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ABSTRACT

Image generation is the task of producing new samples from
one or several example images. Until recently, this has been
done using large image databases, in particular using Gen-
erative Adversarial Networks (GANs). However, Shaham
et al. [1] recently proposed the SinGAN method, which
achieves this generation using a single image example. At
the same time, researchers are realizing that classical patch-
based methods can replace certain neural networks, with no
costly training. In this paper, we present a purely patch-based
method, named Patches for Single image generation (PSin),
which requires no training and generates samples in seconds.
Our algorithm is based on the minimization of a global, patch-
based energy functional, which ensures the visual fidelity of
the result to the original image. We also ensure diversity of
the results by carefully choosing the initialization of the al-
gorithm. We propose two initialization variants. We compare
our results to both the original SinGAN and another recent
patch-based image generation approach, both qualitatively
and quantitatively using multiple metrics.

Index Terms— patch, single image generation, genera-
tive adversarial networks

1. INTRODUCTION

For more than twenty years, patch-based methods have rep-
resented a powerful way to generate and edit images. These
methods have first been proposed in pioneering works for tex-
ture synthesis [2, 3] and then extended to other tasks such
as image inpainting [4] or editing [5]. Subsequently, in the
past several years, the new deep learning paradigm has taken
centre stage in image processing and computer vision, and
was quickly extended from classification to image genera-
tion tasks. In particular, Generative Adversarial Networks
(GANs) [6] have greatly improved the capacity of these gen-
erative models to faithfully reproduce the distribution of im-
ages or of image patches. This has allowed the synthesis of
new images of unprecedented quality [7]. A common char-
acteristic of all these methods is their need for large learning
databases. Recently, it has been suggested that a GAN ar-
chitecture could generate new images from a single training

image, through the so-called SinGAN architecture [1], con-
firming previous findings that the convolutional architecture
is a good image prior for image restoration tasks [8].

At the same time, it has been remarked that current
deep neural networks have some underlying similarities with
patch-based methods (eg. in the case of attention mecha-
nisms). Patch-based methods, however, require none of the
costly training entailed by neural networks. Consequently,
Granot et al. [9] proposed a relatively simple patch-based
method, free of deep convolutional architecture, to challenge
SinGAN’s approach to the generation of new image content
and yield better visual quality at a reduced computing time.

The main two goals of image synthesis are to produce re-
sults with both high visual fidelity with respect to the original
image, but that also have enough diversity. Indeed, it is trivial
to achieve fidelity by always producing the same image, and
conversely it is trivial to produce high diversity by producing
noise. Thus, attaining both goals is a great challenge.

In this work, we propose an efficient, fully patch-based
method for single image synthesis, requiring no training,
which produces examples of both high fidelity and diversity.
We encourage fidelity by minimizing a patch-based energy
in a multi-scale approach, and we ensure diversity by care-
fully choosing the initialization of the example, which turns
out to be crucial for diversity. In particular, we propose an
initialization based on optimal transport, designed to respect
the patch distribution of the original image. We show that our
approach produces better results than the original SinGAN
and the other patch-based method of Granot et al., which has
difficulty in ensuring diversity. Furthermore, our method is
computationally fast, generating samples in seconds.

In Section 2, we review some of the previous work related
to this subject, in Section 3 we present our image generation
method, and finally we present our results in Section 4.

2. RELATED WORK

Texture synthesis. Efros and Leung [2] were among the first
to propose the use of image patches for synthesis purposes,
with a greedy non-parametric algorithm for texture synthe-
sis. Kwatra et al. [3] optimized a global energy, minimized
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Algorithm 1 PSin / PSinOT
u← init() ▷ Random noise or optimal initialization
for s ∈ [2, 1, 0] do

u← rescale(u, scale = s)
for i = 1..10 do

ϕ← NN-Mapping(u, ũ) ▷ Expectation
u← Reconstruction(ϕ, ũ) ▷ Maximization

end for
end for

at different scales. Wexler et al. [4] proposed a similar en-
ergy for video inpainting. The idea was then improved upon
by Newson et al. [10] who sped up the technique by adapt-
ing PatchMatch [11] to video. Recently, Gatys et al. [12]
have generated textures by an optimization approach. They
used a pretrained classification network and matched deep
feature statistics for texture generation. Ulyanov et al. [13]
trained a network to generate images from noise minimizing
the same criterion. Based on optimal transport, Houdard et
al. [14] proposed a multiscale patch-based texture synthesis
which respects the patch distribution of the reference image.

Single Image Learning. Deep Image Prior by Ulyanov
et al. [8] has shown that deep convolutional networks are very
good priors for image processing tasks. An untrained network
was used as a regularization term in the objective function.
Shaham et al. [1] have proposed SinGAN for single image
generation. SinGAN uses a pyramid and a simple patch gen-
erator / discriminator architecture at each level for generating
variations of a single image. InGAN [15] was proposed by
Shocher et al. for learning the internal patch distribution of an
image. Once trained, the network can resize an image while
preserving the patch distribution. Granot et al. [9] very re-
cently proposed an approach which is similar to ours in spirit,
showing that GANs are indeed not necessary for single image
generation. They addressed the problem of distribution with
a hand-designed regularization term.

3. PATCHES FOR SINGLE IMAGE GENERATION

We propose PSin, a Patch-based algorithm for Single im-
age generation. Our algorithm exploits the gaussian pyramid,
minimizing an energy from the coarsest scale to the finest
scale. We avoid costly learning stages by copying patches
from the reference image.

We now introduce the patch-based optimization problem
that we solve to produce the output image. Let ũ be the refer-
ence image and u be the new, synthesised image, defined over
the image domain Ω. A patch centred on a pixel p in image u
is denoted as Ψu

p . At each scale, we minimize a global energy
similar to the one of Wexler et al. [4] or Kwatra et al. [3]:

E(u) =
∑
p∈Ω

min
p̃∈Ω
∥Ψu

p −Ψũ
p̃∥22, (1)

Algorithm Learning-Free Distribution Scalable
SinGAN [1] ✗ ✓ ✓
GPNN [9] ✓ ✓ ✗

PSin ✓ ✗ ✓
PSinOT ✓ ✓ ✓

Table 1. Combining PSin with a good initialization gives an
algorithm that does not require learning, respects the original
distribution, scales to higher images and has limited runtime

where ∥Ψu
p−Ψũ

p̃∥22 is the ℓ2 distance between the pixels of the
patches Ψu

p and Ψũ
p̃ . This energy specifies that a good solu-

tion is one where each patch is similar to its nearest neighbor
(NN), with respect to the ℓ2 patch distance, in the reference
image.

This energy is efficiently minimized by alternating a
nearest neighbor search step and a reconstruction step,
which have been identified as two steps of a hard Expec-
tation Maximization (EM) by Kwatra et al. [3]. Let ϕ(p)
represent the nearest neighbours mapping, in other words
ϕ(p) = argminq̃∈Ω∥Ψu

p − Ψũ
q̃ ∥22. The reconstruction step is

given, for each pixel p by:

u(p) =
∑
q∈Ψp

e−∥Ψu
q−Ψũ

ϕ(q)∥
2
2 ũ(ϕ(q) + (q − p)) (2)

Using the efficient approximate nearest neighbor algo-
rithm PatchMatch [11] makes generation possible in seconds.
No training is required at any time. Our full algorithm is
described in Alg 1.

This energy is minimized at each scale starting from the
coarsest to the finest scale, adding more and more details. The
coarse structure e.g. position of the main objects and struc-
tures, is defined at the very beginning similarly to SinGAN.
The initialization and first scales are thus crucial steps in our
algorithm, and must be carefully considered. We have two
strategies for initialization.

3.1. Random Initialization - PSin

In the simplest approach that we first consider, Gaussian noise
can be used as an initialization. We refer to this method as
PSin. While simple, this can lead to interesting structures
provided that the starting resolution is low enough with re-
spect to the patch size. Figure 1 illustrates this phenomenon:
with 3 scales, the generated image has poor global coherency.
In general, this approach ensures some diversity but has lim-
ited fidelity, in the sense that e.g. it does not respect the dis-
tribution of patches in the reference image. To address this
problem, we turn to another initialization.

3.2. Optimal distribution- PSinOT

In this approach, we turn to tools from optimal transport to
build a loss that accounts for the distance between the proba-
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Fig. 1. PSin results with 3 scales (left) vs 4 scales (right).
With 3 scales, the general structure is not coherent; this is
addressed by initializing at a lower scale.

bility distribution of patches from the input and the one of the
synthesized image. This enables us to produce an initializa-
tion which has a similar patch distribution to the reference im-
age. This loss, the Wasserstein-2 distance, is minimized at a
coarse scale to produce the desired initialization. Our method
is inspired by the work of Houdard et al. [14], who proposed
a patch-based optimal transport algorithm for texture synthe-
sis. Minimizing the Wasserstein-2 distance ensures that the
generated samples have the correct patch distribution, ie the
distribution of patches in the reference image.

Using our notations, the semi-dual problem at a single
scale is the following:

OT (u) = max
β

∑
p∈Ω

min
p̃∈Ω

(
∥Ψu

p −Ψũ
p̃∥22 − βp̃

)
+

∑
p̃∈Ω

βp̃ (3)

using β ∈ R|Ω| as the dual variable. The cost is minimized by
alternative optimizations on u and β.

This process is long and computationally expensive. It
scales quadratically with the number of patches which makes
it unpractical for single image generation. To combine the
strengths of both approaches, we propose to first create a
coarse initialization by optimization and then switch to our
fast generator for performance. We call this method PSinOT.

3.3. Fast nearest neighbor search

Our algorithm spends most of its computational effort find-
ing the nearest neighbors. Unfortunately, a naive approach to
this search does not scale well, with a complexity of O(n2)
for n patches. Therefore, we turn to PatchMatch [11] for a
fast computation of nearest neighbors. This makes PSin and
PSinOT scalable algorithms. Table 1 summarizes the advan-
tages of each method. In practice, PSin can generate a new
sample in 15 seconds on the CPU, while SinGAN first re-
quires 1 hour of training on GPU. GPNN takes 6 seconds
to generate a sample on GPU. The optimal initialization in
PSinOT adds 15s (see Table 2 for running times).

Algorithm Runtime CPU (s) Runtime GPU (s)
SinGAN - 3700
GPNN 32 6
PSin 15 -

PSinOT 72 30*

Table 2. Runtimes of each algorithm on CPU / GPU. PSin is
the fastest on CPU. The optimal initialization slows down the
total run time. *Initialization on GPU and refinement on CPU

4. RESULTS

4.1. Implementation details

We implement our algorithm in Python and speed it up with
Numba on CPU. We typically use 4 scales with a factor 2 and
set the patch size to 11, which is comparable to the receptive
field of SinGAN [1]. We do 10 iterations of EM at each scale
before switching. Upscaling is done by interpolating the shift
map ϕ rather than interpolating the image u. For PSin, we use
a gaussian noise N (0.5, 1). For PSinOT, optimal transport is
employed for the first two scales and then PSin is used. Our
patch distance includes the RGB difference and the norm of
the horizontal and vertical gradients, which have been found
to improve the synthesis of textures [10]. For comparisons,
we have used the official implementation of each work with
their default parameters1. (σ = 0.75 for GPNN).

4.2. Quantitative results

Evaluating image generation is challenging in itself. There-
fore we rely on several metrics to compare the methods. We
use the Fréchet Inception Distance [16] which measures the
distance between gaussian distributions of features and its
adaptation to single image generation (SIFID) [1]. A low
SIFID means that images have the same feature distribution
and contain the same visual objects. For fidelity, we include
the optimal transport cost on patches (derived from the work
of Houdard et al. [14]) which measures the true distance be-
tween patch distributions at the finest scale. In practice this
is done by optimizing Equation 3 in the dual variable β only,
with 1000 iterations of gradient ascent. We also measure the
diversity of generated images. The entropy of the distribu-
tion is intractable and we use the measure of diversity given
in Shaham et al. [1]. For each image, the pixel diversity is the
standard deviation of pixel-wise intensities when stacking all
generated images. We compare with the results of SinGAN,
GPNN [9], PSin, and PSinOT.

We use a dataset of 50 images from Places [17], the same
as in Shaham et al., and compute our metrics on 50 sam-
ples for each image. Table 3 confirms that PSin produces
very variable results with limited fidelity. SinGAN produces

1GPNN: https://github.com/iyttor/GPNN, SinGAN:
https://github.com/tamarott/SinGAN

3

https://github.com/iyttor/GPNN
https://github.com/tamarott/SinGAN


Si
nG

A
N

G
PN

N
PS

in
PS

in
O

T

Fig. 2. Reference image and 6 uncurated samples for each algorithm to showcase diversity. SinGAN and PSin produce diverse
shapes, however the visual quality of SinGAN is clearly lacking. GPNN introduces very little diversity, keeping the main
structure of the reference image (the single rock arch). PSinOT produces original geometries while maintaining better visual
fidelity than SinGAN.

Algorithm SIFID ↓ Optimal Transport ↓ Diversity ↑
SinGAN 0.12 1.34 0.34
GPNN 0.02 0.52 0.40
PSin 0.45 0.94 0.62

PSinOT 0.06 0.36 0.53

Table 3. PSin is very diverse but has limited fidelity (SIFID,
optimal transport). PSinOT combines high diversity and sim-
ilar distribution. best, second best.

less diverse output with a lower SIFID. Finally GPNN and
PSinOT both have good diversity and fidelity scores but our
approaches yield significant improvements both in the fidelity
of patches distribution and in diversity.

4.3. Qualitative results

We also present visual results in Figure 2 which are represen-
tative outputs. SinGAN’s results are visually pleasing from
a distance but suffer from network artifacts when looked at
closely (Figure 3). GPNN produces visually coherent results
but may reproduce the same image multiple times. Finally
PSinOT has a coherent structure and satisfying details. Our
website contains more examples: link to website.

Fig. 3. SinGAN (left) and PSinOT (right). Our method does
not have network artifacts.

5. CONCLUSION

We have presented a patch-based approach to single image
generation. Contrary to SinGAN, it does not require train-
ing but still generates diverse and visually pleasing images.
Our algorithm is based on the minimization of a patch energy,
which encourages fidelity to the reference image. In order to
ensure that the patch distribution of the reference image is re-
spected, we propose an initialization based on optimal trans-
port. We have compared our results quantitatively and qual-
itatively with the original SinGAN and another patch-based
method, showing that our approach achieves better fidelity
and diversity than the previous two. Although patch-based
methods work well here, in future work, we may want to pre-
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serve some of the advantages of convolutional architectures,
replacing only the discriminator with a patch-based approach.
More generally, we will investigate how patches can be in-
cluded in general-purpose GANs, not just for single images.
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