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Abstract

Dispersal is an ubiquitous phenomenon that affects the dynamics of the population and
the evolution of natural populations; however, it is challenging to measure in most species.
Furthermore, the influence of informed dispersal behaviors, referring to the non-random
selection of breeding habitats by individuals, on species’ responses to rapid global change is
substantial but difficult to comprehend.

Here, we present a modeling framework to assess the dispersal characteristics and be-
haviors of a metapopulation, when observations provide information on its neutral genetic
structure for a restricted sampling of locations. Our mechanistic-statistical model couples a
deterministic model capturing the spatio-temporal dynamics of four genetic clusters across
all breeding colonies by integrating demographic processes with genetic projections, with a
probabilistic observation model describing the probability to sample an individual from a
given genetic cluster.

We apply this new framework to the emperor penguin, a species living in Antarctica
and currently experiencing habitat loss. The model estimates the species’ dispersal distance,
rates of emigration, and behaviors associated with dispersal (informed or random). By
incorporating these estimations with satellite censuses of breeding colonies, we can identify
environmental and demographic factors that influence the dispersal of emperor penguins.
Finally, we provide new global population forecasts for emperor penguins that can inform
conservation actions in Antarctica.

Keywords: dispersal distance | dispersal kernel | dispersal range | emigration rates



Introduction

Dispersal between suitable habitats influences the dynamics of populations (e.g. refs [I,
, 3, 4, 5]), their gene flow and genetic structure [6, 7, 8, 9], and hence the ecological and
evolutionary processes driving biodiversity [10, 11, 12, 13]. The rate and range of dispersal of
plant propagules and animal individuals are commonly characterized by tracking individual
movements and population redistribution (e.g using abundance data [11] or "mark recapture
/ sighting” techniques in animal studies [15, 16, 17, 18]). However, such movement data are
extremely challenging to collect, especially for endangered species or animals living in remote
places on Earth. Genetic markers naturally present in populations offer unique opportunities
to study dispersal [19, 20, 21]. However, such genetic methods (e.g. long-term frequency-
based approach using population structure described by the FST fixation index) estimate
effective dispersal over several generations, rather than dispersal processes relevant for the
temporal scales at which ecological and demographic processes occur.

Recently, many methods have been developed to assess the dispersal distance kernel over
one generation based on genetic data, especially to estimate seed dispersal kernels [22, 23, 24].
Although these methods are accurate [25], they often rely on simple dispersal assumptions.
For example, classical methods based on Euclidian distances or least-cost distances (e.g.,
in models of isolation by distance [206, 27, 28]) assume a single and optimal movement
path for individuals, while individuals may change their route during dispersal [29, 30].
Newer methods have been developed that are based on resistance networks [31, 32]. These
methods consider the relative cost of dispersal in a specific landscape compared to a reference
condition. However, their implementation is time-consuming and the estimation of dispersal
parameters, for example, by maximum likelihood, generally lacks accuracy [33]. Furthermore,
genetic data alone may not provide enough information on demographic processes because
dispersal processes may depend on the environment [34], the population sizes in different
environments may vary, dispersal may occur at short or long distance and dispersal might
also depend on individual choice [25].

Here, we integrate genetic methods with environment-dependent metapopulation models
to develop a new likelihood function that quantifies dispersal rates, distances, and behav-
iors. This novel approach advances previous methods by linking movement and demographic
patterns with genetic data [35]. Specifically, it is based on a mechanistic-statistical ap-
proach [36, 37, 16, 17, 14, 38] in the framework of state-space models [39, 10]. It has been
developed theoretically to characterize the diffusion rates of insects genetic data over one
generation [35], but it has yet to be applied to other species. In addition, this method has
ignored reproductive and dispersal behaviors. The latter is particularly important, as some
species use personal and social information to decide whether to leave a natal or current
breeding site and where to settle (e.g. [11]). Such ‘informed dispersal’ behavior [30] enables
individuals to settle in habitats of better quality, potentially improving their fitness, there-
fore increasing population viability and species persistence, especially in the face of global
changes [12].

In this study, we present a likelihood function for a metapopulation mechanistic-statistical
model that integrates reproductive and dispersal behaviors, including informed departure



and settlement decisions. We apply this model to Emperor penguins (Aptenodytes forsteri),
an Antarctic seabird that is increasingly threatened by climate change [13]. Due to the
logistical challenges of monitoring populations in extreme environmental conditions, very
little is known about their dispersal behaviors. In fact, emperor penguins have only been
marked at one site (Pointe Géologie [11]), with no recaptures elsewhere. The recent advent
of satellite telemetry tags has allowed for an enhanced understanding of the movement of
emperor penguins on large spatial scales within a season. However, this approach is not
suitable for determining dispersal between colonies due to the limited life span of these
devices [15].

Like many seabirds, emperor penguins are considered highly philopatric [16]. However,
this traditional view has been challenged by advances in genetic analyses and very high-
resolution satellite imagery (VHR), suggesting that movements between colonies occur[47].
In fact, genetic studies have identified at least four distinct genetic clusters among emperor
penguins [18]. Each cluster is located in a different geographic region of Antarctica, some
spanning thousands of kilometers of coastline and comprising multiple breeding colonies.
While there is some degree of gene flow connecting these clusters, they remain genetically
distinct from one another. However, within each cluster, dispersal of individuals between
breeding colonies is sufficient to maintain panmixia [18]. In addition, VHR satellite imagery
has recently documented colony movements, disappearances, and relocations[19]. For exam-
ple, a dramatic decline in the world’s second largest emperor penguin colony occurred at
Halley Bay, while the nearby Dawson-Lambton colony, 55 km to the south, saw a more than
tenfold increase in penguin numbers during the same period [50]. Halley Bay has suffered
three years of almost complete breeding failure caused by a change in the local environment
and sea ice conditions, and those unfavorable conditions may have forced penguins to re-
locate to Dawson-Lambton [50]. The colony had been present at Halley Bay since at least
1956, persisting for 60 years before the major environmental disturbance led to a massive
population decline and emigration event. This suggests that emperor penguin movements
may be triggered by major environmental disturbances and that individuals leave their cur-
rent breeding site using information about their habitat quality, such as the presence of a
stable and suitable ice habitat to breed. These dispersal behaviors correspond to informed
emigration.

Using a mechanistic-statistical approach, we have developed a likelihood function that
links the demographic characteristics of the emperor penguin to genetic data. It enables
us to: (1) determine the most likely dispersal behaviors in emigration and establishment
of emperor penguins (informed versus random); (2) estimate the mean dispersal distance
for this species and the emigration rates between colonies; (3) highlight environmental and
demographic factors, that drive emigration rates by combining our approach with indepen-
dent demographic and environmental data; and (4) project the global population of emperor
penguin change into the future using the most recent large ensemble of climatic projection
in Antarctica (CESM2-LENS[51]).



Material and methods

The model presented in this study is based on the combination of a mechanistic metapop-
ulation model that describes the population dynamics, and a stochastic model that ac-
counts for the collection of genetic measurements based on the population dynamics (section
”Mechanistic-statistical model”) [52]. Previous theoretical studies have demonstrated the
relevance of this approach for estimating dispersal parameters using genetic data [35]. We
begin by describing our case study, the emperor penguin (section ”Case study: emperor pen-
guin”). Then we present the available genetic data for emperor penguins (section ” Genetic
data”), followed by an explanation of our mechanistic-statistical approach and the statistical
inference of the model parameters (section ”Statistical inference”). Finally, we compare the
different dispersal behavior (section ” Comparison of dispersal behaviors”), we evaluate the
impact of demographic and environmental factors on emigration rates (section ”Impact of
demographic and environmental factors on emigration rates”) and project the future dy-
namics of the global emperor penguin population until 2100 (section ”Forecasts of emperor
penguin global population”).

Case study: emperor penguin

Emperor penguins are seabirds that live in Antarctica. They breed annually during the
Antarctic winter in one of the 66 breeding colonies around Antarctica (see circles in Fig. 1).
In March, adults settle in a colony to mate, lay a single egg, and raise their chick until
December. Adults and juveniles leave colonies in December/January and disperse into the
Southern Ocean. After a northward migration following departure from their natal colony,
juveniles return close to the Antarctic sea ice in April/May (see [53] and observations from
Argos tracking [54, 55]). The first breeding starts at three years. During this period, from
fledgling to first breeding, individuals can prospect [53, 16] and eventually assess the habitat
quality of a potential colony to settle and breed.

A recent genetic study identified four genetic clusters among emperor penguin that are
significantly genetically differentiated, with some degree of gene flow connecting these clus-
ters [18]. Although genetic clustering (STRUCTURE) [56] and FST analyzes support the
presence of four genetic clusters, genetic differentiation between emperor penguin colonies is
subtle and hierarchical, and does not follow a typical isolation-by-distance (IBD) pattern of
differentiation.

The four identified genetic clusters coincide with distinct geographical regions composed
of several colonies: (WEDD) Weddell sea (Gould Bay to Halley Bay colonies), (MAWS)
Mawson Bay (Fold Island to Cape Darnley colonies), (AMPG) Amanda Bay to Pointe Ge-
ologie colonies, and (ROSS) Ross sea (Cape Washington and Cape Crozier colonies) (see
Fig. 1) . However, these four geographical regions do not cover all the 66 colonies around
Antarctica. Three geographical regions remain genetically uncharacterized: : (StoS) from
Smith to Snowhill Island in the Wedell sea colonies, (StoK) from Stancomb to Kloa point
colonies and (A-B seas) Ledda bay to Rotschild colonies (Admunsen and Bellingshausen
seas) (sees Fig. 1).  Although it is possible that there are more than four genetic clus-
ters across the emperor penguin’s range, a complete sampling of all colonies is logistically
infeasible due to the remote distribution of the species in one of the harshest climates on
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Figure 1: The four genetic clusters detected around Antarctica that characterize four geographic
regions: (WEDD) Weddell sea (Gould Bay to Halley Bay colonies) red dots, (MAWS) Mawson
Bay (Fold Island to Cape Darnley colonies) purple dots, (AMPG) Amanda Bay to Pointe Geologie
colonies, green dots and (ROSS) Ross sea (Cape Washington and Cape Crozier colonies) blue dots.
Grey and coloured dots indicate all the 66 known emperor penguins colonies around Antarctica.
The three grey regions corresponds to are without genetic characterization: (StoS) from Smith to
Snowhill Island in the Wedell sea colonies, (StoK) from Stancomb to Kloa point colonies and (A-B
seas) Ledda bay to Rotschild colonies (Admunsen and Bellingshausen seas). The white numbers
indicated the number of individuals sampled from this colonies and the year of sample.

Earth. This limitation is common in wildlife studies, where representative sampling is often
the only viable option. Our estimations of dispersal parameters are therefore conditional on
the assumption that the emperor penguin population is structured into these four identified
genetic clusters.

Genetic data

We used genetic data collected from 1992 to 2013 in eight colonies around Antarctica
by [18] (see Fig. 1). After filtering steps [57], 4.596 neutral genome-wide single nucleotide
polymorphisms (SNPs) were retained. Specifically, we here use only SNPs SNPs that are
present in all sampled colonies (parameter -p 8 in the Stacks pipeline) and that are present
in at least 80% of individuals per colony (parameter -r 0.8 in the Stacks pipeline). We keep
SNPs that are neutral and polymorphic at the metapopulation level. However, some allele
frequencies in genetic clusters might be equal to 0 because some alleles are private in the
sense that they appear only in one genetic cluster. A total of 110 individuals (10-16 per
colony) were successfully genotyped at these loci.



Mechanistic-statistical model

The mechanistic model characterizes the spatio-temporal changes of emperor penguin
populations across the 66 colonies in Antarctica. It combines a demographic model, de-
scribing the metapopulation dynamics and incorporating various parameters such as mean
dispersal distance, emigration rates, and dispersal behaviors (section ” Demographic model”),
with a genetic population model projecting the number of individuals originating from one
of the four genetic clusters for each year and in each colony (section ”Genetic population
dynamics”). The stochastic model, on the other hand, includes a probabilistic sampling
approach to estimate the likelihood of sampling an individual from a given genetic cluster
(section ”Probabilistic sampling model”) and a statistical genetic model that predicts the
probability of observing a particular genotype based on the individual’s genetic cluster of
origin.

Demographic model. We use the metapopulation model developed by [58] to project the
population vector n, that comprises the population size n; in each colony ¢, from year ¢ to
year t + 1 (we only look at the female here):

n(t+1) =D[t,n(t)]F[t,n(t)] n(t) (1)

It incorporates two phases of possibly different duration: a motionless density-dependent
reproduction phase (F) followed by a dispersal phase including natal or breeding dispersal
(D). The reproduction matrix F follows a Ricker model, where the intrinsic growth rate
ri(t) of each colony varies in time due to sea ice concentration (SIC) variations, described by
climatic projection in Antarctica (CESM2-LENS[51]), while carrying capacityies of colonies
are constant over time. The dispersal phase D comprises three stages: (1) emigrating from
the resident colony at a rate m;(t), (2) searching for a new colony among other colonies
with an average dispersal distance d (transfer), and (3) settling in a new colony. During the
emigration and settling stages, two possible behaviors (informed versus random) can occur:

e an informed emigration: individuals only emigrate from poor quality breeding sites
when the habitat quality is not viable (i.e. negative intrinsic population growth r;(¢ <
0)), they emigrate at a rate m;(t) = mazx(1 — r;(t)/((1 — ppm,)7¥), 1), where r} < 0 is
the worst growth rate and p,,, is a sensitivity parameter to bad quality habitat;

e a random emigration: individuals leave the colony regardless of the habitat quality at
a fixed rate m; = pp,,;

e an informed establishment: individuals select the most suitable habitats (i.e. maximize
intrinsic population growth) within their dispersal range of size d;

e random establishment: individuals pick a colony in their dispersal range of size d
randomly and regardless of the habitat quality of the colonies.

In our analysis, we only consider three dispersal behaviors: the random dispersal behavior
(R) with random emigration and establishment; the semi-informed dispersal behavior (SI)
with informed emigration but random establishment; and the informed dispersal behavior
(I) with both informed emigration and establishment.
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Genetic population dynamics. The population of emperor penguin comprises 4 genetic
clusters characterized by their allele frequencies F,x = (Praa)a=1,...4, at the sampled SNPs A
(with possibly some allele frequencies equal to 0 due to the presence of private alleles in some
genetic clusters). The frequencies are assumed constant over the sampling interval because
they represent less than two generations for emperor penguins (which is 16 years) [59].
Our demographic model describes the survival, reproduction and dispersal of individuals
regardless of their native genetic cluster. In order to track the native genetic cluster of
individuals, we derive from the demographic model [9, 35], a genetic model that projects
the population vector n” of individuals that originate from one of the four genetic cluster r.
The vector n” comprises the number of individuals n’(¢) in each colony 7 originating from
cluster r, and satisfies the following dynamics

n'(t+ 1) =D[¢,n(t)|F[t,n(t)] n'(t).
Initially, we have the following repartition

n:(0) = uin;(0), forallie {1,...,66}, (2)
where p} is the initial proportion of individuals native from genetic cluster r within the
colony ¢ (Zil pi =1 for all 7). We assume that for colonies belonging to a region where we
have genetic information, the proportion is 1 if the geographical region of the colony matches
the genetic cluster and 0 otherwise. For instance, if the colony ¢ belongs to the region that
matches genetic cluster 1, then

pp =1 and pf =pi = p;=0.

However, for the colonies belonging to the three geographical regions without genetic in-
formation, the parameters p = (u!, p2, u3, u}) are unknown parameters that we have to
estimate; In order to simplify the estimate, we assume that p is the same among colonies of
a geographical region. The genetic and demographic dynamics are linked by:

More precisely, since the set of SNPs in our genetic data is selectively neutral, individuals
within a colony share the same dispersal and reproduction characteristics independent of
their genetic background. In particular, an individual within a colony 7 and originating
from the genetic cluster r produces offspring at the same rate as any individual within the
colony 7. Although newborns result from the mating of a male and a female, we assume
that they inherit the native genetic cluster of the female.

Probabilistic sampling model associated with the demographic model. During the
year t that ranges from 1992 to 2013, individuals from colonies J; were genotyped. The
sampling of individuals in a given year ¢, in the colony 7 is random among the individuals
observed at the colony. Given that our dataset has an average sample size per colony G, that



is relatively small (10-16 individuals per colony) in comparison to the typical population size
of emperor penguin colonies (which ranged from 100 to 25,000 individuals in 2009 [60]), the
count of genotyped individuals in 7 originating from genetic cluster r follows a multinomial
distribution characterized by the parameters G, the sample size, and (ul(t),...,uf(t)),
the proportions of individuals in colony 7 at time ¢, that originate from one of the four
genetic clusters. The probability that a genotyped individual ¢z observed at time ¢ in colony
T, originates from genetic cluster r, is

P(indiv. ¢ originates from cluster r) = p’(t) =

The proportion p! corresponds to the ratio between the number of individuals n”(t), that
originate from the genetic cluster r and the number n,(¢) of individuals alive in the colony
T projected by the metapopulation model.

Statistical genetic assignment approach. Emperor penguins are diploid organisms, thus
their genotypes write G = {(a},a3})}r=1..a. Since we use single-nucleotide polymorphisms
(SNPs), each locus has two alleles, corresponding to the two possible nucleotide variations
in the DNA sequence. Using the linkage equilibrium among loci and the Hardy—Weinberg
equilibrium assumption within a genetic cluster, the conditional probability for the genotype

gi'r is:

A

P(gi,7| indiv. ¢ originates from r) = ki H Drral Pria2
A=1

where k; is the number of heterozygous loci in G; » and p, 1 and p,.y,2 are the allele frequencies
within the genetic cluster 7 of the alleles a' and a? of individual 4 at locus \.
Statistical inference

Computation of the likelihood function.The unknown parameters © of our mechanistic-
statistical model are the mean dispersal distance d, the emigration sensitivity parameters

P = (Pmy» - - - » Pm-) and the initial proportions of each genetic clusters, pu = (p}, piZ, p1, 117 )ief1,2,3}-
For the three different dispersal behaviors (random, semi-informed or informed dispersal) and
with unknown parameters © of our model, the likelihood function is:

2013 J; G-

£©G.) = 1 T11]®G:.)

t=1992 7=1 i=1

where P(G; ) is the probability to sample the genotype G, ; in colony 7 at time ¢;, that can
be decomposed as follows

4
P(G;.) Z ]P’ gm| indiv. ¢ originates from cluster r)
r=1 xP(indiv. 1 originates from cluster 7")
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For each dispersal behavior (random (R), semi-informed (SI) or informed (I)), we estimate
the posterior distribution of the parameters © using the likelihood function and an impor-
tance sampling algorithm with prior distribution of parameters d and p,, given by uniform
distribution with the following constraints:

(d, pm) € (250,6500) x (0,1)7

and prior of the parameter p given by a Dirichlet distribution of order R = 4 with parameters
all equal to 1:

4
wy € (0,1)* and Z,u}; =1 forall h e {l,...,66}.
r=1
We performed the statistical inference with Matlab version R2021a. The code is available
online https://github.com/garnieji/EP_demographic_genetic.

Confidence intervals and goodness-of-fit. The model’s goodness-of-fit was evaluated by
determining the 95% confidence regions for the observed genotypes in each colony and year
of observation. To do this, we calculated the probability of each possible observed genotype
based on the frequencies of each genetic cluster predicted by the mechanistic model using
the estimated parameters that maximize the likelihood function. We then checked if the
observed genotypes fell within the 95% confidence regions that represent the most likely
outcomes.

Comparison of dispersal behaviors

In order to determine the most probable dispersal behavior, we conducted a model se-
lection process using four criteria and our likelihood function. These criteria include the
Bayesian Information Criteria (BIC), two Deviance Information Criteria (DIC), and a pre-
dictive Information Criteria (IC). The BIC is defined by

BIC = —21og[L(0%)] + klog([I) (3)

where [ is the sample size, k the number of parameters and ©* is the maximum likelihood
estimate of the parameter vector ©, that is ©* = argmax(£(©)). In our study, k£ and I are
the same for all the models.
The DIC satisfies R
DIC =D + peyy (4)

where D is the posterior mean of the deviance D(0) = —21log[£(6%)] and p, 7 is the effective
number of parameters of the model. We use two different versions of the DIC, which rely on
different definitions of p.ss. The first version has been developed by [61]:

~

pess =D —D(O) (5)

where © is the posterior mean of ©. The second version has been introduced by [62]:

pess = 5V(D(O)) (©

11
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where V(D(0©)) is the posterior variance of D(O).
The IC developed by [03] satisfies:

IC = 3D — 2D(O) (7)

In practice, the posterior mean and variance, which appear in our four criteria, are computed
with their empirical values using the weighted posterior sample {©,,, w,,} provided by our
minimization algorithm.

Impact of demographic and environmental factors on emigration rates

We model emigration rate as two separate responses: 1) Annual emigration probability,
in which colonies are split into two categories each year with ”No emigration” colonies when
their median emigration rate is 0 and ”"Emigration” colonies when their median emigration
rate is positive; and 2) Average emigration probability, that is the proportion of years with
”FEmigration” categorization between 2009 and 2013 for each colony.

When modeling annual emigration probability we only considered environmental vari-
ables around each colony, comprising the biomass of zooplankton (mmol C/m?) and the
distance between the colony and the closest edge of fast ice (m). They are obtained using
the novel landfast sea ice data (hereafter simply “fast ice”) data at different scale [61] and
the unique sea ice and food web dynamics variables obtained from a forced ocean-sea ice
(FOSI) configuration of the ocean ecosystem model of the Community Earth System Model
(CESM2) [65]. When applicable, we calculate the average value of each variable for different
breeding periods: non-breeding (January to March), laying (April and May), incubation
(June and July), and chick-rearing (August to December).

For average emigration probability, each environmental variable was averaged between
2009 and 2013 and we used three additional demographic factors independent of our metapop-
ulation analysis: the size of colony, the growth rate per colony, and the frequency of blinking
that corresponds to the relative number of years a colony disappears over a period of 10
years, from 2009 to 2018. They were calculated from the colony presence and population
counts of emperor penguins from VHR satellite imagery [06, 67].

For both analysis we use a random forest algorithm to quantify the role of environmental
and demographic variables on the probability of emigration [68]. We used the R package
"party” for fitting the conditional random forests [(8] and ” permimp” [69] for computing the
variable importance scores. Codes are available online https://github.com/bilgecansen/
Emperor_dispersal.

Forecasts of emperor penguin global population

Coupling our new estimated dispersal parameters with the meta—population model de-
veloped by [13], we project the total population size of emperor penguin over the century
for different climate scenarios. Previous studies have provided a more detailed description
of this forecasting approach, which yields a robust forecast by incorporating various sources

of uncertainties( [70, 59, 71, 13] for emperor penguins and [72, 73] for a general approach).
Climate scenarios, which are labeled based on the projected global warming increase (°
C) above preindustrial levels, are discussed in greater depth in [741]. These scenarios include
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Table 1: Model selection based on minimization of four selection criteria: the Bayesian Informa-
tion Criteria (BIC), two Deviance Information Criteria (DIC) and a predictive Information Criteria
(IC) for the three different dispersal behavior: Random dispersal (random emigration and estab-
lishment), Semi-Informed dispersal (informed emigration but random establishment) and Informed
dispersal (informed emigration and establishment).

Dispersal behavior BIC DIC; DIC, e

Random 678 679 684 674
Semi-informed -43.6 -828 41 -1615
Informed 674 605.5 676 535

an increase of 4.3°C [RCP8.5], of 2.6°C [new scenario|, of 2.4°C [RCP4.5], of 2°C [Paris 2°C]
and of 1.5°C [Paris 1.5°C]. The new scenario developed by [71] is intended to demonstrate
probable effects on sea ice and therefore emperor penguins by 2100 if governments act now
to control greenhouse gas emissions by 2050.

We compare the result of this updated model (semi-informed dispersal), with the projec-
tions of the model without dispersal (see Figure 5(a)). Finally, we compare projections for
different dispersal behaviors and between climate scenarios (see Figure 5(b)-(c)).

Results

Goodness-of-fit and convergence

From the three dispersal behaviors (random (R), semi-informed (SI) and informed (I)),
we obtained three different set of parameters that maximize the likelihood function. On
average, 99% of the observed genotypes fell within the 95% confidence regions, indicating
that models with different dispersal behaviors accurately represented the data (109 of the
observed genotypes over a total of 110). The three scenarios exhibited a peak in likelihood
at the mean dispersal distance parameters, suggesting that these parameters optimize the
likelihood for all three scenarios. With respect to the remaining parameters, that are the
emigration sensitivity parameters p,,, and the initial genetic cluster proportions p, the likeli-
hood function exhibits a smoother distribution around the optimized parameters, indicating
that the likelihood is less responsive to changes in these parameters.

Dispersal processes

Dispersal behaviors. Based on our model selection, it is evident that the genetic data
strongly suggest the prevalence of semi-informed dispersal behavior among emperor pen-
guins (see Table 1). This behavior indicates that these penguins are more likely to leave
colonies with unfavorable habitat conditions. (i.e., with negative intrinsic population growth;
informed emigration), but settle randomly into another colony (random establishment).

Dispersal ranges. Figure 2(a) shows the posterior distribution of the mean dispersal dis-
tance for the best supported model. It indicates a relatively short dispersal distance of
approximately 414 km. This mean dispersal distance is modest compared to the poten-
tial movement range derived from the tracking of juveniles and adults at sea (tracking
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Figure 2: Posterior distributions of the mean dispersal distance d per individuals and the emi-
gration rate per colony per year for the entire Antarctic continent. Plain lines are the mean of the
distributions: (a) 414 km (blue) and (b) 0.157 (black).

studies report traveling distance from 2,000 km to 7,000, with extreme distance of 9,000
km) [75, 15, 76].

Dispersal rates. Figure 2(b), summarizes the emigration rates throughout the continent
and the supplementary Figure S3 details the emigration rates at each colony. The occurrence
of dispersal events is not common, as indicated by a median of zero, since more than 50%
of the calculated emigration rates in each colony are zero.  However, some regions may
experience massive emigration events with averaged rate of emigration that is not negligible:
15.7% per year.

Figure 3(a) shows the rate of emigration per colony, organized into clusters based on
regions. Furthermore, Figure 3(b) provides an overview of the average emigration rate both
within and between these regions. Emperor penguins move mainly to nearby colonies in
the same regions with an average rate per year that varies between regions: 15% in colonies
of the Amundsen and Bellingshausen seas (A-B seas) to 0.17% in colonies from Smith to
Snowhill Island in the Wedell sea regions (StoS) (see Figure S4 for more details). However,
massive emigration is also likely to occur between different regions, especially between the
A-B seas regions and the StoS regions (11% to 1.35%) and colonies from Stancomb to Kloa
Point (StoKP) and Mawson bay (MAWS) (1.16% to 0.21%).

Potential drivers of dispersion

Average rate of emigration. The zooplankton biomass in the non-breeding season (Jan-
uary to March) stands out as the primary factor influencing the average probability of
emigration (the proportion of years with non-zero median emigration rates between 2009
and 2013 in a colony) among all the evaluated environmental and demographic factors (see
Figure 4(d)). Subsequently, the size of the colony was identified as the second most im-
portant factor influencing the average probability of emigration (Figure 4(d)). Both factors
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Figure 3: Emigration rates per year per colony (panel (a)) and between and among the seven
regions of Antarctica (panel (b)), from 2009 to 2014: from Smith to Snowhill Island in the Wedell
sea (StoS), Weddell sea (Gould Bay to Halley Bay colonies) (WEDD), from Stancomb to Kloa
point (StoK), Mawson Bay (Fold Island to Cape Darnley colonies) (MAWS), from Amanda Bay
to Pointe Geologie colonies (AMPG), the Ross sea (Cape Washington and Cape Crozier) (ROSS)
and Admunsen and Bellingshausen seas (Ledda bay to Rothschild Island) (A-B seas). In panel
(a), white dots correspond to the median of the posterior distributions of the emigration rates
per colony for each region, and the black line is the mean emigration rate for the entire Antarctic
continent (0.157). In panel (b), the dots correspond to the 66 colonies of emperor penguins around
Antarctica and the color shading indicate their geographical region. Grey dots indicate colonies
without genetic information, while coloured dots corresponds to the four genetic clusters detected
by [41&]. The white numbers indicate the number of individuals sampled in colonies included in our
study..
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have a positive impact on the rate of emigration (Figure 4(a) and 4(c)). Despite consider-
able uncertainties, colonies without emigration were found to have an average size almost
twice as large as colonies with emigration (3,741 penguins compared to 1,880 penguins for
emigration, as shown in Figure S6).

Annual emigration probability. Next, we refine our analysis by focusing solely on the
annual probability of emigration (the probability of observing a non-zero median emigration
rate in a given year and colony). Our findings indicate that proximity to the nearest fast ice
edge positively affects the annual probability of emigration (refer to Figure 4(b)), ranking
second in importance after zooplankton biomass (refer to Figure S5).

Forecasts of emperor penguin global population

The emperor penguins are most likely to disperse through semi-informed dispersal with
a small mean distance of 414 km and small emigration rates. This dispersal process is
estimated to result in a greater global population, up to 7%, compared to a scenario without
dispersion when climate scenarios lead to significant population declines (from scenario 4.3°C
and scenario 2°C, as shown in Figure 5). However, under a climate scenario of 1.5°C [Paris
1.5°C], which causes lesser declines, our newly estimated dispersal processes do not improve
the global population size compared to a scenario without dispersion, but may actually
reduce it. Ultimately, the impact of dispersal on future global population size is relatively
small compared to the impact of climate change mitigation [71, 13] (Figure 5).

Discussion

By developing an innovative mechanistic-statistical approach that integrates demographic
and genetic information, we (1) elucidated the most common dispersal behavior used by em-
peror penguins to move from colony to colony around Antarctica, (2) quantified the mean
distance at which individuals move to settle in a new colony (3) estimated the average emi-
gration rates per colony. Our research showed that emperor penguins often abandon colonies
with less favorable conditions and move randomly to other colonies. Although they gener-
ally exhibit low emigration rates, it is important to note that large-scale emigration events
can occur in certain regions. Furthermore, their dispersal distances are relatively short.
We discuss these novel estimations of dispersal processes in the context of potential indi-
vidual movements documented via satellite telemetry tags and colony movements captured
via VHR satellite imagery. We note that neither satellite telemetry tags nor VHR satellite
imagery allow direct characterization of dispersal rates, distances, and behaviors but are the
only information available to date to speculate about dispersal processes. Unraveling those
dispersal processes will also reduce uncertainties in future population projections of emperor
penguins necessary for ongoing conservation and management actions. By incorporating
this new understanding of dispersion mechanisms into projection models [77], the prediction
of the global population trend for emperor penguins, under different climate scenarios, re-
veals that the influence of dispersion is minimal compared to the influence of climate change
mitigation.
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informed dispersal with the most likely parameters provided by our analysis (plain curves); the gray
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percentage difference of population size between the projection with a semi-informed dispersal and
the projection without dispersal for each climate scenario. In panel (c¢), we present the percentage
difference of population size between the projection with the worst climate scenario, 4.3 ° C [RCP8.5]
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New likelihood function

The accuracy of inferring how landscape affects dispersal depends on how different types
of habitats or geographical elements influence movement [25]. Classical genetic methods
based on simple dispersal assumptions (e.g., Euclidean distances or least-cost distances ap-
proaches [26, 27, 28]) can provide reliable estimates when the landscape features present
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strong contrasts in permeability, even with limited sample sizes. However, as the landscape
becomes more complex or when different features have similar effects on movement, the
power and accuracy of these methods diminish rapidly. In particular, genetic distance-based
methods are more effective at detecting variables that impede dispersal (e.g., barriers) than
those that facilitate it, as impeding variables create a stronger signal of reduced gene flow.
Consequently, in complex landscapes with diverse environmental structures, combining ge-
netic information with detailed demographic descriptions is crucial to accurately evaluate
the impact of landscape variables on dispersal [25]. This approach helps mitigate the limi-
tations of genetic methods alone, especially when there are low contrasts between landscape
variables, which can obscure the true effects of the landscape on dispersal pathways.

Recently, new mechanistic-statistical approaches, including reproduction, have been de-
veloped to estimate the dispersion of pest species ([14] for processionary moths and[78] for
a bacteria) from genetic data. These approaches have the advantage of remaining relevant
even if the degree of differentiation is low or the quantity of observed data is scarce [35].
However, these approaches do not account for temporal variations or dispersal behaviors,
which is particularly important since some species use personal and social information to
decide whether to leave a natal or current breeding site and where to settle (e.g. [11]). Such
‘informed dispersal’ behavior [30] enables individuals to settle in better quality habitats, po-
tentially improving their fitness, thus increasing population viability and species persistence,
especially in the face of global changes [12].

Here, we develop a novel likelihood function that incorporates informed departure and
settlement behaviors, based on temporal and spatial variations in reproductive strategies
and population dynamics. To achieve this level of complexity, the model is conditional
on the assumption of a metapopulation being composed of four fixed genetic clusters at
Hardy-Weinberg equilibrium, allowing us to focus solely on the evolution of the number
of individuals within each cluster. However, we acknowledge that given our representative
sampling approach, there could be more than four genetic clusters in the emperor penguin
population, and our framework is based on this set of conditions.

Alternatively, for other systems, it may be more appropriate to compute the dynamics
of allele frequencies at any time and location, though this approach is more computation-
ally intensive. This dynamic can be modeled by adapting the methods of [9], but requires
simulating a system that scales with the total number of alleles in the population — an un-
feasible task for our study. Another option is to use multilocus likelihoods for hybrids and
backcrosses as developed by [79], which involves tracking hybrid dynamics at each time step
and computing the corresponding likelihoods.

Therefore, while these alternative approaches offer more flexibility with respect to pop-
ulation structure and do not necessarily assume fixed genetic clusters, they come with their
own set of assumptions and greater computational demands. It is important to note that
all models, including ours, are simplifications of reality and are conditional on a set of as-
sumptions tailored to the specific goals and limitations of the study. Our chosen approach
balances complexity and feasibility, which is particularly suited for the current research con-
text of data-sparse environments.
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Four genetic clusters

Due to the species’ breeding distribution across harsh and inaccessible areas, complete
genetic sampling of all colonies is logistically infeasible. This limitation is not unique to
emperor penguins, as restricted sampling is often the only viable option for studying the
population genetic structure of many wildlife species. Although additional genetic clusters
may exist in unsampled regions, previous studies suggest that geographic distance alone
is not a reliable predictor of genetic structure in emperor penguins[3(] and more broadly
Southern Ocean penguins[31]. For instance, in emperor penguin, Amanda Bay and Pointe
Géologie, located 3,200 km apart, belong to the same genetic cluster[15].

The observed genetic differentiation among the four detected genetic clusters in emperor
penguins is likely explained by historical factors rather than contemporary geographic bar-
riers. Previous studies indicate that only three populations of emperor penguins may have
survived during the Last Glacial Maximum (LGM), with the Ross Sea acting as a criti-
cal refuge[30]. The LGM has profoundly influenced the genetic structure of many penguin
species[31]. Indeed, consistent genome-wide signatures of post-LGM expansion have been
detected in penguin species that currently breed south of the LGM sea ice zone, suggest-
ing that many Southern Ocean species retreated to ice-free refugia during the LGM and

rapidly recolonized high-latitude shores as the ice receded[31]. These historical refugia have
likely shaped the present-day genetic structure of several penguin species, including emperor
penguins[30)].

We acknowledge that this representative sampling could be seen as a limitation for clas-
sical methods, such as BayesAss and coalescent models, which typically require extensive
spatial sampling and high genetic differentiation between populations to estimate disper-
sal rates accurately. Unlike traditional methods that indirectly infer dispersal from genetic
structure, our approach explicitly models dispersal dynamics using a combination of a de-
mographic model and a genetic population model. Our demographic model describes the
dispersal of all individuals across colonies, while the genetic population model tracks the lin-
eage of individuals over time and assumes that a newborn inherits its genetic cluster from its
mother. By integrating these demographic processes and focusing on the explicit movement
of individuals, our model overcomes the limitations of traditional genetic methods that rely
heavily on genetic differentiation and extensive sampling.

By tracking the movement and lineage of individuals across colonies, our model offers a
valuable tool to understand how these populations may respond to ongoing climate change
with dispersal behaviors, despite the constraints of limited genetic sampling. This approach
sheds light on the complex dispersal dynamics of emperor penguins across Antarctica, con-
tributing to a more comprehensive understanding of their connectivity and resilience in the
face of environmental change.

Dispersal ranges

The posterior distribution of the mean dispersal distance for the best supported model,
depicted in Figure 2(a), suggests a short dispersal distance relative to the potential distance
that tracked juveniles and adults cover after departing the colony [15, 76]. In fact, we
found that the most likely dispersal distance of the emperor penguins is around 414 km
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Satellite telemetry studies have shown that penguins can cover incredible distances during
their searching routes. In the Ross Sea, non-breeders can travel up to 9,000 km [75] to their
wintering grounds, and after the moult, adults covered more than 2,000 km on their return
journey to their colonies [76]. In East Antarctica, one juvenile covered more than 7,000 km
during the first eight months after leaving its natal colony in Terre Adélie [15].

However, the distance covered during the searching phase does not necessarily reflect the
dispersal distance. In fact, individual potential dispersal can be reduced by specific behav-
iors. For example, seabirds exhibit specific behavioral traits, such as a high degree of philopa-
try [82] and the importance of social cues in the recruitment of new breeders [33], which can
reduce the dispersal distance of individuals relative to possible movement [31, 85]. For ex-
ample, the colonies in the Ross Sea are genetically distinct from the rest of the colonies [30],
suggesting that, despite their large dispersal potential during the non-breeding season, the
dispersal distance of the emperor penguin could be somewhat limited. Additionally, after
the demise of Halley Bay, many of the birds of Halley Bay may have relocated to the nearby
Dawson-Lambton colony, while the formation of new colonies elsewhere or movement to
other locations of the colony further away are considered less likely [50].

Dispersal rates

Previous studies have debated the magnitude of emigration rates in emperor penguins,
with some studies arguing for large emigration rates [17], while others for low emigration
rates [03, 10]. Although large-scale emigration events are possible, our research indicates
that these occurrences are rare.

Large emigration rates producing massive movements between colonies have been doc-
umented in the past two decades from satellite imagery: 1. Some colonies are known to
‘blink’ (disappear in some years, reappear in others) [19]; 2. Others are known to relocate
to icebergs or ice shelves during late sea ice formation in the autumn [$7]; 3. Some colonies
have shown dramatic declines, while nearby colonies have increased in size markedly [50].
Those blinking, relocation, and massive movement events remain somewhat infrequent.

Spatially, 17% of the colonies are known to blink. In the past decade, certain colonies
experienced intermittent periods of absence. Taking into account this fluctuation over time,
the likelihood of a colony being absent in any given year is only 4%. Furthermore, it is
anticipated that emigration rates will be low due to the significant number of marked chicks
that have been observed to return to Pointe Géologie [10].

Nonetheless, it is crucial to establish the specific time and space frames in which these
rates take place. In this study, we suggest that the overall yearly percentage of emperor
penguins dispersing from one breeding site to another is relatively minimal. However, there
might be instances of mass emigration occurring sporadically in certain locations. (see
Figure 3(a) and Figure S3). This pattern has been noticed in numerous species of seabirds
and birds, and it aligns with the philopatric behavior exhibited by these species. As an
example, greater flamingos exhibit similar characteristics to emperor penguins in terms of
their long lifespan and tendency to breed in one location (philopatric). Generally, they have
a low rate of emigration, but when the conditions for breeding are poor at their colony,
such as when water levels are low, they relocate together to another breeding location.
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(see [38, 89, 90]).

In addition, our framework focuses on emigration rates at the population level. However,
in many vertebrate species, especially in seabirds, juvenile dispersal is greater than adult
dispersal [01]. For emperor penguins, massive emigration events are likely to consist mainly
of adults in some regions, whereas the low background levels of emigration are likely domi-
nated by juvenile dispersal. Further work should include this age structure in the dispersal
demographic model to disentangle the dispersal rates of adults from those of juveniles. How-
ever, this would require understanding the detailed mechanisms of density dependence on
those two age classes, which are unknown for emperor penguins [92].

Moreover, in cases where emigration and prospecting evolve simultaneously, the emigra-
tion strategy that emerges is one in which successful breeders consistently exhibit philopatry,
while unsuccessful breeders are more inclined to emigrate, particularly when the breeding
success of conspecifics is low [93]. This suggests that large-scale emigration events in emperor
penguins may primarily involve unsuccessful breeders. Future research could incorporate a
breeding stage structure into the dispersal demographic model to better understand the
dispersal rates of both successful and unsuccessful breeders.

Finally, emigration rates vary substantially among regions. For example, the average
annual emigration rate per colony between colonies in the A-B region is 15.7%. This high
rate is likely driven by the lower habitat quality in the A-B region due to rapid declines in sea
ice concentration[94]. The spring season of 2022 saw record low sea ice extent in Antarctica,
with the greatest negative anomaly occurring in the central and eastern Bellingshausen
Sea, west of the Antarctic Peninsula[95]. Some areas experienced a 100% loss in sea ice
concentration during November, leading to widespread breeding failure of emperor penguin
colonies[95]. These findings suggest that such extreme environmental changes are influencing
movement patterns and demographic connectivity within this region.

This elevated emigration rate may suggest a genetically homogeneous population in the
A-B region, potentially representing a new genetic cluster. However, due to the region’s
inaccessibility and the logistical challenges of sampling, genetic data are scarce, making
it difficult to determine whether this population is part of one of the four known genetic
clusters or constitutes a distinct cluster. This highlights the need for increased research
efforts and enhanced sampling strategies in this understudied region to better understand
the genetic structure and demographic connectivity of emperor penguins in the face of rapid
environmental change.

Potential drivers of dispersal rates

Zooplankton biomass serves as an indicator of the food sources available to emperor pen-
guins and reflects the dynamics of the lower food web in the Antarctic ecosystem. Our study
revealed that it is the main factor that influences dispersion rates (Figure S5). Specifically,
we observed a negative relationship between zooplankton biomass during the nonbreeding
period and the probability of annual emigration, as shown in Figure 3a. Consequently, when
resources are abundant before breeding, emperor penguins are less inclined to leave their
colony.

Variables related to fast ice also play a significant role in determining the likelihood of
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emigration. Specifically, the annual probability of emigration is positively influenced by the
distance to the nearest fast-ice edge ( Figure 4(b) and Figure S5). Consequently, emperor
penguins are more inclined to leave their colony when it becomes more challenging to access
open water. This positive relationship between distance to the nearest fast-ice edge and
emigration probability has also been documented in relation to breeding success [J0].

On the other hand, we observed that demographic factors did not have a significant im-
pact on the average probability of emigration, except for population size (Figure 4(d)). The
larger colonies were found to have a lower average probability of emigration (Figure 4(c)) and
an annual probability of emigration (Figure S6). Despite expectations, smaller, declining,
and frequently blinking colonies do not necessarily have higher emigration rates.

Although more work is needed to elucidate the proximate factors of suitable habitat and
emigration rates of emperor penguins, our results suggest that massive emigration events
occur in habitats with low food availability that cannot sustain large populations and in
colonies that are distant from open water.

Dispersal behaviors and their consequences for the dynamics of the global pop-
ulation

Based on our analysis, it is evident that emperor penguins are prone to migrating from
colonies that have unfavorable habitats. They then randomly settle in another colony, a
behavior known as semi-informed dispersal behavior [93] (see Table 1).

Previously, [5%] have shown that high emigration rates and long-distance dispersal accel-
erate the projected global population decline of emperor penguins and decrease the global
population size by 65% by 2100 compared to a scenario without dispersal. However, here we
show that high emigration rates and long-distance dispersal are unlikely for emperor pen-
guins. We observed a limited dispersal distance and low average emigration rates, which will
result in a slight increase in the global population compared to a scenario where dispersal
does not occur. (see Figures 5(a)-(b)).

Nevertheless, the influence of dispersal behavior, distance, and emigration rate on the
future global population size is relatively insignificant compared to the influence of climate
change mitigation [71] (see Figure 5(c)). At the end of the century, there will be no suitable
habitat if greenhouse gas emissions continue their current course, resulting in a large decline
in the global population, regardless of dispersal processes[71]. To mitigate the rapid decline
in its worldwide population, it is imperative to limit temperature increases to levels that are
considerably below 2°C [13].

Conclusion

By developing an innovative likelihood for a model that connects genetic information
with metapopulation dynamics, we have discovered and measured previously unidentified
dispersion patterns in emperor penguins from scarce genetic data. The application of this
modeling approach has the potential to be used in various species and data-limited systems
to uncover dispersal processes. It has the ability to enhance our understanding of the ranges,
speeds, and behaviors of dispersal.
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