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Abstract: Antipsychotics share the common pharmacological feature of antagonizing the dopamine
2 receptor (D2R), which is abundant in the striatum and involved in both the therapeutic and side
effects of this drug’s class. The pharmacological blockade of striatal D2R, by disinhibiting the
D2R-containing medium-sized spiny neurons (MSNs), leads to a plethora of molecular, cellular and
behavioral adaptations, which are central in the action of antipsychotics. Here, we focused on the
cell type-specific (D2R-MSNs) regulation of some striatal immediate early genes (IEGs), such as cFos,
Arc and Zif268. Taking advantage of transgenic mouse models, pharmacological approaches and
immunofluorescence analyses, we found that haloperidol-induced IEGs in the striatum required
the synergistic activation of A2a (adenosine) and NMDA (glutamate) receptors. At the intracellular
signaling level, we found that the PKA/DARPP-32 and mTOR pathways synergistically cooperate
to control the induction of IEGs by haloperidol. By confirming and further expanding previous
observations, our results provide novel insights into the regulatory mechanisms underlying the
molecular/cellular action of antipsychotics in the striatum.

Keywords: haloperidol; striatum; immediate early genes; dopamine; D2R; PKA; mTOR

1. Introduction

The vast majority of antipsychotics shares the common pharmacological feature of
anta-gonizing the dopamine (DA) D2 receptors (D2Rs). These receptors are abundant in
the striatum where they are found in half of striatal medium-sized spiny neurons (MSNs)
and in cholinergic interneurons but also on terminals of projecting DA-neurons [1,2].

D2R-MSNs represent the main cell type through which antipsychotics (i.e., haloperidol,
raclopride, eticlopride, sulpiride) can lead to extrapyramidal and motor side effects such
as hypolocomotion, catalepsy, parkinsonism and tardive dyskinesia [3,4]. A large body
of evidence indicates that D2R antagonists, by blocking/preventing the DA→D2R→Gi
(inhibitory G protein-coupled receptor)-mediated tonic inhibition of D2R-MSNs, promote
the activation/disinhibition of intracellular signaling events through the recruitment of
multiple pathways, including the cAMP-dependent protein kinase A (PKA)/dopamine-
and cAMP-regulated phosphoprotein (DARPP-32) and the mTOR cascades [5–9], which
participate in the regulation of both transcriptional and translational modifications. How-
ever, although blockade of the endogenous action of DA onto D2R is necessary to promote
the activation of signaling cascades in D2R-MSNs, several reports have also shown that
D2R downstream intracellular signaling events (i.e., cAMP/PKA pathway) also depend on
the dynamic orchestration of several extracellular and intracellular players whose activity
may scale the modulation of D2R-containing neurons [7–13], thus reflecting the nature of
MSNs as coincidence detectors of different neurochemical stimuli. Within the striatum, this
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antipsychotics-associated signaling cascade rapidly culminates in the long-term expression
of immediate early genes (IEGs), such as cFos, Arc and Zif268 [14].

IEGs represent a heterogenous class of highly responsive genes that can be rapidly and
transiently induced by a plethora of physiological, pharmacological and environmental
stimuli. The encoded proteins of IEGs cFos, Arc and Zif268 are well known to contribute to
forms of synaptic plasticity [15]. Indeed, within the striatum, the study of DA transmission,
DA-mediated signaling events and IEGs has been instrumental in shedding lights on the
temporal and spatial organization of striatal territories as well as on the functions of striatal
cell types, circuits and neuromodulatory systems [16–25]. However, whether and how
multiple (extracellular and intracellular) signaling pathways converge on the regulation of
haloperidol-induced IEGs in D2R-MSNs remain to be fully understood.

Here, by using transgenic animals, pharmacological approaches and immunofluores-
cence analyses, we investigated whether and how (i) non-DA neurotransmitters, notably
glutamate (via NMDAR) and adenosine (via A2aR), and (ii) intracellular PKA/DARPP-32
and mTOR signaling pathways contribute to the regulation of haloperidol-induced IEGs in
the striatum. We observed that NMDAR and A2aR as well as PKA/DARPP-32 and mTOR
pathways are distinctly required and synergistically necessary to gate haloperidol-induced
activation of D2R-MSNs. Our study, by further expanding the landscape of cellular and
molecular modifications elicited by antipsychotics, provide new evidence for the regulatory
activity of D2R-MSNs.

2. Results
2.1. Haloperidol Induces Contrasting Cell Type-Specific Regulation of IEGs in the Dorsal Striatum

It is well established that haloperidol induces the expression of the IEGs cFos, Arc
and Zif268 in the striatum [26–31]. Here, we took advantage of Drd2-eGFP mice [32] to
visualize striatopallidal D2R+-neurons and revisit the cell type-specific expression patterns
of cFos, Arc and Zif268 induced by haloperidol. As expected, an increase in cFos-, Arc- and
Zif268-immunoreactive neurons was observed in the dorsal striatum 60 min after a single
administration of haloperidol (0.5 mg/kg, ip) (Figure 1A).

Cell type-specific analysis revealed that cFos and Arc were exclusively triggered
in striatopallidal D2R+-neurons (Figure 1A,B). In contrast, Zif268 was increased in both
D2R--neurons (putative striatonigral neurons) and striatopallidal D2R+-neurons
(Figure 1A,B), although Zif268+/D2R+-neurons outnumbered Zif268+/D2R--neurons
(Figure 1A,B). This first set of results indicates that cFos and Arc, but not Zif268, can
be used as bonafide markers to study long-term cellular and molecular events induced by
haloperidol in striatopallidal neurons.

Next, we wondered whether the induction of cFos and Arc spatially occurred in
the same or different subpopulations of D2R+-neurons. Thus, we performed a double
immunofluorescence analysis for cFos and Arc. We observed a complete colocalization
(341 out of 341 neurons, 100%) of cFos with Arc (Figure 2A,B). However, we also ob-
served that among all Arc+-neurons, 23.5% (105 out of 446 neurons) did not express cFos
(Figure 2A,B), therefore indicating that haloperidol-induced cellular modifications may
occur at different spatial scales.

2.2. Haloperidol-Induced cFos and Arc Require the Activation of A2a and NMDA Receptors

Next, we investigated the contribution of non-DA receptors in the regulation of
haloperidol-induced cFos and Arc (Figure 1). We focused on A2a (highly enriched in stri-
atopallidal neurons [33]) and NMDA receptors as they strongly contribute to the regulation
of the striatopallidal neurons’ activity and plasticity [34,35].



Int. J. Mol. Sci. 2022, 23, 11637 3 of 14Int. J. Mol. Sci. 2022, 23, 11637 3 of 15 
 

 

 

Figure 1. Haloperidol induces cFos, Arc and Zif268 in a cell type-specific manner in the mouse stri-

atum. (A) Double immunofluorescence detection of cFos, Arc and Zif268 in the striatum of Drd2-

eGFP mice 60 min after vehicle (Veh) or haloperidol (Hal) administration. Arrows in magenta indi-

cate the expression of immediate early genes (IEGs) in D2R+-neurons, whereas arrows in white in-

dicate the expression of IEGs in D2R--neurons. Scale bar: 50 μm. Note: given the low number of 

IEGs-positive neurons in Veh-treated mice, pictures are not shown. (B) Quantification of cFos, Arc 

and Zif268 in both D2R+- and D2R−-neurons. Statistics: *** p < 0.001 (Hal vs. Veh in D2R+-neurons), 
### p < 0.001 (Hal vs. Veh in D2R−-neurons), °°° p < 0.001 (Hal in D2R+-neurons vs. Hal in D2R—neu-

rons for Zif268). Veh (n = 3) and Hal (n = 4). One-way ANOVA: F(3, 10) = 5301, p < 0.0001 (cFos); F(3, 10) 

= 5618, p < 0.0001 (Arc); F(3, 10) = 180.7, p < 0.0001 (Zif268). 
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Figure 1. Haloperidol induces cFos, Arc and Zif268 in a cell type-specific manner in the mouse
striatum. (A) Double immunofluorescence detection of cFos, Arc and Zif268 in the striatum of
Drd2-eGFP mice 60 min after vehicle (Veh) or haloperidol (Hal) administration. Arrows in magenta
indicate the expression of immediate early genes (IEGs) in D2R+-neurons, whereas arrows in white
indicate the expression of IEGs in D2R--neurons. Scale bar: 50 µm. Note: given the low number
of IEGs-positive neurons in Veh-treated mice, pictures are not shown. (B) Quantification of cFos,
Arc and Zif268 in both D2R+- and D2R−-neurons. Statistics: *** p < 0.001 (Hal vs. Veh in D2R+-
neurons), ### p < 0.001 (Hal vs. Veh in D2R−-neurons), ◦◦◦ p < 0.001 (Hal in D2R+-neurons vs. Hal in
D2R−-neurons for Zif268). Veh (n = 3) and Hal (n = 4). One-way ANOVA: F(3, 10) = 5301, p < 0.0001
(cFos); F(3, 10) = 5618, p < 0.0001 (Arc); F(3, 10) = 180.7, p < 0.0001 (Zif268).

We observed that pretreatment with the specific A2aR antagonist KW-6002 (3 mg/kg [8])
significantly reduced haloperidol-induced cFos expression in the striatum (Figure 3A–C).
In addition, when mice were pretreated with the NMDAR antagonist MK-801 (0.1 mg/kg),
we noticed a dramatic reduction in haloperidol-induced cFos activation (Figure 3A–C).
However, both A2aR and NMDAR blockades failed in fully preventing cFos expression
in haloperidol-treated mice. Interestingly, the co-administration of KW-6002 and MK-801
before haloperidol injection resulted in a complete loss of cFos activation (Figure 3A–C).
Similar regulatory mechanisms were observed when Arc was used as a molecular proxy
of the haloperidol-induced activation of striatopallidal neurons. In fact, while KW-6002
and MK-801 distinctly reduced haloperidol-induced Arc expression (Figure 3D,E), the
co-administration of both A2aR and NMDAR antagonists completely prevented the cellu-
lar/molecular response of striatopallidal neurons to haloperidol (Figure 3D,E).

These results indicate that ambient adenosine and glutamate are necessary and
act synergistically to gate the responsiveness of striatopallidal neurons to the antipsy-
chotic haloperidol.
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Figure 2. Spatiocellular organization of haloperidol-induced cFos and Arc. (A) Double immunoflu-
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μm. Arrows in magenta indicate the co-expression of cFos and Arc in the same neurons, whereas 

arrows in white indicate the expression of Arc (no cFos co-expression). (B) Quantification of the 

degree of colocalization between cFos and Arc. Note that 23.5% of Arc+-neurons did not express 

cFos. 
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Figure 2. Spatiocellular organization of haloperidol-induced cFos and Arc. (A) Double immunofluo-
rescence detection of cFos (red) and Arc (blue) following haloperidol administration. Scale bar: 50 µm.
Arrows in magenta indicate the co-expression of cFos and Arc in the same neurons, whereas arrows
in white indicate the expression of Arc (no cFos co-expression). (B) Quantification of the degree of
colocalization between cFos and Arc. Note that 23.5% of Arc+-neurons did not express cFos.

2.3. Haloperidol-Induced cFos and Arc Require the Involvement of PKA/DARPP-32 and
mTOR Pathways

Haloperidol promotes the PKA-dependent phosphorylation of DARPP-32 on Thr34,
which converts DARPP-32 into an inhibitor of protein phosphatase 1 (PP-1), thereby inhibit-
ing the dephosphorylation of numerous cAMP/PKA-dependent molecular targets [36]. In-
deed, at the intracellular level, A2aR and D2R oppositely regulate the cAMP/PKA/DARPP-32
pathway [7], and seminal reports have shown that the cellular modifications elicited by
haloperidol depend on the recruitment of key intracellular signaling cascades such as the
PKA/DARPP-32 and mTOR pathways [7–9,37]. Here, we decided to investigate whether
these two pathways were, distinctly and/or synergistically, involved in the regulation of
haloperidol-induced IEGs.

To dampen the PKA/DARPP-32 striatal path in vivo, we used DARPP-32 mutant
mice in which Thr34 was replaced by Ala (T34A) [38]. Compared to WT mice, T34A
mutant mice showed reduced cFos and Arc activation following haloperidol administra-
tion (Figure 4A–E). To inhibit the mTOR signaling pathway, mice were pretreated with
rapamycin (5 mg/kg, [9]). As shown in Figure 4, rapamycin reduced haloperidol-induced
cFos and Arc (Figure 4A–E). Interestingly, when both PKA/DARPP-32 and mTOR path-
ways were downregulated (rapamycin administration to T34A mutant mice), we observed
a more pronounced reduction in cFos and Arc following haloperidol administration.
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Figure 3. Haloperidol-induced cFos and Arc require the activation of A2a and NMDA receptors. (A) 
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MK-801 (MK) + haloperidol (n = 5) and KW-6002 (KW) + MK-801(MK) + haloperidol (n = 5). Note: 

given the low number of IEGs-positive neurons in Veh-treated mice, pictures are not shown. Scale 

bar: 50 μm. (C) Quantification of cFos+-neurons in all experimental groups. Statistics: * p < 0.05 and 

*** p < 0.001 (drugs vs. vehicle), ### p < 0.001 (KW-6002 + haloperidol and MK-801 + haloperidol vs. 

haloperidol). One-way ANOVA: F(4, 19) = 113.9, p < 0.0001. (D) Immunofluorescence detection of Arc 

Figure 3. Haloperidol-induced cFos and Arc require the activation of A2a and NMDA receptors.
(A) Temporal schedule of pharmacological treatments. (B) Immunofluorescence detection of cFos
in the striatum of animals treated with vehicle + haloperidol (n = 5), KW-6002 (KW) + haloperidol
(n = 5), MK-801 (MK) + haloperidol (n = 5) and KW-6002 (KW) + MK-801(MK) + haloperidol (n = 5).
Note: given the low number of IEGs-positive neurons in Veh-treated mice, pictures are not shown.
Scale bar: 50 µm. (C) Quantification of cFos+-neurons in all experimental groups. Statistics: * p < 0.05
and *** p < 0.001 (drugs vs. vehicle), ### p < 0.001 (KW-6002 + haloperidol and MK-801 + haloperidol
vs. haloperidol). One-way ANOVA: F(4, 19) = 113.9, p < 0.0001. (D) Immunofluorescence detection of
Arc in the striatum following pharmacological administrations. Scale bar: 50 µm. (E) Quantification
of Arc+-neurons. Statistics: * p < 0.05 and *** p < 0.001 (drugs vs. vehicle), ### p < 0.001 (KW-6002 +
haloperidol and MK-801 + haloperidol vs. haloperidol). One-way ANOVA: F(4, 19) = 90.46, p < 0.0001.
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Figure 4. Haloperidol-induced cFos and Arc require the intracellular activation of PKA/DARPP-32
and mTOR pathways. (A) Temporal schedule of pharmacological treatments. (B,D) Immunofluores-
cence detection of cFos (B) and Arc (D) in the striatum of WT and T34A animals treated with vehicle
+ haloperidol, or rapamycin + haloperidol. Scale bars: 50 µm. (C) Quantification of cFos+-neurons
in WT and T34A mutant mice treated with vehicle + haloperidol and rapamycin + haloperidol
(n = 4–5/group). Statistics: ** p < 0.01 and *** p < 0.001 (T34A + Hal, WT + Rapa + Hal, T34A + Rapa
+ Hal vs. WT + Hal), ## p < 0.01 (T34A + Rapa + Hal vs. T34A + Hal and WT + Rapa + Hal). One-way
ANOVA: F(3, 14) = 62.67, p < 0.0001. (E) Quantification of Arc+-neurons in WT and T34A mutant mice
treated with vehicle + haloperidol and rapamycin + haloperidol (n = 4–5/group). Statistics: ** p < 0.01
and *** p < 0.001 (T34A + Hal, WT + Rapa + Hal, T34A + Rapa + Hal vs. WT + Hal), ## p < 0.01
(T34A + Rapa + Hal vs. T34A + Hal and WT + Rapa + Hal). One-way ANOVA: F(3, 14) = 70.07,
p < 0.0001.
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These results indicate that intracellular cAMP/PKA and mTOR pathways are both
synergistically mobilized and required for the full cellular/molecular action of haloperidol
onto striatopallidal neurons.

3. Discussion

In this study we show that the typical antipsychotic haloperidol, which alters the
activity and plasticity of D2R-MSNs [39,40], elicits cell type-specific activation of IEGs
in the mouse striatum (D1R-MSNs vs. D2R-MSNs) and that this activation requires the
contribution of different signaling actors. Here, we focused on cFos, Arc and Zif268
which, by representing the result of long-term cellular/molecular adaptations, are dynami-
cally triggered by a plethora of stimuli and are also involved in the regulation of several
neuronal functions [41–44]. We observed that the haloperidol-induced expression of the
IEGs cFos and Arc was exclusively restricted to striatopallidal D2R+-neurons, whereas
Zif268 expression was triggered in both D2R--neurons (putative striatonigral D1R-MSNs)
and striatopallidal neurons (D2R-MSNs). These findings are in line with and further
extend previous observations on haloperidol-regulated phospho-proteins (histone H3,
ribosomal protein S6), highlighting the cell type-specific reactivity of MSNs to DA-related
agents [7,8,18,19]. However, the cell type-unspecific expression of Zif268 in the striatal
MSNs suggests that haloperidol, most likely through an indirect mechanism involving
striatal cholinergic and/or GABAergic interneurons [45,46], may also regulate the activity
of D1R-MSNs even though no major changes in the electrophysiological profile of this
cell type have been observed [40]. In this study, we focused on the rostral segment of
the dorsal striatum. However, the striatum extends throughout a rostro-caudal axis with
major differences in the topographic and functional organization of striatal domains and
cell types [17,22,24,47,48]. Indeed, it will be of high interest to explore whether and how
antipsychotics impact on the regulatory functions of caudal striatal domains.

In addition to the selective induction of cFos and Arc in striatopallidal neurons follow-
ing haloperidol administration, we noticed that cFos+/D2R+-neurons seemed to represent
a subpopulation of Arc+/D2R+-neurons. This is of interest in light of recent reports de-
scribing that the two major striatal cell populations (D1R- and D2R-MSNs) may actually
consist of different subpopulations with distinct spatiocellular and spatiomolecular fea-
tures [49–52]. Indeed, the use of unbiased high-throughput technologies, either at the single
cell or population level, will be instrumental to reappraise the functional heterogeneity of
striatal neurons.

The therapeutic action as well as the side effects of antipsychotics strongly depend
on the pharmacological blockade of D2R. However, other neurotransmitters participate
in regulating the cellular activity of D2R-containing neurons and consequently scale the
behavioral effects of haloperidol (i.e., catalepsy). Adenosine and glutamate represent two
of the major neuromodulators/neurotransmitters able to regulate the activity of MSNs,
and seminal reports have shown that their respective receptors, A2aR and NMDAR, dis-
tinctly influence haloperidol-associated effects. In fact, the pharmacological administration
of A2aR antagonists and/or genetic deletion of A2aR counteract haloperidol-associated
behaviors [53–55]. This is in line with our observation showing that the blockade of A2aR
was sufficient to partially blunt haloperidol-induced cFos and Arc expression in the stria-
tum. This action is mainly due to the opposite regulation exerted on D2R-MSNs by A2aR
and D2R, which are positively (via Gs) and negatively (via Gi) coupled to the adenylyl
cyclase, respectively. While the A2aR and D2R downstream signaling events may buffer
the intracellular production of cAMP, several reports have also indicated that A2aR and
D2R can heterodimerize (protein–protein interaction) at the membrane levels, therefore
influencing the activity of each receptor [56–61].

In addition to ambient striatal adenosine, the excitatory neurotransmitter glutamate,
mostly released from cortico-striatal and thalamo-striatal projections, is another key player
in the regulation of MSNs. Seminal studies have shown that the pharmacological blockade
of NMDAR was sufficient to blunt haloperidol-induced catalepsy [62–64], and our study
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provides further evidence that NMDARs are required for haloperidol-induced cFos [65,66]
and Arc in the striatum. Indeed, NMDARs can gate the action of haloperidol (D2R)
through multiple mechanisms. First, the activation of NMDAR can boost the activation
of the cAMP/PKA cascade via an indirect A2aR-dependent mechanism [67]. Second,
haloperidol-induced cAMP/PKA activity can lead to the PKA-dependent phosphorylation
of NMDAR subunits, thus facilitating glutamatergic transmission [68]. Third, recent reports
have shown that dopamine receptors can also heterodimerize with NMDARs [69–71].
Fourth, the blockade of NMDAR may also counteract the D2R-dependent modulation of
cortico-striatal glutamate transmission [72,73]. Therefore, NMDAR antagonists may blunt
haloperidol-elicited striatal IEGs through all these mechanisms.

However, our study also shows that while the blockade of A2aR or NMDAR blunted
haloperidol-induced IEGs, the co-administration of A2aR and NMDAR antagonists (KW-6002
and MK-801, respectively) resulted in the full abolishment of cFos and Arc. These results in-
dicate that to modulate striatal networks, haloperidol requires the dynamic and synergistic
action of dopamine (D2R), adenosine (A2aR) and glutamate (NMDAR).

At the intracellular molecular level, haloperidol mobilizes the PKA/DARPP-32 cas-
cade as well as the mTOR signaling pathway [7–9,37,74,75]. Indeed, the downregulation
of the PKA/DARPP-32 [76] and mTOR [75] pathways dampened haloperidol-induced
catalepsy. In line with these reports, we observed a reduction in cFos and Arc when haloperi-
dol was administered to DARPP-32 T34A mutant mice (inhibition of PKA/DARPP-32
cascade) and also when it was preceded by the injection of rapamycin (inhibition of mTOR).
However, we also noticed that when both signaling paths were downregulated (rapamycin
administration to T34A mice), haloperidol completely failed to induce cFos and Arc ex-
pression in the striatum, therefore indicating that both signaling cascades are necessary
and required for the full action of haloperidol. It is interesting to note that beside the
antagonistic functions of A2aR and D2R on the cAMP/PKA/DARPP-32 pathway, NMDAR
have also been associated to the downstream activation of the mTOR pathway [77–79], thus
indicating that the converging contribution of these two intracellular signaling cascades
may actually reflect the dynamic involvement of extracellular adenosine and glutamate
in mediating the D2R-dependent action of haloperidol in striatopallidal neurons. Indeed,
our results describing the dynamic regulation of striatal IEGs represent also a call for the
use of modern high-throughput quantitative technologies to deeply investigate the cell
type-specific adaptations elicited by antipsychotics.

In conclusion, our study, by confirming and expanding previous observations and also
by providing a new synergic perspective of striatal regulatory mechanisms, highlights the
heterogenous complexity of in vivo processes which may be involved in the therapeutic
and adverse effects of antipsychotics.

4. Material and Methods
4.1. Animals

For all experiments, 8–12-week-old mice were used. Male C57BL/6J mice (25–30 g)
were purchased from Taconic (Tornbjerg, Denmark). Bacterial artificial chromosome trans-
genic mice expressing eGFP under the control of the promoter for the D2R (Drd2-eGFP)
were generated by the GENSAT program (Gene Expression Nervous System Atlas) at the
Rockefeller University [80] and backcrossed on a C57BL/6J background. Knock-in mice
expressing a mutated form of DARPP-32, in which the threonine (Thr34) is replaced by an
alanine (DARPP-32 T34A mutant mice), were generated as previously described [38] and
backcrossed on a C57BL/6J background. Animals were maintained in a 12 h light–dark
cycle at a stable temperature of 22 ◦C, with food and water ad libitum. To reduce the stres-
sogenic component of in vivo manipulations, before any pharmacological experimentation,
mice were handled and injected with saline for three consecutive days. The experiments
were conducted in accordance with the guidelines of the Research Ethics Committee of
Karolinska Institutet, Swedish Animal Welfare Agency and the 2010/63/EU directive for
the care and use of experimental animals.



Int. J. Mol. Sci. 2022, 23, 11637 9 of 14

4.2. Drugs

Haloperidol (0.5 mg/kg, Sigma-Aldrich, St. Louis, MO, USA) was dissolved in saline
containing 0.05% (v/v) acetic acid with the pH adjusted to 6.0 with 1 M NaOH, and it was in-
jected 60 min before perfusion. The A2aR antagonist KW-6002 (also known as istradefylline,
3 mg/kg, [8]), a gift from Dr. Edilio Borroni (Hoffmann-LaRoche, Basel, Switzerland), was
suspended by sonication in a solution of 5% (v/v) Tween 80 in saline and administered
5 min before haloperidol as previously reported [8]. The NMDAR antagonist MK-801
(also known as dizocilpine, 0.1 mg/kg, Tocris, Bristol, UK) was dissolved in saline and
administered 30 min before haloperidol, which is in line with previous reports [17,81,82].
Rapamycin (5 mg/kg, LC Laboratories, Woburn, MA, USA) was dissolved in a solution of
5% (v/v) dimethylsulfoxide (DMSO), 5% Tween-20 and 15% (v/v) PEG-400, and adminis-
tered (once per day) starting 3 days before the experiment. On the day of the experiment,
rapamycin was injected 45 min before haloperidol as previously reported [9]. All drugs
were administered intraperitoneally (i.p.) in a volume of 10 mL/kg, except for rapamycin
(mTOR inhibitor), which was administered in a volume of 5 mL/kg. When mice were not
treated with drugs, they received an equivalent volume of the corresponding vehicle.

4.3. Tissue Preparation and Immunofluorescence

Tissues were prepared as previously described [17]. In brief, mice were rapidly anaes-
thetized by i.p. injection of pentobarbital (500 mg/kg, Sanofi-Aventis, Paris, France) prior to
intracardiac perfusion of 4% (w/v) paraformaldehyde (PFA) in 0.1 M Na2HPO4/NaH2PO4
buffer (pH 7.5), which was delivered with a peristaltic pump at 20 mL/min over 5 min.
Brains were post-fixed overnight in the same solution and stored at 4 ◦C.

Thirty µm thick sections were cut with a vibratome (Leica, France) and stored at
−20◦C in a solution containing 30% (v/v) ethylene glycol, 30% (v/v) glycerol, and 0.1 M
sodium phosphate buffer until they were processed for immunofluorescence.

Sections were processed as follows: free-floating sections were rinsed three times
for 10 min in Tris-buffered saline (TBS, 50 mM Tris–HCL, 150 mM NaCl, pH 7.5). After
15 min of incubation in 0.2% (v/v) Triton X-100 in TBS, sections were rinsed in TBS again
and blocked for 1 h in a solution of 3% BSA in TBS. Sections were then incubated for
72 h at 4 ◦C in 1% BSA, 0.15% Triton X-100 with the primary antibodies. Antibodies for
cFos (1:400, #sc-52), Arc (1:400, #sc-17839), and Zif268 (1:400, #sc-189) were purchased
from Santa Cruz Biotechnology [83]. GFP was amplified by using a chicken anti-GFP
(1:1000, Invitrogen/ThermoFisher Scientific, Waltham, MA, USA). Sections were rinsed
three times for 10 min in TBS and incubated for 45 min with goat Cy3-, Cy5-coupled
(1:400, Jackson Immunoresearch, Cambridge House, St. Thomas’ Place, UK), and/or goat
A488 (1:400, Invitrogen/ThermoFisher Scientific, Waltham, MA, USA) secondary antibodies.
Sections were rinsed for 10 min twice in TBS and twice in Tris-buffer (1 M, pH 7.5) before
mounting in a 1,4-diazabicyclo-[2.2.2]-octane (DABCO, Sigma-Aldrich) solution.

4.4. Confocal Microscopy and Image Analysis

Single and/or double-immunolabeled images from each region of interest (dorsal
striatum) were obtained using sequential laser scanning confocal microscopy (Zeiss LSM510
META, Oberkochen, Germany). Images were acquired at the level of the dorsal striatum
(rostral level). Photomicrographs were obtained with the following band-pass and long-
pass filter setting: GFP (band pass filter: 505–530), Cy3 (band-pass filter: 560–615) and Cy5
(long-pass filter 650).

Quantifications were performed in 325.75 µm × 325.75 µm confocal images. Im-
munofluorescent striatal cells (expressing IEGs and/or eGFP) were counted (absolute
number) blindly of the treatment/group by using the cell counter plugin of the ImageJ soft-
ware taking as standard reference a fixed threshold of fluorescence. Of note, the distinction
between striatal cell types (Figure 1) was performed using Drd2-eGFP mice (positive vs.
negative neurons) [32,80].
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4.5. Statistical Analysis

All statistical comparisons were performed with two-sided tests in Prism 6 (GraphPad
Software, La Jolla, CA, USA). The distribution of data was determined with a Shapiro–Wilk
normality test. No sample size calculations were performed. To determine outliers in every
experimental group, we performed the Grubbs’ test in Prism. No outliers were identified.
All the data were analyzed using either Student’s t-test with equal variances or one-way
ANOVA. In all cases, the significance threshold was automatically set at p < 0.05. The one-
way ANOVA analysis, where treatment was the independent variable, was followed by a
Bonferroni post hoc test for specific comparisons only when the overall ANOVA revealed a
significant difference (at least p < 0.05) among groups. All the values and statistical analyses
are reported in the figure legends.
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