝑃𝑔 = 0, ∀𝜔 ∈ 𝜋, ∀𝑛 ≠ 𝑔.
Since a hypergraphical game can be represented as a normal form game (potentially exponentially larger to express), NE computation in hypergraphical games admits an exponential size PCP formulation. Fortunately, we can exploit the factorisation of the disutility functions of a hypergraphical game in order to compute a corresponding PCP of "reasonable" size. First, we can show that: Proposition 5.2 (PCP factorization). results from the repeated application of the distributivity of the product over the addition. The proposition follows. □ Note that 𝐴 𝑛 𝑖 (𝑥 -𝑛 ) is still a polynomial in variables 𝑥 𝑚 𝑗 , (𝑚, 𝑗) ≠ (𝑛, 𝑖) with a number of terms of degree 𝑁 -1 equal to |𝜋 -𝑛 |. But it is known, for example, that polymatrix games admit a linear complementarity problem formulation [START_REF] Howson | Equilibria of polymatrix games[END_REF]. We show that it is possible to get similar savings in representation size and solution complexity for hypergraphical games, through the addition of auxiliary variables. We define these variables as:

𝐴 𝑛 𝑖 (𝑥 -𝑛 ) = 𝑔,
𝑦 𝑛 𝑔 = 𝑛 𝜈=1 𝛼 𝜈 𝑔 , where 𝛼 𝜈 𝑔 = 1 if 𝜈 ∈ 𝑃 𝑔 and 𝛼 𝑔 𝜈 = 𝜔 𝜈 ∈𝑆 𝜈 𝑥 𝜈 𝜔 𝜈 if 𝜈 ∈ 𝑃\𝑃 𝑔 .
With this definition, we have 𝑄 𝑔 𝑥 𝑃 \𝑃 𝑔 = 𝑦 𝑁 𝑔 and

𝑦 1 𝑔 = 𝛼 1 𝑔 and 𝑦 𝑛 𝑔 = 𝑦 𝑛-1 𝑔 × 𝛼 𝑛 𝑔 , ∀𝑛 = 2, . . . , 𝑁 . (6) 
Note that there are exactly 𝐺 × 𝑁 additional variables 𝑦 𝑛 𝑔 and their values are defined by equations of degree 1 when 𝑛 ∈ 𝑃 𝑔 and degree 2 when 𝑛 ∈ 𝑃 \ 𝑃 𝑔 . This gives the following expression for 𝐴 𝑛 𝑖 :

𝐴 𝑛 𝑖 𝑥 -𝑛 , 𝑦 has a finite number of solutions), it is solvable in single exponential time [START_REF] Dickenstein | The membership problem for unmixed polynomial ideals is solvable in single exponential time[END_REF]. Furthermore, being able to upper bound the degrees of the polynomials involved in the PCP has a positive impact on the complexity of the algorithm: Proposition 5.4 (Complexity of the path-following algorithm). The time complexity of the path-following algorithm for a non-degenerate graphical/hypergraphical game is simply exponential in |𝐼 𝑁 | and doubly exponential in the maximal number of players of any local game.

                         𝑥 ∈ D, 𝑥 𝑛 𝜔 0 𝑛 = 1 and 𝑥 𝑛 𝑖 = 0, ∀𝑛 > 𝑘, ∀𝑖 ≠ 𝜔 0 𝑛 𝑥 𝑛 𝑖 = 0, ∀(𝑛, 𝑖) ∈ 𝑍, 𝑦 1 𝑔 = 𝛼
Proof of Proposition 5.4: Indeed, The worst-case time complexity of the best known Groebner basis computation algorithm is doubly exponential in the maximal degree of the involved polynomials (see e.g. [START_REF] Mayr | Some Complexity Results for Polynomial Ideals[END_REF]). The number of arc traversal steps is bounded by the number of almost complementary nodes at any level (with respect to a fixed 𝜔 0 . Thus, at level 𝑘 it is bounded by #𝑁𝑜𝑑𝑒𝑠

(𝑘) = | {(𝑍,𝑊 ), |𝑍 | + |𝑊 | = |𝐼 𝑘 |, |𝑍 ∩ 𝑊 | ≤ 1} |.
Then, remark that, for any hypergraphical game, including normal form games: #𝑁𝑜𝑑𝑒𝑠 (𝑘) ≤ |𝐼 𝑘 |2 |𝐼 𝑘 | . Indeed, potential nodes can be built by choosing an arbitrary 𝑍 ⊆ 𝐼 𝑘 and then there exist at most |𝐼 𝑘 | 𝑊 potentially leading to a (𝑘, 𝑗)-almost complementary node. So, the total number of almost-complementary nodes for all levels is 𝑂 𝑁 |𝐼 𝑁 |2 |𝐼 𝑁 | . Since each arc traversal requires at most 𝑂 (|𝐼 𝑁 |) Groebner basis computations, we get the result 10 . □

EXPERIMENTS

The support enumeration and path-following algorithms were implemented in Python 3 using the Sagemath software for the computation of varieties. Each game was solved on a single node of a HPC platform. Nodes were identical Intel Xeon E5-2680 v4 2,4 Ghz bi-processors with 128 Gb of RAM, under Linux OS.

The benchmark was composed of normal-form and hypergraphical games with 3 to 7 players, 2 to 4 actions and hyperedges of size 3 (for HGG). They were generated using the GAMUT 11 suite. We generated Covariant and Random games with integer valued utilities in range 0..100. In total, 100 games were solved for each configuration, using support enumeration (SE) and path-following (PF). Hypergraphical games were converted to normal-form prior to being solved using support enumeration. Before applying SE or PF, pure equilibrium search was performed. After this step there remained from 10 to 40 unsolved games in each configuration. For these, we computed the average NE support size per player found using SE or PF, as well as the time required to solve them. A timeout of 5 minutes per run was used for SE and PF. Figure 4 shows the results obtained for random games with 5 players and 3 actions (3 local games of size 3 for hypergraphical games). All other tested configurations are shown in the supplementary material. 4, top, shows some features generally observed for all configurations. First, as can be expected, PF solutions will present a larger variety of support sizes than SE and larger in general. Still, it happens, rarely, that PF finds solutions of smaller support size than SE. This can (and does) happen in the case of degenerate games where the equilibrium with smallest support is at one end of an arc of solutions of dimension 1. SE will not find this solution while PF may encounter this complementary node. This is why PF finds equilibria of support size 6 when SE does not, in Figure 4.

Globally, we found that SE was more efficient than PF for games with no more than 6 players and 2 actions. PF is more efficient for games with at least 3 actions per player. With 7 players, 2 actions, 11 http://gamut.stanford.edu/ both approaches have similar performances. It confirms that when the total number of potential supports increases, Wilson's approach becomes more efficient than blind enumeration and removal of dominated alternatives. Similar conclusions hold for random and covariant games. As far as HGG are concerned, we found that the direct PF approach did not outperform a prior translation to NFG. In the study cases, it looks like the cost of adding variables 𝑦 is not compensated by the decreased polynomial degrees and number of terms. Studying whether it is possible to improve the PF approach's performance in case of HGG is left for further research.

CONCLUDING REMARKS

There is an abundant literature on algorithms for approximate equilibrium search in 𝑁 -player games, including homotopy methods [START_REF] Blum | A Continuation Method for Nash Equilibria in Structured Games[END_REF][START_REF] Govindan | A Global Newton Method to Compute Nash Equilibria[END_REF][START_REF] Govindan | Computing Nash Equilibria by Iterated Polymatrix Approximation[END_REF][START_REF] Herings | Homotopy methods to compute equilibria in game theory[END_REF]. These are based on the definition of a parametrized continuum of games, joining an arbitrary game with known equilibrium, to the game of interest. An "arc" of equilibria of the parametrized games is followed and [START_REF] Datta | Finding all Nash equilibria of a finite game using polynomial algebra[END_REF] have used Groebner bases to solve the specifically designed (easy) initial game. Homotopy approaches are prone to numerical errors and potential non-convergence. Uniform strategy enumeration methods [START_REF] Babichenko | Simple approximate equilibria in large games[END_REF][START_REF] Berg | Exclusion method for finding Nash equilibrium in multiplayer games[END_REF][START_REF] Lipton | Playing large games using simple strategies[END_REF], on the other hand, suggest to enumerate a space of discretized mixed strategies in order to find a 𝜀-approximate strategy. Polynomial systems-based approaches, such as [START_REF] Porter | Simple search methods for finding a Nash equilibrium[END_REF][START_REF] Wilson | Computing equilibria of N-person games[END_REF] also rely on a form of enumeration. [START_REF] Porter | Simple search methods for finding a Nash equilibrium[END_REF] enumerates and solves a sequence of systems formed from mixed strategies supports of increasing size, when [START_REF] Wilson | Computing equilibria of N-person games[END_REF] explores a deterministic sequence of systems. We provided the first implementation of [START_REF] Wilson | Computing equilibria of N-person games[END_REF], extended to degenerate and succinct games. Our approach explores a sequence of neighbour almost-complementary points defined as solutions of systems of equations at different levels. It differs from [START_REF] Porter | Simple search methods for finding a Nash equilibrium[END_REF] which blindly explores every possible systems in increasing order of supports' sizes. When there exists a NE with small support, the method [START_REF] Porter | Simple search methods for finding a Nash equilibrium[END_REF] is faster, while in other cases [START_REF] Wilson | Computing equilibria of N-person games[END_REF] is more efficient.

The building block of PCP methods, the polynomial system solver, can be easily adapted to follow the progresses in solvers' development. We used an exact algebraic solver. So doing, node's coordinates are algebraic numbers [START_REF] Conway | The Book of Numbers[END_REF] that is, roots of polynomials which coefficients are either rational numbers, or algebraic numbers themselves. Thus they are finitely exactly represented. While exactness is desirable in Wilson's algorithm in order to distinguish degenerate from non-degenerate nodes, it comes at a computational cost. Wilson's arc traversal procedure can be adapted to use approximate solvers, by using depth-first search in the way we use it for dealing with degeneracy. It is enough to relax the condition that a node is degenerate whenever it corresponds to points 𝜌 𝑘 (𝑍,𝑊 ) and 𝜌 𝑘 (𝑍 ′ ,𝑊 ′ ) of identical coordinates: We may consider that (𝑍,𝑊 ) and (𝑍 ′ ,𝑊 ′ ) correspond to a single degenerate node whenever the coordinates of 𝜌 𝑘 (𝑍,𝑊 ) and 𝜌 𝑘 (𝑍 ′ ,𝑊 ′ ) are close enough. So doing, system solving will be faster, but the number of explored almost complementary nodes may increase, due to "false" degeneracy.

Finally, our approach may be naturally extended to other kinds of games, including Bayesian games [START_REF] Harsanyi | Games with incomplete information played by "Bayesian" players, I-III Part I. The basic model[END_REF] and stochastic games [START_REF] Filar | Competitive Markov Decision Processes[END_REF]. Indeed, it is known that two-player bayesian games can be represented as polymatrix games [START_REF] Joseph | Bayesian equilibria of finite two-person games with incomplete information[END_REF]. The same relation is likely to hold between 𝑁 -player bayesian games and hypergraphical games, making a concise PCP formulation possible.
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 21 Mixed Nash equilibrium). Joint mixed strategy 𝜉 = (𝜉 𝑛 𝑖 ) 𝑛 ∈𝑃,𝑖 ∈𝑆 𝑛 is a mixed Nash equilibrium of game Γ 𝑁 = (𝑃, 𝜋, 𝑎) if and only if: ∀𝑛 ∈ 𝑃, 𝐷𝑖𝑠 𝑛 [𝜉] ≤ 𝐷𝑖𝑠 𝑛 [( ξ𝑛 , 𝜉 -𝑛 )], ∀ ξ𝑛 ≠ 𝜉 𝑛 , where 𝐷𝑖𝑠 𝑛 [𝜉] = 𝑑𝑒 𝑓 𝜔=(𝜔 1 ,...,𝜔 𝑛 ) ∈𝜋

  PCP at level 𝑁 is defined as: Definition 3.1 (Non-degenerate PCP). PCP S 𝑁 is non-degenerate iff the following conditions hold:(1) No point in D 𝑁 satisfies more than |𝐼 𝑁 | equations.(2) No two distinct points satisfy the same set of |𝐼 𝑁 | equations.
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 37 Complementary node lifting). Let S 𝑘 be a sub-PCP of S 𝑁 at level 1 ≤ 𝑘 < 𝑁 and arbitrary pure joint strategy 𝜔 0 . Assume that, for 𝑍,𝑊 ⊆ 𝐼 𝑘 , S 𝑍,𝑊 𝑘 defines a complementary node of S 𝑘 in 𝐸 𝜋 𝑘 . Then, S 𝑍 ′ ,𝑊 𝑘+1 defines a (𝑘 + 1, 𝜔 0 𝑘+1 )-almost complementary arc of sub-PCP S 𝑘+1 , where 𝑍 ′ = 𝑍 ∪ (𝑘 + 1, 𝑗), 𝑗 ≠ 𝜔 0 𝑘+1 . Furthermore, this arc neighbours a single (𝑘 + 1, 𝜔 0 𝑘+1 )-almost complementary node at level 𝑘 + 1 (it is an unbounded arc).The (𝑘 + 1, 𝜔 0 𝑘+1 )-almost complementary node at level 𝑘 + 1 can be computed by trying to solve all systems S 𝑍 ′ ∪{ (𝜈,𝑗) },𝑊 𝑘+1 with (𝜈, 𝑗) ∈ 𝐼 𝑘 \ 𝑍 ′ and S 𝑍 ′ ,𝑊 ∪{ (𝜈,𝑗) } 𝑘+1

Figure 1 :

 1 Figure 1: Example almost-complementary paths at level 𝑘.
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 2 Figure 2: Portion of a path followed by the algorithm.

1 2Figure 3 : 5 𝑛𝑒𝑥𝑡𝑛𝑜𝑑𝑒

 135 Figure 3: A PCP where four degenerate almostcomplementary nodes are encountered. Node 5 is a complementary node.

Definition 5 . 3 (

 53 PCP auxiliary variables). In addition to the variables {𝑥 𝑛 𝑖 }, let us consider an additional set of variables, 𝑦 𝑛 𝑔 𝑔=1..𝐺,𝑛 ∈𝑃 .

Figure 4 :

 4 Figure 4: Experiment on 100 Random game. 66 games with PNE in NFG, 60 in HGG.

Figure

  Figure4, top, shows some features generally observed for all configurations. First, as can be expected, PF solutions will present a larger variety of support sizes than SE and larger in general. Still, it happens, rarely, that PF finds solutions of smaller support size than SE. This can (and does) happen in the case of degenerate games where the equilibrium with smallest support is at one end of an arc of solutions of dimension 1. SE will not find this solution while PF may encounter this complementary node. This is why PF finds equilibria of support size 6 when SE does not, in Figure4.Globally, we found that SE was more efficient than PF for games with no more than 6 players and 2 actions. PF is more efficient for games with at least 3 actions per player. With 7 players, 2 actions,

  Computes the end node of arc 𝛾 𝑘 (𝑍,𝑊 ), given starting almost-complementary node 𝜌 𝑘 (𝑍 ′ ,𝑊 ′ ).

		*/
	/* Initialization	*/

1 𝑆𝑜𝑙 ← ∅; 2 for (𝜈, 𝑗) ∈ 𝐼 𝑘 do 3 if (𝜈, 𝑗) ∈ 𝐼 𝑘 \ 𝑍 ′ then 4 𝑍 𝑙𝑜𝑐 ← 𝑍 ∪ {(𝜈, 𝑗)}, 𝑊 𝑙𝑜𝑐 ← 𝑊 ; 5 if 𝑑𝑖𝑚 V S 𝑍 𝑙𝑜𝑐 ,𝑊 𝑙𝑜𝑐 𝑘 = 0 then 6 𝜌 𝑙𝑜𝑐 ← V S 𝑍 𝑙𝑜𝑐 ,𝑊 𝑙𝑜𝑐 𝑘 ∩ D 𝑘 ; 7 if 𝜌 𝑙𝑜𝑐 ≠ ∅ then 𝑆𝑜𝑙 ← 𝑆𝑜𝑙 ∪ {(𝑍 𝑙𝑜𝑐 ,𝑊 𝑙𝑜𝑐 , 𝜌 𝑙𝑜𝑐 )}; 8 if (𝜈, 𝑗) ∈ 𝐼 𝑘 \ 𝑊 ′ then 9 𝑍 𝑙𝑜𝑐 ← 𝑍 , 𝑊 𝑙𝑜𝑐 ← 𝑊 ∪ {(𝜈, 𝑗)}; 10 if 𝑑𝑖𝑚 V S 𝑍 𝑙𝑜𝑐 ,𝑊 𝑙𝑜𝑐 𝑘 = 0 then 11

  𝑛 ∈𝑔 𝑄 𝑔 𝑥 𝑃 \𝑃 𝑔 𝑅 𝑛,𝑖,𝑔 𝑥 𝑃 𝑔 \{𝑛 } , where 𝑄 𝑔 𝑥 𝑃 \𝑃 𝑔 = 𝜈 ∈𝑃 \𝑃 𝑔 𝜔 𝜈 ∈𝑆 𝜈 𝑥 𝜈 𝜔 𝜈 and 𝑅 𝑛,𝑖,𝑔 𝑥 𝑃 𝑔 \{𝑛 } = 𝜈 ∈𝑃 \𝑃 𝑔 𝜔 𝜈 ∈𝑆 𝜈

			𝑎 𝑔,𝑛 𝜔 𝑃𝑔	𝑥 𝜈 𝜔 𝜈 .
			𝜔 𝑃𝑔	𝜈 ∈𝑃 𝑔 \{𝑛 }
			𝜔 𝑛 =𝑖		
	Proof of Proposition 5.2: The disutility of player 𝑛 ∈ 𝑁 for
	joint strategy 𝜔 is:				
		𝑎 𝑛 𝜔 =	𝑔,𝑛 𝑎 𝜔 𝑃𝑔	
		𝑔,𝑛 ∈𝑃 𝑔		
	Using this expression of 𝑎 𝑛 𝜔 , we can rewrite 𝐴 𝑛 𝑖 (𝑥 -𝑛 ):
	𝐴 𝑛 𝑖 (𝑥 -𝑛 ) =	𝑎 𝑔,𝑛 𝜔 𝑃𝑔	𝑥 𝜈 𝜔 𝜈 , ∀𝑛 ∈ 𝑃, 𝑖 ∈ 𝑆 𝑛 ,
	𝜔 ∈𝜋 𝜔 𝑛 =𝑖	𝑔,𝑛 ∈𝑃 𝑔	𝜈≠𝑛		
	=	𝑎 𝑔,𝑛 𝜔 𝑃𝑔	𝑥 𝜈 𝜔 𝜈 ,	
	𝜔 𝑛 =𝑖 𝑔,𝑛 ∈𝑃 𝑔 𝜔 ∈𝜋	𝜈≠𝑛		
	=	𝑎 𝑔,𝑛 𝜔 𝑃𝑔		𝑥 𝜈 𝜔 𝜈	𝑥 𝜈 𝜔 𝜈 ,
	𝑔,𝑛 ∈𝑃 𝑔 𝜔 𝑃𝑔	𝜈 ∈𝑃 𝑔 \{𝑛 }	𝜔 𝑃 \𝑃𝑔 𝜈 ∈𝑃 \𝑃 𝑔
		𝜔 𝑛 =𝑖			
	=	𝑎 𝑔,𝑛 𝜔 𝑃𝑔		𝑥 𝜈 𝜔 𝜈	𝑥 𝜈 𝜔 𝜈	.
	𝑔,𝑛 ∈𝑃 𝑔 𝜔 𝑃𝑔	𝜈 ∈𝑃 𝑔 \{𝑛 }	𝜈 ∈𝑃 \𝑃 𝑔 𝜔 𝜈 ∈𝑆 𝜈
		𝜔 𝑛 =𝑖			
	Remark that equality	𝑥 𝜈 𝜔 𝜈 =	𝑥 𝜈 𝜔 𝜈
		𝜔 𝑃 \𝑃𝑔 𝜈 ∈𝑃 \𝑃 𝑔		

  𝑚𝑎𝑥 𝑔=1,..,𝐺 |𝑃 𝑔 | and the size of the expression of these polynomials is comparable to that of the hypergraphical game.Our algorithm can now be extended to deal with this new expression with additional variables. The only change in the algorithm is the definition of the polynomial subsystems which now have to consider the 𝑦 𝑛 𝑔 variables. We extend the definition of the polynomial systems S 𝑍,𝑊

									Remark that the polynomials 𝐴 𝑛 𝑖 𝑥 -𝑛 , 𝑦 𝑁 𝑔	𝑔=1,..,𝐺	now have de-
									gree at most 𝑘	to S	𝑍,𝑊 𝑘	for pairs 𝑍,𝑊 ⊆ 𝐼 𝑘 :
	𝑁 𝑔	𝑔=1,..,𝐺	=	𝑔,𝑛 ∈𝑃 𝑔	𝑦 𝑁 𝑔	𝜔 𝑃𝑔	𝑎 𝑔,𝑛 𝜔 𝑃𝑔	𝜈 ∈𝑃 𝑔 \{𝑛 }	𝑥 𝜈 𝜔 𝜈 . (7)
						𝜔 𝑛 =𝑖			

  With this generalization to hypergraphical games, it results that the number of terms of the polynomials of the systems is reduced and their degrees are bounded by the number of players of the largest subgame. This has an importance when it comes to computing Groebner bases. The Ideal Membership Problem, which is the core problem of the Groebner basis computation problem is known to be ExpSpace-complete. However, when the ideal has dimension 0 (which is the case when S

				1 𝑔 , ∀𝑔 = 1, . . . , 𝐺
		𝑦 𝑛 𝑔 = 𝑦 𝑛-1 𝑔	× 𝛼 𝑛 𝑔 , ∀𝑔 = 1..𝐺, ∀𝑛 = 2..𝑘.
	𝐴 𝑛,𝑘 𝑖	𝑥 {1..𝑘 }\{𝑛 } , 𝑦 𝑘 𝑔	𝑔=1,..,𝐺	= 1, ∀(𝑛, 𝑖) ∈ 𝑊 ,
			𝑍,𝑊	
			𝑘	

Python/Sagemath codes as well as tutorial Jupyter notebooks are available online: https://forgemia.inra.fr/game-theory-tools-group/gtnash-git/.

The PCP formulation considers that players are disutility minimizers. This is without loss of generality since any utility maximization game can be equivalently expressed as a disutility minimization game.

Thus, a complementary point is (𝑛, 𝑖)-almost complementary for every pair (𝑛, 𝑖).

The proofs of this Section are modern rewritings of the proofs of Wilson's original paper. The reader will find them, as well as a tutorial example and additional experiments in https://doi.org/10.5281/zenodo.5850463.

The exponent 𝑘 in 𝛾 𝑘 or 𝜌 𝑘 indicates that we are at level 𝑘.

https://www.sagemath.org/index.html.

In practice, as soon as a solution 𝜌 𝑙𝑜𝑐 is found in line 9 of Algorithm 1, the main loop is exited and it is tested whether the current node is degenerate, by checking whether additional constraints indexed in 𝑍 or 𝑊 are satisfied by the coordinates of 𝜌 𝑙𝑜𝑐 .

When such varieties correspond to sets of complementary points at level 𝑁 , we can directly provide the continuous set of equilibrium strategies in parameterized form.

This complexity bound is theoretical. In practice the length of the paths is often small.