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A Mathematical models and data

[CHECK THATNOTHING IS MISSING IN THEMODELLING FRAMWORKCOMAPRED

TO THE MAIN TEXT]

A.1 Genetic data

In our paper, we use the genetic data from Younger et al. [2017]. Specifically, we use 4,596

genome-wide single nucleotide polymorphisms (SNPs), characterized in 110 individuals (10

to 16 per colony) from eight colonies around Antarctica (Ammanda Bay, Pointe Geologie,

Fold Island, Auster, Cape Roget, Cape Washington, Gould Bay and Halley Bay).

The loci included in the data set have been genotyped by at least 80% of the individuals

per population. We can thus assume that the individuals were genotyped at the same loci

(with possibly some allele frequencies equal to 0).
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In addition, each neutral genetic cluster characterizes a geographic region of Antarctica:

1. Weddell sea (Gould Bay to Halley Bay colonies) (WEDD),

2. Mawson Bay (Fold Island to Cape Darnley colonies) (MAWS),

3. Amanda Bay to Pointe Geologie colonies (AMPG) and

4. Ross sea (Cape Washington and Cape Crozier colonies) (ROSS).

Thus, we assume that before our data collection the individuals located in a colony among

the four regions, belong to genetic cluster characterizing the region. To characterize the

structure at a circum-Antarctica scale, we assign Davis Bay and Mertz Glacier colonies with

the AMPG cluster, and Cape Colbeck and Rupert Coast with the ROSS cluster.

Out of theses four geographic regions, we further include three geographic regions for

which no genetic data is available:species

5. from Smith to Snowhill Island in the Wedell sea colonies (StoS),

6. from Stancomb to Kloa point colonies (StoK) and

7. Ledda bay to Rotschild colonies (Admunsen and Bellingshausen seas, A-B seas).

We thus obtain 7 different geographical regions and 4 genetic clusters.

A.2 Demographic model for the emperor penguin

In our analysis, the population dynamics of emperor penguin is described using the meta–

population model developed by Jenouvrier et al. [2017]. In this section we describe in

detail the different function involved in this model, which projects the population vector

n—comprising the population size ni in each colonies i—from time t to t+ 1. We write

n(t+ 1) = D
[
t,n(t)

]
F
[
t,n(t)

]
n(t) (1)
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to indicate that the projection interval is divided into two main phases of possibly different

duration: the motionless reproduction phase (F) followed by the dispersal phase (D). The

projection matrices D and F depend on both the current population density n(t) and time

t because the habitat conditions vary among patches and over time.

The reproduction matrix F

The reproduction matrix F is constructed using the Ricker model. It includes the intrinsic

population growth rate r(t) that may vary in time because it depends on sea ice concentra-

tions (SIC), r(SICt). For each projection interval t, we calculate the growth rate of each

colony ri(t) using the median of the stochastic population size projected by a sea-ice depen-

dent population model without density dependence to account for uncertainties related to

both climate and demographic processes Jenouvrier et al. [2017]. This Ricker model also

includes the carrying capacity of the colonies K which are assumed to be constant over time.

The dispersal phase D

The dispersal phase (D) is decomposed into three stages: (1) emigrating from the resident

patch, (2) searching for new patch among other patches with an average dispersal distance d

(transfer), and (3) settling in a new patch. During this dispersal event, individuals may select

the habitat with highest quality (informed search) or settle in a random habitat (random

search). The dispersal projection matrix D is thus decomposed as follows

D := S[t; d]M[t,n(t);pm] (2)

to indicate that matrices for searching behavior, S, and emigration, M, depend on the

population size (n) as well as the environmental conditions which depend on time t and the

coastal distance between the colonies. We contrast three dispersal behaviors: (1) an informed
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dispersal behavior where individuals leave poor habitat colony (informed emigration) and

perform informed search, (2) a random dispersal behavior where individuals randomly leave

and randomly search for a new colony and (3) a semi-informed dispersal behavior where

individuals leave only poor habitat colony (informed emigration) but settle randomly among

reachable colonies (randomly search).

Migration matrix M. For the random emigration behavior, the emigration rate mi

for each colony i depends only on the proportion pmi of individuals that leave the colony.

Thus the migration matrix is a diagonal matrix with diagonal coefficient mi = pmi.

For the informed emigration behavior, the emigration rate depends on the quality

of the habitat, measured through the realized population growth r∗i (t) and a sensitivity

parameter pm = (pm1, . . . , pm7) measuring the intensity of the emigration. The realized

population growth rate r∗i (t) is a function of both the intrinsic growth rate ri(t), and the

carrying capacity of the colonies Ki:

r∗i (t) =


(1 + ri(t)) exp

(
1− Ni(t)

Ki

)
− 1 if ri(t) > 0

ri(t) if ri(t) ⩽ 0

We assume that the emigration rate m increases linearly from m = 0 at r∗ ⩾ 0 to m = 1 at

critical value r∗c < 0. Thus, a critical threshold r∗c close to 0 corresponds to high migration,

while a larger threshold reflects low migration. Here, we will estimate the emigration rate

parameter pm = (pm1, . . . , pm7), which quantifies the critical value in each region i:

r∗i,c = (1− pmi)r
∗
m

where r∗m is the lowest intrinsic growth rate. Hence, the emigration matrix M only depends
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on the ratio r∗(t)/(1− pm)r
∗
m

mi

[
r∗i (t)

(1− pmi)r
∗
m

]
=


1 if r∗i (t) < (1− pmi)r

∗
m

1− r∗i (t)

(1− pmi)r
∗
m

if (1− pmi)r
∗
m ⩽ r∗i (t) ⩽ 0

0 if r∗i (t) > 0

(3)

Searching matrix S. Once individuals have left their colonies, we assume that they search

for a new colony. The searching matrices S[x] is

Sij[x, d ] := S(j|i,x(t), d), for j ̸= i and Sii[x, d ] := −
∑
j ̸=i

Sij[x, d ],

indicating that the probability of settlement in a colony j depends on leaving colony i, the

characteristics of the habitat in the colony j (x(t)), and the dispersal ability of the individuals

d.

For the random search individuals can move randomly across landscape according to a

dispersal kernel k(x) which describes the probability of traveling a distance x. This proba-

bility distribution can take various forms according to the dispersal ability of the species. In

our simulation, we use a uniform kernel because emperor penguins have the ability to cover

incredible distances, thus all colonies are potentially connected:

kunif (x) :=
1

d
1[0,d](x), for all x ∈ [0,+∞),

where d represents the mean distance dispersal of the species and 1[0,d](x) is the characteristic

function of the interval [0, d]. Thus under the random search, the probability SR(j|i,x(t), d)
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of moving to colony j given that individual left its resident colony i at time t is defined by

SR(j|i,x(t), d) :=
k(dist(i, j))∑

j ̸=i

k(dist(i, j))
. (4)

where dist(i, j) corresponds to the landscape topography, specifically the coastal distance

between colonies in our case study. With the random search, individuals may settle in a new

colony of lower quality than their resident colony.

A.3 Computation of Likelihood

Conditional probability of genotype Gi,τ The computation of the genotype likelihoods

involves classical genetic assignment approaches Paetkau et al. [1995]; Pritchard et al. [2000]

and dispersal analysis from spatially sampled data. In each sampled colonies τ we have

captured and genotyped Gτ individuals. The number of genotyped individuals Gτ ranges

from 10 to 16 individuals depending on the sampled colony τ . Thus we have Gτ genotypes

Gi,τ with i = 1, . . . , Gτ .

The conditional probability that an individual i carries alleles (a1, a2) ∈ {1, . . . , Aλ}2

at locus λ given that this individual comes from cluster r, can be deduced from the al-

lele frequencies of each cluster Frλ = (prλa)a={1,4}. From the Hardy–Weinberg equilibrium

assumption within a cluster, the two-alleles are independent and alleles frequencies are:

P
(
(a1, a2)| indiv. i belongs to cluster r

)
= 2kλprλa1prλa2 (5)

where kλ = 0 if the individual is homozygous at locus λ, that is a1 = a2, and kλ = 1

otherwise. Using the linkage equilibrium among loci, the conditional probability for the
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genotype Giτ is:

P
(
Gi,τ | indiv. i belongs to cluster r

)
= 2ki

Λ∏
λ=1

prλa1prλa2 (6)

where ki is the number of heterozygous loci in Gi,τ .

Probability of sampling individual from a cluster Since individuals may move from

colony to colony, we need to model the genetic sampling of individuals in the different

colonies. The sampling of individuals at a given time t at a colony τ is random among the

individuals observed at the colony. Thus the expected number of individuals that can be

potentially captured Cτ (t) is proportional to the number of individuals alive in the colony τ

at time t:

Cτ (t) = βτnτ (t),

where βτ is the capture rate at colony τ and nτ (t) follows the dynamics described by equa-

tion (1).

However, within a colony, the population is structured into the different neutral genetic

clusters. The number of individuals within colony i from cluster r is denoted by nr
i (t) and the

total number of individuals, which belong to the cluster r across colonies is nr(t). Since we

are looking at neutral set of loci, all individuals are supposed to share the same dispersal and

reproduction characteristics independently of their clusters. Thus the number of individuals

nr(t) satisfies [Roques et al., 2012]:

nr(t+ 1) = D
[
t,n(t)

]
F
[
t,n(t)

]
nr(t) (7)

and initially,

nr
i (0) = µr

ini(0), for all i ∈ {1, . . . , 54}, (8)
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where µr
i is the initial proportion of the cluster r within a colony i (

∑R
r=1 µ

r
i = 1 for all i).

The genetic and demographic dynamics are linked by:

n(t) =
R∑

r=1

nr(t). (9)

Thus, the expected number of individuals Cr
τ (t) belonging to a cluster r that can be sampled

at colony τ at time t is given by

Cr
τ (t) = βτn

r
τ (t). (10)

Since the genotyping process corresponds to a sampling without replacement, the number

of genotyped individuals in τ belonging to cluster r follows a multivariate hypergeometric

distribution with parameters Cτ , C
r
τ and Gτ , the sample size. In our data collection, the

number Gτ of sampled individuals per colony ranges from 10 to 16. From previous stud-

ies Jenouvrier et al. [2020], the estimated number of individuals in the colonies, where data

have been collected, ranges from 213 to 22510 in 2009. Thus Cτ is quite large and it is larger

than the average number of sampled individuals per colony. Thus the multivariate hyper-

geometric distribution can be approximated by a multinomial distribution with parameters

Gτ and (C1
τ /Cτ , . . . , C

R
τ /Cτ ). Using this approximation, we recover the probability that a

genotyped individual i observed in colony τ belongs to cluster r, stated in the main text:

P
(
indiv. i belongs to r

)
=

Cr
τ

Cτ

=
nr
τ (ti)

nτ (ti)
= µr

τ (ti). (11)

where µr
τ (ti) is the frequency of the genetic cluster r in the colony τ at time ti.

Likelihood function We deduce the probability of the genotype Gi,τ

P(Gi,τ ) =
R∑

r=1

µr
τ (ti)

[
2ki

Λ∏
λ=1

prλa1prλa2

]
(12)
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Finally, we compute the likelihood function associated with the unknown parameters,

given the genotyped Gi,τ and the sampling times (ti) as:

L(Θ) =
J∏

τ=1

Gτ∏
i=1

P(Gi,τ |Θ)

=
J∏

τ=1

Gτ∏
i=1

R∑
r=1

µr
τ (ti)

[
2ki

Λ∏
λ=1

prλa1prλa2

] (13)

A.4 Estimation of parameters

We aim to infer the following parameter vector Θ = (d,pm,µ).

First, we assume that the vector of parameters pm has only 7 different values corre-

sponding to the seven geographical regions defined in section A.1. In addition, the initial

proportions µ of clusters are only unknown in the colonies belonging to the three regions

without genetic characterisation (StoS, StoK and A-B sea).

For each behavior (informed, random or semi-informed see section A.2), the estimates

of dispersal parameters (d̂, p̂m) and the initial cluster proportions (µ̂) have been obtained

by minimizing the logarithm of the inverse Likelihood, that is − log(L(d,pm,µ)).

The minimization algorithm is performed using a Bayesian method, where the prior of the

parameters d and pm are assumed to be uniformly distributed with the following constraints:

(d̂, p̂m) ∈ (250, 6500)× (0, 1)7

and the prior of the parameter µ follows a Dirichlet distribution of order R = 4 with

parameters all equal to 1, thus we have:

µ̂r
h ∈ (0, 1)4 and

4∑
r=1

µ̂r
h = 1 for all h ∈ {1, . . . , 54}.
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A.5 Model selection criteria

We explore 3 dispersal behaviors (informed, random or semi-informed see section A.2). In

order to choose the most likely behavior, we perform a model selection using the different

selection model criteria: the Bayesian Information Criteria (BIC) Schwarz [1978], two De-

viance Information Criteria (DIC) Gelman et al. [2003]; Spiegelhalter et al. [2002] and a

predictive Information Criteria (IC) Ando [2011]. The BIC is defined by

BIC = −2 log[L(Θ∗)] + k log(I) (14)

where I is the sample size, k the number of parameters and Θ∗ is the maximum likelihood

estimate of the parameter vector Θ, that is Θ∗ = argmax(L(Θ)). In our study, k and I are

the same for all the models.

The DIC satisfies

DIC = D̂ + peff (15)

where D̂ is the posterior mean of the deviance D(Θ) = −2 log[L(Θ∗)] and peff is the effective

number of parameters of the model. We use two different versions of the DIC, which rely

on different definitions of peff . The first version has been developed by Spiegelhalter et al.

[2002]:

peff = D̂ − D(Θ̂) (16)

where Θ̂ is the posterior mean of Θ. The second version has been introduced by Gelman

et al. [2003]:

peff =
1

2
V(D(Θ)) (17)

where V(D(Θ)) is the posterior variance of D(Θ).
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We also use the IC developed by Ando [2011]:

IC = 3D̂ − 2D(Θ̂) (18)

In practice, the posterior mean and variance, which appear in our four criteria, are computed

with their empirical values using the weighted posterior sample {Θm, wm} provided by our

minimization algorithm.

B Estimated parameters

B.1 Estimation of the initial proportion of cluster within a colony.

The model permits to estimate the initial proportion of cluster within colonies. Since the

clusters are associated to geographical regions (AMPG, WEDD, ROSS and MAWS), we

assume that for the colonies belonging to those regions, the initial proportion of the corre-

sponding cluster is equal to 1 (Fixed observed cluster on Fig. S1).

For the semi-informed dispersal (Fig. S1), we found that the colonies

• from Snowhill to Smith (StoS) are mostly composed of individuals from WEDD cluster

(geographically closest cluster) and AMPG cluster.

• from Stancomb to Kloa Point (StoKP) are mostly composed of MAWS and WEDD

clusters;

• from Ledda bay to Rotschild (AtoBe) seems panmictic because all the proportion are

almost equal.

This pattern is confirmed even when we do not constrain the initial proportion of the observed

cluster (Estimated observed cluster on Fig. S1b). In that case the highest proportion of a
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given cluster matches with the observed cluster. This correct assignment suggests that our

model reproduces well the expected pattern.
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(a) Fixed observed cluster – Semi-Informed behavior
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Figure S1: Estimation of the proportion of the four genetic clusters (AMPG, MAWS, ROSS
and WEDD) across the seven geographical regions in Antarctica.

B.2 Emigration rate per colony

In the main text we gather colonies per geographical regions. However, we quantify the

emigration rates for each colony (see Fig. S2). We observe that the emigration rates vary

among colonies belonging to a similar geographical regions. In addition, we provide the

averaged migration flux between colonies of Antarctica from 2009 to 2014 (Fig. S3) for the

following regions: Smith to Snowhill Island in the Wedell sea (StoS), Weddell sea (Gould Bay

to Halley Bay colonies) (WEDD), from Stancomb to Kloa point (StoK), Mawson Bay (Fold

Island to Cape Darnley colonies) (MAWS), from Amanda Bay to Pointe Geologie colonies

(AMPG), the Ross sea (Cape Washington and Cape Crozier) (ROSS) and Admunsen and

Bellinghausen seas (Ledda bay to Rothschild Island) (A-B seas)
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(a) Smith to Snowhill Island
(StoS)

(b) Weddell sea (WEDD) (c) Stancomb to Kloa Point
colonies (StoKP)

(d) Mawnson bay (MAWS) (e) Amanda Bay to Pointe Ge-
ologie (AMPG)

(f) Ross sea (ROSS)

(g) Admunsen and Belling-
hausen seas (A-B seas)

Figure S2: Posterior distributions of the emigration rates per colony over the entire Antarctic
continent (a) and for the seven regions of Antarctica (b). White dots represent the median of
the distributions and the black line is the mean emigration rate over all colonies in Antarctica
(0.157)
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Figure S3: Migration flux estimation averaged between colonies of Antarctica from 2009
to 2014. Map background shows the distribution of fast ice persistence, expressed as a
percentage of time covering each unit (square of 6.25km) from March 2000 to March 2018
(the map is extracted from Fraser et al. [2021]).
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C Importance of climatic and demographic covariates

C.1 Description of the demographic and environmental factors

We use three demographic factors independent from our meta-population analysis: the size

of colony, the growth rate per colony and the frequency of blinking that corresponds to the

relative number of year a colony disappear over a period of 10 years, from 2009 to 2018. They

were calculated from unpublished data of colony presence and population counts of emperor

penguins from VHR satellite imagery [LaRue et al., 2022]. Those estimates represent the

portion of the colony in attendance on the fast ice every year and thus available for surveying

through aerial counts or satellite images during the chick-rearing season [LaRue et al., 2022].

We also considered different environmental variables around each colony: the zooplankton

biomass (mmol C/m2) and the distance between the colony and the nearest edge of fast ice

(m), the fast ice area around a colony (m2), the emergence and breaking date of the fast

ice, the mixed layer depth (m), the upper ocean temperature (top 10m,◦C), and surface

wind (m/s). We also used new fast ice variables from a recent analysis of Emperor penguin

habitat Labrousse et al. [2021] describing the persistence and the magnitude of fast ice annual

cycle. Fast ice variables were computed using continuous, high-spatio-temporal resolution

time series of circum-Antarctic fast-ice extent from [Fraser et al., 2020]. Other reanalysis

environmental products were computed in a forced ocean sea ice (FOSI) configuration of

the Community Earth System Model (CESM2, 1o resolution) [Danabasoglu et al., 2020].

Additionally, we used different scales: the average within a 100 km buffer around each colony

when calculating fast ice variables; 800 km buffer for other variables during the non-breeding

period; and a 500 km buffer for other periods.
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C.2 Importance variable analysis through random forest algorithm

First, we modeled the proportion of emigration years across colonies with both demographic

variables and environmental variables using conditional random forests [Strobl et al., 2007].

The best models had an R2 value of 0.48.

Second, we refine our analysis using environmental variables only by modeling the annual

emigration probability using the same framework of conditional random forests. The best

model had an area under the receiving operator characteristic curve (AUC) of 0.82, which

was calculated with a 10-fold cross validation, signifying good classification performance.

Variable importance scores were calculated with conditional permutation importance using

the R package ”permimp” [Debeer & Strobl, 2020] (see Figure S4). The codes are available

online https://github.com/bilgecansen/Emperor_dispersal.

Here we present the figure of the conditional variable importance scores of random forests

modelling annual emigration probability when refining our analysis only with environmental

covariates (Fig. S4).

C.3 Distribution analysis

In addition, we show the distribution of the size of the colonies for colonies with or without

emigration (Fig. S5).
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Figure S4: Conditional variable importance scores of random forests modelling annual emi-
gration probability. Only the top 2 variables are shown.
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Figure S5: Distribution of the size per colony for colonies with Emigration (orange violin-
plots) and without emigration (blue violinplots). The subparts represent the boxplot of the
difference between demographic covariates in colonies without and with emigration (green
corresponds to positive difference). White dots correspond to the median of the distribu-
tions.
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D Projection of the total Emperor penguin population

size

Plugging the estimated demographic parameters provided by our new analysis into our

metapopulation model (section A.2), we project the total population size of Emperor pen-

guin over the century in different climate scenarios: scenario 4.3°C [RCP8.5], scenario 2.6°C

[new scenario], scenario 2.4°C [RCP4.5], scenario 2°C [Paris 2°C] and scenario 1.5°C [Paris

1.5°C]. We compare the outcome of this updated model (semi-informed dispersal), with the

projections of the model without dispersal (see Fig. S6). We show that the more likely dis-

persal dispersal behavior predicted for the Emperor penguins (semi-informed dispersal with

small mean distance dispersal 428km and small emigration rates), results in a greater global

population up to 5% compared with a scenario without dispersion when the climate scenarios

are unfavorable (from scenario 4.3°C and scenario 2°C). However, under a favorable climate

scenario 1.5°C (Paris 1.5°C), this dispersal behavior does not improve significantly the global

population size but may attenuate it. We also compared our projection with the inferred

dispersal behavior with the projections obtain with a broader range of dispersal behaviors

(random, semi-informed or informed dispersal) and various mean dispersal distances and

emigration rates. We show that our predicted scenario is not among the more optimistic for

the Emperor penguin population size because we project on average a 5% reduction of the

population size compared with the other scenario of dispersal. As a conclusion, the impact

of dispersal behavior, distance and emigration rate on the future global population size is

relatively small compared with the impact of climate change mitigation Jenouvrier et al.

[2021, 2020] (see Fig.SI6 and SI7).
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(a) Total population size of EP (b) Difference in dispersal behavior

(c) Difference in climate scenarios

Figure S6: Projection of the total population size of Emperor penguin from 2009 to 2100
using the demographic model (1) with different climate scenarios. In panel (a), the projected
total population size without dispersal (dashed curves) and with semi-informed dispersal
with the most likely parameters provided by our analysis (plain curves); The grey regions
corresponds to the 1% confident intervals around the median. In panel (b), we present
the percentage difference of population size between the projection with a semi-informed
dispersal and the projection without dispersal for each climate scenario. In panel (c), we
present the percentage difference of population size between the projection with the worst
climate scenario 4.3°C [RCP8.5] and the other scenarios.

References

Ando T (2011) Predictive bayesian model selection. American Journal of Mathematical and

Management Sciences, 31, 13 – 38.

20



Danabasoglu G, Lamarque J, Bacmeister J, et al. (2020) The Community Earth System

Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12.

Debeer D, Strobl C (2020) Conditional permutation importance revisited. BMC Bioinfor-

matics, 21. doi:10.1186/s12859-020-03622-2.

Fraser AD, Massom RA, Handcock MS, et al. (2021) Eighteen-year record of circum-antarctic

landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends

and variability. The Cryosphere, 15, 5061–5077. doi:10.5194/tc-15-5061-2021.

Fraser AD, Massom RA, Ohshima KI, Willmes S, Kappes PJ, Cartwright J, Porter-Smith

R (2020) High-resolution mapping of circum-antarctic landfast sea ice distribution, 2000–

2018. Earth System Science Data, 12, 2987–2999.

Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, Rubin D (2003) Bayesian Data Analysis.

Chapman & Hall / CRC.

Jenouvrier S, Che-Castaldo J, Wolf S, et al. (2021) The call of the emperor penguin: Legal

responses to species threatened by climate change. Global change biology, 27, 5008–5029.

Jenouvrier S, Garnier J, Patout F, Desvillettes L (2017) Influence of dispersal processes on

the global dynamics of emperor penguin, a species threatened by climate change. Biol.

Conserv., 212, 63 – 73. doi:10.1016/j.biocon.2017.05.017.

Jenouvrier S, Holland M, Iles D, et al. (2020) The paris agreement objectives will likely halt

future declines of emperor penguins. Global change biology, 26, 1170–1184.

Labrousse S, Fraser AD, Sumner M, et al. (2021) Landfast ice: a major driver of reproductive

success in a polar seabird. Biology Letters, 17, 20210097.

21



LaRue M, Brooks C, Wege M, Salas L, Gardiner N (2022) High-resolution satellite imagery

meets the challenge of monitoring remote marine protected areas in the antarctic and

beyond. Conservation Letters, 15, e12884. doi:https://doi.org/10.1111/conl.12884.

Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population

structure in canadian polar bears. Mol. Ecol., 4, 347–354. doi:10.1111/j.1365-294X.1995.

tb00227.x.

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using mul-

tilocus genotype data. Genetics, 155, 945–959. doi:10.1093/genetics/155.2.945.

Roques L, Garnier J, Hamel F, Klein EK (2012) Allee effect promotes diversity in traveling

waves of colonization. Proc Natl Acad Sci USA, 109, 8828–8833.

Schwarz G (1978) Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model

complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 64, 583–639. doi:https://doi.org/10.1111/1467-9868.00353.

Strobl C, Boulesteix AL, Zeileis A, Hothorn T (2007) Bias in random forest variable im-

portance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8. doi:

10.1186/1471-2105-8-25.

Younger JL, Clucas GV, Kao D, Rogers AD, Gharbi K, Hart T, Miller KJ (2017) The

challenges of detecting subtle population structure and its importance for the conservation

of emperor penguins. Molecular Ecology, 26, 3883–3897. doi:10.1111/mec.14172.

22


	Mathematical models and data
	Genetic data
	Demographic model for the emperor penguin
	Computation of Likelihood
	Estimation of parameters
	Model selection criteria

	Estimated parameters
	Estimation of the initial proportion of cluster within a colony.
	Emigration rate per colony

	Importance of climatic and demographic covariates
	Description of the demographic and environmental factors
	Importance variable analysis through random forest algorithm
	Distribution analysis

	Projection of the total Emperor penguin population size

