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This paper is dedicated to the memory of K. Gawedzki. It shows how noise in hydrodynamic models of perfect gases can emerge from a deterministic microscopic dynamics. It is reminiscent of the concept of spontaneous stochasticity introduced in [START_REF] Bernard | Slow modes in passive advection[END_REF] and formalized in [START_REF] Chaves | Lagrangian dispersion in Gaussian self-similar velocity ensembles[END_REF].

1. The different levels of modeling 1.1. The atomistic description. The microscopic model consists of identical hard spheres of unit mass and of diameter ε. The motion of N such hard spheres is ruled by a system of ordinary differential equations, which are set in (T d ×R d ) N where T d is the unit d-dimensional periodic box with d ≥ 3: writing x ε i ∈ T d for the position of the center of the particle labeled by i and v ε i ∈ R d for its velocity, one has (1.1)

dx ε i dt = v ε i , dv ε i dt = 0 as long as x ε i (t) -x ε j (t) > ε for 1 ≤ i ≠ j ≤ N ,
with specular reflection at collisions:

(1.2) (v ε i ) ′ ∶= v ε i - 1 ε 2 (v ε i -v ε j ) ⋅ (x ε i -x ε j ) (x ε i -x ε j ) v ε j ′ ∶= v ε j + 1 ε 2 (v ε i -v ε j ) ⋅ (x ε i -x ε j ) (x ε i -x ε j ) ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ if x ε i (t) -x ε j (t) = ε .
This flow does not cover all possible situations, as multiple collisions are excluded. But one can show (see [START_REF] Alexander | The infinite hard sphere system[END_REF]) that for almost every admissible initial configuration (x ε0 i , v ε0 i ) 1≤i≤N , there are neither multiple collisions, nor accumulations of collision times, so that the dynamics is globally well defined.

We will not be interested here in one specific realization of this deterministic dynamics, but rather in a statistical description. This is achieved by introducing a measure at time 0, on the phase space we now specify. The collections of N positions and velocities are denoted respectively by X N ∶= (x 1 , . . . , x N ) in T dN and V N ∶= (v 1 , . . . , v N ) in R dN , and we set Z N ∶= (X N , V N ), with Z N = (z 1 , . . . , z N ), z i = (x i , v i ). A set of N particles is characterized by a random variable Z ε0 N = (z ε0 1 , . . . , z ε0 N ) specifying the time-zero configuration in the phase space (1.3) D ε N ∶= Z N ∈ (T d × R d ) N ∀i ≠ j , x ix j > ε , and an evolution t → Z ε N (t) = z ε 1 (t), . . . , z ε N (t) , t > 0 according to the deterministic flow (1.1)-(1.2) (well defined with probability 1).
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To avoid spurious correlations due to a given total number of particles, we actually consider a grand canonical state (as in [START_REF] King | BBGKY Hierarchy for Positive Potentials[END_REF][START_REF] Van Beijeren | Equilibrium time correlation functions in the low-density limit[END_REF]), set on the phase space

D ε ∶= ⋃ N ≥0 D ε N
(notice that D ε N = ∅ for N large). This means that the total number of particles is also a random variable, which we shall denote by N .

More precisely, at equilibrium the probability density of finding N particles at configuration Z N is given by

(1.4) 1 N ! W ε N (Z N ) ∶= 1 Z ε µ N ε N ! 1 D ε N (Z N ) M ⊗N (V N ) ,
for N = 0, 1, 2, . . .

for some (large) µ ε to be fixed below, with

M(v) ∶= 1 (2π) d 2 exp - v 2 2 , M ⊗N (V N ) = N i=1 M(v i ) ,
and the partition function is given by

Z ε ∶= 1 + N ≥1 µ N ε N ! T dN i≠j 1 x i -x j >ε dX N .
Here and below, 1 A will be the characteristic function of the set A. The probability of an event A with respect to the equilibrium measure (1.4) will be denoted P ε (A), and E ε will be the expected value. Definition (1.4) ensures that

µ -1 ε E ε (N ) → 1 as µ ε → ∞ with µ ε ε d ≪ 1.
1.2. The kinetic description. Let us define the empirical measure of the hard-sphere model

(1.5) π ε t ∶= 1 µ ε N i=1 δ z ε i (t) .
Under the invariant measure (1.4), it is not hard to see that if

µ ε ε d → 0 then π ε t concentrates on M: for any test function h ∶ T d × R d → R and any δ > 0, t ∈ R, (1.6) P ε π ε t (h) - T d ×R d M(v)h(z) > δ → µε→∞ 0 ,
which can be interpreted as a law of large numbers.

The fluctuations of the empirical density π ε t around its equilibrium value are described by the fluctuation field ζ ε t defined by

(1.7) ζ ε t (h) ∶= √ µ ε π ε t (h) -E ε π ε t (h) ,
for any test function h. Initially ζ ε 0 converges in law towards a Gaussian white noise ζ 0 with covariance

(1.8) E ζ 0 (h 1 ) ζ 0 (h 2 ) = h 1 (z) h 2 (z) M(v) dz .
As the measure is invariant, this covariance is constant in time. Let us define the mean free path

α ∶= (µ ε ε d-1 ) -1 ,
and assume that α -1 ≥ 1 is bounded or slowly diverging, corresponding to the low density scaling. In this scaling it has been proved in [START_REF] Bodineau | Long-time correlations for a hard-sphere gas at equilibrium[END_REF][START_REF] Bodineau | Long-time derivation at equilibrium of the fluctuating Boltzmann equation[END_REF] that (ζ ε t ) [0,T ] converges in law for all times T to a weak solution of the fluctuating Boltzmann equation (1.9)

dζ t = -v ⋅ ∇ x - 1 α L ζ t dt + dη t ,
where the linearized collision operator is given by

(1.10) Lg ∶= R d ×S d-1 M(w) (v -v * ) ⋅ ω + g(v) + g(v * ) -g(v ′ ) -g(v ′ * ) dv * dω with notation (1.11) v ′ = v -((v -v * ) ⋅ ω) ω , v ′ * = v * + ((v -v * ) ⋅ ω
) ω for the precollisional velocities obtained upon scattering, and dη t (x, v) is a stationary Gaussian noise, explicitly characterized (see [START_REF] Spohn | Fluctuation theory for the Boltzmann equation[END_REF]). It has zero mean and covariance (1.12) [START_REF] Bodineau | Statistical dynamics of a hard sphere gas: fluctuating Boltzmann equation and large deviations[END_REF] for the velocities obtained upon scattering. Note that this noise is white in time and space, but correlated in velocities.

E T 0 dt dzh (1) (z)η t (z) T 0 dt * dz * h (2) (z * )η t * (z * ) = 1 2α T 0 dt dµ(z, z * , ω)M(v) M(v * )∆h (1) ∆h (2) denoting dµ(z, z * , ω) ∶= δ x-x * (v -v * ) ⋅ ω + dω dv dv * dx and defining for any h ∆h(z, z * , ω) ∶= h(z ′ ) + h(z ′ * ) -h(z) -h(z * ) , where z ′ i ∶= (x i , v ′ i ) with notation (1.
1.3. The hydrodynamic description. It is by now classical (see [START_REF] Bardos | Fluid dynamic limits of kinetic equations. II: Convergence proofs for the Boltzmann equation[END_REF][START_REF] Golse | Stokes-Fourier and acoustic limits for the Boltzmann equation: convergence proofs[END_REF][START_REF] Bodineau | ¿From hard-sphere dynamics to the Stokes-Fourier equations: an L 2 analysis of the Boltzmann-Grad limit[END_REF] and references therein) that the solutions to the scaled linearized Boltzmann equation

(1.13) ∂ t g α + v ⋅ ∇ x g α + 1 α
Lg α = 0 , g α (0) = g 0 converge in the fast relaxation limit α → 0 towards the local thermodynamic equilibrium

g(t, x, v) = ρ(t, x) + u(t, x) ⋅ v + θ(t, x) v 2 -d 2 
where ρ, u, θ satisfy the acoustic equations

(1.14) ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ∂ t ρ + ∇ x ⋅ u = 0 ∂ t u + ∇ x (ρ + θ) = 0 ∂ t θ + 2 d ∇
x ⋅ u = 0 and the initial data is the projection of g 0 onto hydrodynamic modes

ρ t=0 (x) ∶= g 0 (x, v)M(v) dv , u t=0 (x) ∶= g 0 (x, v)vM(v) dv , θ t=0 (x) ∶= g 0 (x, v) v 2 d -1 M(v) dv .
In the linearized equation (1.13), the frequency of collisions 1 α has been tuned according to the hyperbolic scaling. The diffusive regime can then be found by rescaling time by a factor 1 α. In this way, one can also obtain the weak convergence (which actually filters out the fast oscillating acoustic waves)

(1.15) g α τ α , x, v ⇀ u(τ, x) ⋅ v + θ(τ, x) v 2 -(d + 2) 2
towards diffusive fluid models, namely the incompressible Stokes-Fourier equations

(1.16) ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ∂ τ u = ν∆ x u, ∇ x ⋅ u = 0 ∂ τ θ = κ∆ x θ ,
where the diffusion coefficients ν and κ depend only on the linearized collision operator L (they are defined explicitly in (3.20) below). The initial data is the projection of g 0 onto non oscillating hydrodynamic modes (1.17)

u τ =0 (x) ∶= P g 0 vM(v) dv , θ τ =0 (x) ∶= g 0 v 2 d + 2 -1 M(v)
dv
where P is the Leray projection on divergence free vector fields. In the following, we refer to non oscillating modes as those satisfying the incompressibility and Boussinesq constraints (see (3.16)).

1.4. Fluctuating hydrodynamics. In the hyperbolic regime corresponding to (1.14), the fluctuation-dissipation principle predicts that there will be no dynamical fluctuation and the fluctuation field tested against hydrodynamical modes (ρ, u, θ) is simply transported by the acoustic equation. In contrast, in the diffusive regime, when taking into account the noise at kinetic level (i.e. starting with (1.9)), we expect to obtain fluctuating hydrodynamics. In the following, we will focus on this more interesting case. We refer to [START_REF] Spohn | Large scale dynamics of interacting particles[END_REF], Section 7.1 for the general theory of hydrodynamic fluctuations, which was first developed for equilibrium states in [START_REF] Landau | Fluid Mechanics[END_REF]. The link with the predictions from kinetic theory in the case of dilute gases was discussed in [START_REF] Kirkpatrick | Fluctuations in a nonequilibrium steady state: Basic equations[END_REF] (see also [3] for a recent contribution).

Let us define a joint process by time rescaling and projecting on non oscillating hydrodynamic modes the fluctuation field ζ ε t defined in (1.7). According to (1.15) we consider, for any pair of test functions (ϕ, ψ) ∈ C ∞ (T d ; R d × R) with ∇ x ⋅ ϕ = 0, the fluctuation field

ζ ε t ϕ ⋅ v + ζ ε t ψ v 2 d + 2 -1 .
To simplify the notation, we denote from now on the couple of test functions by

(1.18) φ = (ϕ, ψ) ∈ C ∞ (T d ; R d × R) , ∇ x ⋅ ϕ = 0
and to recover a diffusive regime, time is rescaled as follows:

(1.19)

ξ ε τ (φ) ∶= U ε τ (ϕ) + Θ ε τ (ψ) ∶= ζ ε τ α ϕ ⋅ v + ζ ε τ α ψ v 2 d + 2 -1 .
We stress the fact that in contrast with ζ ε , the test functions in ξ ε only depend on the space variable. In the limit µ ε → ∞ with α slowly vanishing, we expect the fluctuation fields U ε , Θ ε to converge in the sense of distributions to (U, Θ) solving the fluctuating Stokes-Fourier equations

(1.20) ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ∂ τ U = ν∆ x U + √ 2ν P ∇ ⋅ Ẇt , ∂ τ Θ = κ∆ x Θ + 4κ d+2 ∇ ⋅ Ẇt ,
where W t is a space/time white noise taking values in R d and W t is a d × d matrix with coefficients given by independent white noises. We recall that P stands for the Leray projection on divergence free vector fields. Note that the noise is tuned so that the field has a covariance compatible with the invariance of (1.8). The equations (1.20) should be understood in a weak sense, namely restricting to any pair of test functions

(ϕ, ψ) ∈ C ∞ (T d ; R d × R) with ∇ x ⋅ ϕ = 0 ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ U τ (ϕ) = U 0 (e ντ ∆x ϕ) + √ 2ν τ 0 dσ Ẇσ ∇e ν(τ -σ)∆x ϕ Θ τ (ψ) = Θ 0 e κτ ∆x ψ + 4κ d+2 τ 0
dσ Ẇσ e κ(τ -σ)∆x ∇ψ .

We stress that the fluctuations in (1.20) exactly compensate the dissipation according to the fluctuation-dissipation principle. In particular, both Gaussian processes are characterized by their covariances for σ ≤ t

(1.21) ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ E U σ (ϕ 1 )U τ (ϕ 2 ) = T d dx ϕ 1 (x) ⋅ e ν(τ -σ)∆x ϕ 2 (x) E Θ σ (ψ 1 )Θ τ (ψ 2 ) = 2 d + 2 T d dx ψ 1 (x) e κ(τ -σ)∆x ψ 2 (x) .
The main result of this paper is that both limits

µ ε → ∞ with µ ε ε d-1 = α -1
, and α → 0 can be combined in order to derive fluctuating hydrodynamics directly from the dynamics of particles, thus solving Hilbert's sixth problem in the particular case of fluctuations of perfect gases at equilibrium. Theorem 1.1. Consider a system of hard spheres at equilibrium in a d-dimensional periodic box with d ≥ 3, with inverse mean free time α [START_REF] Golse | Stokes-Fourier and acoustic limits for the Boltzmann equation: convergence proofs[END_REF]) converges for any T > 0 in law to the solution of the fluctuating Stokes-Fourier equations (1.20).

-1 ∶= µ ε ε d-1 ≤ (log log log µ ε ). Then, in the diffusive limit µ ε → ∞, α → 0, the rescaled joint process (ξ ε τ ) τ ∈[0,T ] defined in (1.
Recall that the microscopic dynamics is completely deterministic, so that stochasticity comes just as a consequence of the sensitivity of the particle system to the microscopic details of the initial configuration. In the low density regime, since the modulus of continuity of trajectories with respect to the initial configurations depends strongly on ε, there is a strong instability as ε → 0, which generates some "spontaneous stochasticity" encoded by the white noise in (1.9). The instability of the microscopic dynamics thus plays a key role in the structure of the noise in Theorem 1.1. At variance, for one dimensional integrable systems, one expects that the dominant contribution is the transport of the initial fluctuations with some additional random shift in the large scale limit, this was pointed out recently in [START_REF] Ferrari | Diffusive Fluctuations in Hard Rods System, Extended abstract of the workshop 'Large Stochastic Dynamics[END_REF] for the the hard rod system (see also [START_REF] Boldrighini | Fluctuations in a One-Dimensional Mechanical System. I. The Euler Limit[END_REF]). The white noise in (1.9) preserves locally the hydrodynamic modes, however at diffusive time scales, it ultimately induces the local noise on the hydrodynamic projections (1.20). Note that a spontaneous generation of noise also holds for the diffusive limits of a tagged particle to a Brownian motion in an equilibrium hard sphere gas [START_REF] Bodineau | The Brownian motion as the limit of a deterministic system of hard-spheres[END_REF][START_REF] Bodineau | Derivation of an Ornstein-Uhlenbeck process for a massive particle in a rarified gas of particles[END_REF] (see also [START_REF] Erdős | Lecture notes on quantum Brownian motion[END_REF] in the quantum case).

The fluctuation field in the low density limit: state of the art, and strategy of proof

The present paper relies on the "weak convergence" approach devised in [START_REF] Bodineau | Long-time correlations for a hard-sphere gas at equilibrium[END_REF][START_REF] Bodineau | Long-time derivation at equilibrium of the fluctuating Boltzmann equation[END_REF] in order to prove the convergence of the fluctuation field to the solution of the fluctuating Boltzmann equation (1.9). The proofs of [START_REF] Bodineau | Long-time correlations for a hard-sphere gas at equilibrium[END_REF][START_REF] Bodineau | Long-time derivation at equilibrium of the fluctuating Boltzmann equation[END_REF] are quantitative, and the important parameter is the number of collisions, which is proportional to the observation time and inversely proportional to the mean free time α. Thus, the (diffusive) observation time T α and the parameter α -1 can be chosen slowly diverging with µ ε , for instance as O(log log log µ ε ). This will allow us to reach the diffusive regime described in Section 1.4. In the rest of this section, we gather the results of [START_REF] Bodineau | Long-time correlations for a hard-sphere gas at equilibrium[END_REF][START_REF] Bodineau | Long-time derivation at equilibrium of the fluctuating Boltzmann equation[END_REF] we shall be using here. We refer to those papers for proofs -see also [START_REF] Bodineau | Dynamics of dilute gases : a statistical approach[END_REF] for an overview.

For the sake of clarity, we will use the following notations for the different time scales described in the previous section : 2.1. Convergence of the covariance for diffusive times. In the analysis of the fluctuation field for diffusive times, the first step is to study the asymptotic behaviour of the time-rescaled covariance 

(2.2) Cov ε τ α , g 0 , h ∶= E ε ζ ε 0 (g 0 ) ζ ε τ (h) as µ ε → ∞, µ ε ε d-1 = α -1 .
ε → ∞, µ ε ε d-1 = α -1 ≤ log log log µ ε , the covariance of the fluctuation field ζ ε τ α τ ≥0
defined by (2.2) satisfies the following estimate:

for any T > 0 such that (T α 2 ) ≪ (log log µ ε ) 1 4 , (2.4) sup τ ∈[0,T ] Cov ε τ α , g 0 , h - g α ( τ α )h Mdxdv ≤ C h W 1,∞ g 0 W 1,∞ CT α 2 3 2 (log log µ ε ) -1 4 .
Remark 2.1. In accordance with the diffusive scaling, this estimate depends on T α 2 , which is the ratio between the observation time T α and the mean free time α.

2.2. Convergence of higher order moments for diffusive times. The next step is to prove that the process ζ ε τ α is asymptotically Gaussian when µ ε → ∞ and µ ε ε d-1 = α -1 → ∞. This boils down to showing that the moments are determined by the covariances according to Wick's rule (2.5) lim

µε→∞ α→0 E ε ζ ε τ 1 α (h 1 ) . . . ζ ε τp α (h p ) - η∈S pairs p {i,j}∈η E ε ζ ε τ i α (h i ) ζ ε τ j α (h j ) = 0 , uniformly in τ 1 , . . . , τ p ∈ [0, T ],
where S pairs p is the set of partitions of {1, . . . , p} made only of pairs. Notice that if p is odd then S pairs p is empty and the product of the moments is asymptotically 0. Theorem 2.2 ([13], Gaussian process). Consider a system of hard spheres at equilibrium in a d-dimensional periodic box with d ≥ 3. Let (h i ) 1≤i≤p be a family of p bounded functions on

T d × R d . Then, in the low density regime µ ε → ∞, µ ε ε d-1 = α -1 ≤ log log log µ ε , the fluctuation field ζ ε τ α τ ≥0
defined by (1.7) is almost Gaussian in the sense that for any T > 0

satisfying (T α 2 ) 2p-1 2 ≪ (log log µ ε ) 1 4
, there holds uniformly in τ 1 , . . . τ p ∈ [0, T ],

(2.6)

E ε ζ ε τ 1 α (h 1 ) . . . ζ ε τp α (h p ) - η∈S pairs p {i,j}∈η E ε ζ ε τ i α (h i ) ζ ε τ j α (h j ) ≤ p i=1 h i L ∞ CT α 2 (2p-1) 2 (log log µ ε ) -1 4 .
2.3. Tightness in the kinetic regime. Finally for processes which depend on a continuous variable (the time variable in our setting), the convergence of time marginals is not enough to characterize the convergence in law: possible oscillations with respect to time need to be under control (see [6, Theorem 13.2 page 139]). For the fluctuation field ζ ε , this tightness property has been obtained for short kinetic times, but actually since the equilibrium measure is invariant under the dynamics, a union bound provides the tightness on any finite kinetic time, i.e. times of order O(α).

For times much longer than kinetic times, we actually do not expect the process ζ ε t to be tight. Since the covariance Cov ε t, g 0 , h is close to the solution of the scaled linearized Boltzmann equation (1.13), we expect to see a fast relaxation process with rate O( 1 α ), meaning that only the hydrodynamic part of g α can be compact for t = O(1). Going to diffusive times t = τ α, we also expect to have acoustic waves producing fast oscillations, meaning that only the non oscillating hydrodynamic part of g α can be compact for τ = O(1). Nevertheless, after projecting on the non oscillating modes, we are going to show in Section 4 that the process (ξ ε τ ) τ ≥0 defined by (1. [START_REF] Golse | Stokes-Fourier and acoustic limits for the Boltzmann equation: convergence proofs[END_REF]) is tight on the diffusive scale. 2.4. Strategy of the proof of Theorem 1.1. In view of deriving fluctuating hydrodynamic equations and proving Theorem 1.1, the strategy is now straightforward: we consider the rescaled fluctuation field ξ ε τ projected on hydrodynamic, non oscillating modes (recall (1.19)), and check that with such test functions and this scaling in time, Gaussianity (Theorem 2.2) and tightness still hold, and that the covariance asymptotically converges to the solution to the Stokes-Fourier equation. Note that the projection (1.19) leads to considering test functions which are unbounded in v and therefore there are some technical issues when applying Theorems 2.1 and 2.2. These are dealt with in Section 3.2, thanks to a cut-off in energies introduced in Section 3.1. The tightness of the process on the diffusive time-scale is derived in Section 4.

Finite time marginals

In this section, we are going to characterize the limiting law of the process by proving the following result. We set from now on α -1 = log log log µ ε . Proposition 3.1. For arbitrary times τ 1 , . . . , τ L and test functions φ (1) = (ϕ (1) , ψ (1) ), . . . and φ (L) = (ϕ (L) , ψ (L) ) chosen as in (1.18), the time marginals ξ ε τ ℓ φ (ℓ) ℓ≤L converge in law to the limiting process U τ ℓ (ϕ (ℓ) ), Θ τ ℓ (ψ (ℓ) ) ℓ≤L as µ ε tends to infinity.

3.1.

Truncated hydrodynamic fields. To prove that the limit is Gaussian, Theorem 2.2 cannot be used directly with the process (ξ ε τ ) t≥0 as the test functions are unbounded in L ∞ due to divergences in the velocities. Thus an intermediate cut-off process needs to be introduced. Let us fix an energy cut-off R ≫ 1 to be determined (see (3.2) below). Recalling (1.19), we define the modified joint process ξε τ as follows. For any test function φ as in (1.18), we set

(3.1) ξε τ (φ) ∶= ζ ε τ α χ v 2 R ϕ ⋅ v + ζ ε τ α χ v 2 R ψ v 2 d + 2 -1 ,
where χ is a smooth cut-off function with compact support

χ [0,1] ≡ 1, χ [2,+∞[ ≡ 0 .
We choose R depending on ε and converging to ∞ as µ ε → ∞ as follows

(3.2) R = α -1 = log log log µ ε .
Note that the test functions

h ∶= ϕ ⋅ v + ψ v 2 d + 2 -1 χ v 2
R are smooth and bounded thanks to the cut-off in v:

(3.3) h W 1,∞ x,v ≤ CR 2 ( ϕ W 1,∞ x + ψ W 1,∞ x ) .
The process ξε τ is a good approximation of ξ ε τ when R → ∞. Lemma 3.2. Setting ξ ε,> τ ∶= ξ ε τξε τ then for all 1 ≤ q < ∞ and for ε small enough

(3.4) E ε (ξ ε,> τ (φ)) q ≤ C q φ q L q (T d ) e -R 4 , with L q M defined as in (2.
3) Furthermore, one has also

(3.5) E ε [(ξ ε τ (φ)) q ] ≤ C q φ q L q (T d ) and E ε ξε τ (φ) q ≤ C q φ q L q (T d ) .
As a consequence, the convergence in law of ξε τ ℓ φ (ℓ) ℓ≤L (derived in Proposition 3.3 below) will imply the convergence in law of ξ ε τ ℓ φ (ℓ) ℓ≤L , i.e. Proposition 3.1. Proof of Lemma 3.2. Recall (see Proposition A.1 in [START_REF] Bodineau | Long-time correlations for a hard-sphere gas at equilibrium[END_REF]) that for any ε small enough, the following holds under the equilibrium measure for any function h

(3.6) E ε ξ ε τ (h) q ≤ C q h q L q M , with 1 ≤ q < ∞. Since for R ≥ 1 (3.7) ϕ ⋅ v χ v 2 R -1 q L q M ≤ C ϕ q L q (T d ) e -R 4 ψ v 2 d + 2 -1 χ v 2 R -1 q L q M ≤ C ψ q L q (T d ) e -R 4 ,
we find (3.4). For the same reason (3.5) holds. This completes Lemma 3.2.

3.2.

Covariance of the hydrodynamic fields.

Proposition 3.3. For arbitrary times τ 1 , . . . , τ L and test functions φ (1) = (ϕ (1) , ψ (1) ), . . . and φ (L) = (ϕ (L) , ψ (L) ) chosen as in (1.18), the time marginals ξε τ ℓ φ (ℓ) ℓ≤L converge in law to the limiting process U τ ℓ (ϕ (ℓ) ), Θ τ ℓ (ψ (ℓ) ) ℓ≤L as µ ε tends to infinity.

Combined with the approximation Lemma 3.2, this completes the proof of Proposition 3.1. The proof of Proposition 3.3 is split into two parts, first a control of the limiting covariance and then the derivation of Wick's rule to prove that the limiting process is Gaussian.

Step 1. Control of the covariance. Let us define the hydrodynamic, non oscillating projections

(3.8) g 0 (x, v) ∶= u 0 (x) ⋅ v + θ 0 (x) v 2 -(d + 2) 2 , h(x, v) ∶= ϕ(x) ⋅ v + ψ(x) v 2 d + 2 -1 ,
for some smooth divergence free vector fields u 0 , ϕ, and some smooth functions θ 0 , ψ. The scaling in g 0 , h has been tuned asymmetrically so that the initial covariance is given by

E ε ξε 0 (φ 0 ) ξε 0 (φ) → (u(τ ) ⋅ ϕ + θ(τ )ψ)dx , µ ε → ∞ .
We are going to study the covariance of the joint process ξε τ by applying Theorem 2.1 with

(3.9) ḡ0 (x, v) ∶= g 0 (x, v)χ v 2 R , h(x, v) = h(x, v)χ v 2 R .
Setting

φ 0 ∶= (u 0 , d + 2 2 θ 0 ) , φ ∶= (ϕ, ψ) ,
we plug the bounds (3.3) on the test functions into the estimate (2.4) of Theorem 2.1, and recalling the definition (3.1) of the truncated rescaled fluctuation field, we obtain that for any

T > 0 such that (T α 2 ) ≪ (log log µ ε ) -1 2 , (3.10) sup t∈[0,T ] E ε ξε 0 (φ 0 ) ξε τ (φ) - Mg α (t) hdxdv ≤ CR φ 0 W 1,∞ φ W 1,∞ CT α 2 3 2 (log log µ ε ) -1 4 ,
where gα is the solution to the time-rescaled equation

(3.11) α∂ τ gα + v ⋅ ∇ x gα + 1 α Lg α = 0 , gα t=0 = ḡ0 .
To conclude to the convergence of the covariance as α → 0, we just need to identify the limit of Mg α (τ ) hdxdv.

The starting point for the study of hydrodynamic limits of the linearized Boltzmann equation (3.11) is the scaled energy inequality

(3.12) 1 2 gα (τ ) 2 L 2 (Mdvdx) + 1 α 2 τ 0 gα Lg α (τ ′ )Mdvdxdτ ′ ≤ 1 2 ḡ0 2 L 2 (Mdvdx)
. Recall (see [START_REF] Grad | Asymptotic theory of the Boltzmann equation II Rarefied Gas Dynamics[END_REF][START_REF] Hilbert | Begründung der kinetischen Gastheorie[END_REF]) that the linearized collision operator L with hard sphere cross section defined by (1.10) is a nonnegative unbounded self-adjoint operator on L 2 (Mdv) with domain

D(L) = L 2 R d ; (1 + v )Mdv and nullspace Ker(L) = span 1, v 1 , . . . , v d , v 2 .
In particular we recover from (3.12) the uniform

L 2 bound gα (τ ) L 2 (Mdvdx) ≤ ḡ0 L 2 (Mdvdx) ≤ g 0 L 2 (Mdvdx) . This bound implies that there is g ∈ L ∞ τ (L 2 (Mdvdx)
) such that, up to extraction of a subsequence, (3.13) gα ⇀ g weakly in L 2 loc (dτ, L 2 (Mdvdx)) . Moreover the following coercivity estimate holds : there exists C > 0 such that, for each g in D(L) ∩ (Ker(L))

⊥ (3.14) gLg(v)M(v)dv ≥ C g 2 L 2 ((1+ v )Mdv) . The dissipation thus further provides gα -Πg α L 2 ((1+ v )Mdvdxdt) = O(α) ,
where Π denotes the orthogonal projection onto Ker(L) in L 2 (Mdvdx). We deduce from the previous estimate that

(3.15) g(τ, x, v) = Πg(τ, x, v) ≡ ρ(τ, x) + u(τ, x) ⋅ v + θ(τ, x) v 2 -d 2 ⋅
It remains to compute the equations on ρ, u and θ. Denoting ⟨g⟩ ∶= gMdv and recalling (3.11), the moment equations state

α∂ τ ⟨g α ⟩ + ∇ x ⋅ ⟨g α v⟩ = 0 , α∂ τ ⟨g α v⟩ + ∇ x ⋅ ⟨g α v ⊗ v⟩ = 0 , α∂ τ ⟨g α v 2 ⟩ + ∇ x ⋅ ⟨g α v v 2 ⟩ = 0 .
Using (3.13) and (3.15) we deduce from the first two equations that (3.16)

∇ x ⋅ u = 0 , ∇ x (ρ + θ) = 0 ,
referred to as the incompressibility and Boussinesq constraints. We thus have

(3.17) g(τ, x, v) = u(τ, x) ⋅ v + θ(τ, x) v 2 -(d + 2) 2 , ∇ x ⋅ u = 0 .
Note that, up to the cut-off in v which can be removed with a small error thanks to (3.7), the test function h is in the kernel of acoustic operator. It follows that we only need to characterize the mean motion, namely derive the equations for P ⟨g α v⟩ and ⟨g α ( v 2d -2)⟩:

∂ τ P ⟨g α v⟩ + 1 α P ∇ x ⋅ ⟨g α (v ⊗ v - 1 d v 2 Id)⟩ = 0 , ∂ τ 1 d + 2 ⟨g α ( v 2 -d -2)⟩ + 1 α ∇ x ⋅ ⟨g α 1 d + 2 v( v 2 -d -2)⟩ = 0 ,
where we recall that P is the Leray projection on divergence free vector fields. Define the kinetic momentum flux A(v) ∶= v⊗v-

1 d v 2
Id and the kinetic energy flux

B(v) ∶= 1 2 v( v 2 -d-2).
As A, B belong to (Ker L) ⊥ , and L is a Fredholm operator, there exist pseudo-inverses Ã, B in (Ker L) ⊥ such that A = L Ã and B = L B. Then,

∂ τ P ⟨g α v⟩ + 1 α P ∇ x ⋅ ⟨(Lg α ) Ã⟩ = 0 , 1 d + 2 ∂ τ ⟨g α ( v 2 -d -2)⟩ + 1 α 2 d + 2 ∇ x ⋅ ⟨(Lg α ) B⟩ = 0 .
Using the equation

(3.18) 1 α Lg α = -v ⋅ ∇ x gα -α∂ τ gα we get (3.19) ∂ τ P ⟨g α v⟩ -P ∇ x ⋅ ⟨(v ⋅ ∇ x + α∂ τ )g α Ã⟩ = 0 , 1 d + 2 ∂ τ ⟨g α ( v 2 -d -2)⟩ - 2 d + 2 ∇ x ⋅ ⟨(v ⋅ ∇ x + α∂ τ )g α B⟩ = 0 .
Then, plugging the Ansatz (3.15), and taking limits in the sense of distributions, we get the Stokes-Fourier equations

∂ τ u -ν∆ x u = 0 , ∇ x ⋅ u = 0 , ∂ τ θ -κ∆ x θ = 0 ,
with initial data as in (1.17)

u τ =0 (x) ∶= P g 0 (x, v)vM(v) dv , θ τ =0 (x) ∶= g 0 (x, v) v 2 (d + 2) -1 M(v) dv,
and where the diffusion coefficients are given by

(3.20) ν ∶= 1 (d -1)(d + 2) ⟨A ∶ Ã⟩ and κ ∶= 2 d(d + 2) ⟨B ⋅ B⟩ .
We therefore end up with the following convergence as α → 0

(3.21) Mg α (τ ) hdxdv → (u(τ ) ⋅ ϕ + θ(τ )ψ)dx .
Returning to (3.10), we have proved that

(3.22) sup τ ∈[0,T ] E ε ξε 0 (φ 0 ) ξε τ (φ) → (u(τ ) ⋅ ϕ + θ(τ )ψ)dx , µ ε → ∞ .
Remark 3.4. Since the initial data g 0 is well-prepared, both the purely kinetic component and the fast oscillating acoustic waves are negligible, so the convergence of gα can be shown actually to hold in strong sense. Using energy methods, it is even possible to obtain a rate of convergence for (3.21).

Step 2. Wick's rule Consider p times τ 1 , . . . , τ p , possibly repeated. Thanks to the cut-off (3.3), we can apply Theorem 2.2 to obtain (3.23)

E ε ξε τ 1 φ (1) . . . ξε τp φ (p) - η∈S pairs p {i,j}∈η E ε ξε τ i φ (i) ξε τ j φ (j) ≤ C p R p p i=1 φ (i) L ∞ CT α 2 (2p-1) 2 (log log µ ε ) -1 4 .
With the scaling condition (3.2), we get that the right-hand side converges to 0 as µ ε → ∞ which implies the asymptotic pairing of the moments of ξε τ . Since the limiting covariance is characterized by (3.22), this completes Proposition 3.3.

Tightness of hydrodynamic fields on diffusive time scales

Let us first introduce for any k ∈ Z the Sobolev space H k in T d with the norm (4.1)

F 2 k ∶= j∈Z d 1 + j 2 k Fj 2 ,
where ( Fj ) stand for the Fourier coefficients of F .

Proposition 4.1. There exists k > 0 such that, in the diffusive limit

µ ε → ∞, α → 0, with µ ε ε d-1 = α -1 ≤ log log log µ ε , the fluctuation field (ξ ε τ ) τ ≥0 defined by (1.19) is tight in the Skorokhod space D [0, T ], H -k . More precisely, (4.2) 
lim δ→0 + lim µε→∞ P ε sup σ-τ ≤δ s,τ ∈[0,T ] ξ ε τ -ξ ε σ -k ≥ δ ′ = 0 , ∀δ ′ > 0 , lim A→∞ lim µε→∞ P ε sup τ ∈[0,T ] ξ ε τ -k ≥ A = 0 .
The tightness property for kinetic times relies on the Garsia-Rodemich-Rumsey inequality on the modulus of continuity of a function ϕ τ ∶ [0, T ] → R, which we recall ( [START_REF] Varadhan | Stochastic processes[END_REF]): for b ≥ 4

(4.3) sup 0≤σ,τ ≤T τ -σ ≤δ ϕ τ -ϕ σ ≤ C T 0 T 0 dσdτ ϕ τ -ϕ σ b τ -σ γ 1 b δ γ-2 b , γ ∈]2, 3[ .
Because of collisions in the Newtonian dynamics, the fluctuation field ξ ε has jumps and this inequality does not apply directly. We therefore start by stating a modified inequality, whose proof is a slight adaptation of [START_REF] Varadhan | Stochastic processes[END_REF] which can be found in [START_REF] Bodineau | Statistical dynamics of a hard sphere gas: fluctuating Boltzmann equation and large deviations[END_REF] (see Proposition 6.2.4).

Proposition 4.2. Let F ∶ [0, T ] → R be a given function and define for a > 0, b ≥ 4

(4.4) B a (F ) ∶= T 0 T 0 dσdτ F τ -F σ b τ -σ γ 1 τ -σ >a , γ ∈]2, 3[ .
Then the modulus of continuity of F is controlled by

(4.5) sup 0≤σ,τ ≤T τ -σ ≤δ F τ -F σ ≤ 2 sup 0≤σ,τ ≤T τ -σ ≤2a F τ -F σ + CB a (F ) 1 b δ γ-2 b .
Proof of Proposition 4.1. To prove the tightness of the joint process (ξ ε τ ) τ ≥0 in D([0, T ], H -k ) for some k large enough, we shall tune the parameter a, introduced in the statement of Proposition 4.2, as a small fraction of the kinetic time, i.e. a ≪ α 2 in the diffusive scaling. More precisely, we shall use (4.4) with the parameters

(4.6) b = 6 , γ = 7 3 , a = (log log µ ε ) -1 10 , α = (log log log µ ε ) -1 .
We deduce from (4.5) that, for arbitrary δ ′ > 0,

P ε ⎛ ⎜ ⎝ sup 0≤τ,σ≤T τ -σ ≤δ ξ ε τ -ξ ε σ 2 -k ≥ δ ′ ⎞ ⎟ ⎠ ≤P ε ⎛ ⎜ ⎝ j C 2 B a ξ ε (φ j ) 1 3 
(1

+ j 2 ) k δ γ-2 3 ≥ δ ′ 4 ⎞ ⎟ ⎠ (4.7) + P ε ⎛ ⎜ ⎝ j 4 (1 + j 2 ) k sup σ-τ ≤2a σ,τ ∈[0,T ] ξ ε τ (φ j ) -ξ ε σ (φ j ) 2 ≥ δ ′ 4 ⎞ ⎟ ⎠ ,
where φ j (x) = exp(2iπj ⋅ x) are the Fourier modes used to define the norm (4.1). Since a ≪ α 2 , the two events in the right-hand side of inequality (4.7) control different time scales and their probabilities have to be estimated by different methods :

• for time increments στ ≥ a, by a control on moments using the comparison with the limit process; • for small time increments στ ≤ 2a, by reducing to the estimates on the kinetic times obtained in [START_REF] Bodineau | Statistical dynamics of a hard sphere gas: fluctuating Boltzmann equation and large deviations[END_REF] (see Proposition 6.2.3). To do this, additional cut-off estimates to control divergences at large velocities are necessary.

Step 1. Control of the short hydrodynamic increments.

We are first going to prove that lim

δ→0 lim µε→∞ P ε ⎛ ⎜ ⎝ j CB a ξ ε (φ j ) 1 3 
(1

+ j 2 ) k δ γ-2 3 ≥ δ ′ 4 ⎞ ⎟ ⎠ = 0 . (4.8)
Assume that the following bound holds (4.9)

E ε B a ξ ε (φ) ≤ C φ 6 W 2,∞ .
Since for the Fourier basis φ j W 2,∞ ≤ C j 2 , we deduce from (4.9) that for k > d 2 + 2, (4.8) follows from a Markov inequality as γ > 2

P ε ⎛ ⎜ ⎝ j C 2 B a ξ ε (φ j ) 1 3 (1 + j 2 ) k δ γ-2 3 ≥ δ ′ 4 ⎞ ⎟ ⎠ ≤ C δ γ-2 3 δ ′ j 1 (1 + j 2 ) k E ε B a ξ ε (φ j ) 1 3 .
We turn now to the proof of (4.9). As γ = 7 3, this will be a consequence of the following inequality

(4.10) ∀τ, σ ∈ [0, T ] , E ε ξ ε τ (φ) -ξ ε σ (φ) 6 1 τ -σ ≥a ≤ C φ 6 W 2,∞ τ -σ 3 2 .
Applying Lemma 3.2, it is enough to derive (4.10) for the truncated process ξε with cut-off

R = log log log µ ε because ∀τ ≤ T, E ε ξ ε τ (φ) -ξε τ (φ) 6 ≤ C φ 6 L 6 (T d ) e -R 4 ≤ C φ 6 L 6 (T d ) a 2
, with a defined in (4.6).

Our starting point is the asymptotic factorization (3.23) of the moments leading to the following formula for the time increments (4.11)

E ε ξε τ (φ) -ξε σ (φ) 6 -15 E ε ξε τ (φ) -ξε σ (φ) 2 3 ≤ C 6 R 6 φ 6 L ∞ CT α 2 11 2 (log log µ ε ) -1 4 ≤ C φ 6 L 6 (T d ) a 2 , uniformly in τ, σ ∈ [0, T ],
with our choice of scaling (3.2).

Next we are going to use that, by (3.10), the covariance is well approximated by the solution to the linearized Boltzmann equation (3.11). Denoting by gα the solution of the linearized Boltzmann equation (3.11) with truncated initial data (3.9), we get that (4.12)

sup σ,τ ∈[0,T ] E ε ξε τ (φ) -ξε σ (φ) 2 -2 M(ḡ 0 -gα (τ -σ)) g 0 dxdv ≤ CR 2 φ 2 W 1,∞ CT 3 α 6 1 2 (log log µ ε ) -1 4 + C φ 2 L 2 e -R 4 ≤ C φ 2 W 1,∞ a 2 ,
using the time invariance of the equilibrium measure and the control (3.7) to remove the velocity cutoff on (one of) the initial data ḡ0 in the integral. ¿From (3.19) we have

∂ τ P ⟨g α v⟩ -αP ∇ x ⋅ ⟨g α Ã⟩ -P ∇ x ⋅ ⟨v ⋅ ∇ x (g α Ã)⟩ = 0 , 1 d + 2 ∂ τ ⟨g α ( v 2 -d -2)⟩ -2α∇ x ⋅ ⟨g α B⟩ - 2 d + 2 ∇ x ⋅ ⟨v ⋅ ∇ x (g α B)⟩ = 0, so thanks to the uniform L ∞ τ (L 2 (Mdxdv)
) bound on gα we deduce that (4.13)

P ⟨g α v⟩ -αP ∇ x ⋅ ⟨g α Ã⟩ is uniformly bounded in W 1,∞ τ (H -2 ), ⟨g α v 2 -(d + 2) 2 ⟩ -α∇ x ⋅ ⟨g α B⟩ is uniformly bounded in W 1,∞ τ (H -2 ) .
We then have to control the time regularity of the O(α) terms in (4.13). ¿From the uniform L ∞ τ (L 2 (Mdxdv)) bound on gα , we get that for any polynomial p(v) depending only on v (4. [START_REF] Bodineau | Dynamics of dilute gases : a statistical approach[END_REF] ∀τ ∈ [0, T ],

∇ x ⟨g α p(v)⟩ H -1 ≤ C.
Applying the kinetic equation (3.11), we know that

∂ τ ⟨g α p(v)⟩+ 1 α ∇ x ⋅⟨g α p(v)v⟩+ 1 α 2 ⟨Lg α p(v)⟩ = 0 ⇒ ⟨g α (τ )p(v)⟩ -⟨g α (σ)p(v)⟩ H -1 ≤ C τ -σ α 2 .
Replacing p by Ã, B in the previous estimates, we conclude that

αP ∇ x ⋅ ⟨g α (τ ) Ã⟩ -αP ∇ x ⋅ ⟨g α (σ) Ã⟩ H -2 ≤ C min α, τ -σ α ≤ C τ -σ 1 2 , α∇ x ⋅ ⟨g α (τ ) B⟩ -α∇ x ⋅ ⟨g α (σ) B⟩ H -2 ≤ C min α, τ -σ α ≤ C τ -σ 1 2 .
Therefore, applying (4.13), we deduce that the bulk velocity P ⟨g α v⟩ and temperature ⟨g α

v 2 -(d+2) d+2 ⟩ are uniformly bounded in C 1 2 τ (H - 2 
x ). Since the initial data g 0 is well prepared (see (3.8)), we deduce that the term involving the linearized equation in (4.12) is controlled by

M(ḡ 0 -gα (τ -σ)) g 0 dxdv ≤ P ⟨g α (τ -σ)v⟩ -P ⟨ḡ 0 v⟩ ⋅ u 0 dx + d + 2 2 ⟨g α (τ -σ) v 2 -(d + 2) 2 ⟩ -⟨ḡ 0 v 2 -(d + 2) 2 ⟩ θ 0 dx ≤ C φ 2 W 2,∞ τ -σ 1 2 .
Combining (4.11)-(4.12) and the time regularity of the covariance, we get that for τ -σ ≥ a

E ε ξ ε τ (φ) -ξ ε σ (φ) 6 1 τ -σ ≥a ≤ C φ 6 W 2,∞ τ -σ 3 2 .
This completes the proof of Inequality (4.10).

Step 2. Control of the very short kinetic times. Finally, it remains to control the second term in (4.7). By splitting the time interval [0, T ] into intervals with kinetic time length scale α 2 , the estimate can be reduced, by using the invariant measure and an union bound, to

P ε ⎛ ⎜ ⎝ j 4 (1 + j 2 ) k sup σ-τ ≤2a σ,τ ∈[0,T ] ξ ε τ (φ j ) -ξ ε σ (φ j ) 2 ≥ δ ′ 4 ⎞ ⎟ ⎠ ≤ T α 2 P ε (A) , (4.15)
with the notation

A ∶= ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ j 4 (1 + j 2 ) k sup σ-τ ≤2a σ,τ ∈[0,α 2 ] ξ ε τ (φ j ) -ξ ε σ (φ j ) 2 ≥ δ ′ 4 ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ . (4.16)
Recalling that a ≪ α 2 , we are going to show that lim µε→∞ 1 α 2 P ε (A) = 0, (4.17) which is essentially the outcome of Proposition 6.2.3 in [START_REF] Bodineau | Statistical dynamics of a hard sphere gas: fluctuating Boltzmann equation and large deviations[END_REF], however the proof cannot be applied directly in our context and we explain below the necessary adjustments.

First of all, the test functions are now unbounded in v (contrary to the Fourier-Hermite modes). Thus an energy cut-off is necessary. For technical reasons, we are going to use a larger truncation parameter R = (log µ ε ) 2 instead of R = α -1 introduced in (3.2). The corresponding truncated process is defined as in (3.1) and denoted by ( ξε τ ) τ ≥0 . We are going to check that with high probability both processes coincide because all the velocities remain smaller than R (4.18) lim

µε→∞ 1 α 2 P ε ∃i, sup t≤α v ε i (t) > R = 0.
This can be deduced from a result of [START_REF] Bodineau | Long-time correlations for a hard-sphere gas at equilibrium[END_REF] as follows. Fix n = 4d, η = ε 1-1 2d and call microscopic cluster of size n a set G of n particle configurations in

T d × R d such that (z, z ′ ) ∈ G × G if and only if there are z 1 = z, z 2 , . . . , z ℓ = z ′ in G such that x i -x i+1 ≤ 3 R η, ∀1 ≤ i ≤ ℓ -1 .
Let Υ ε N be the set of initial configurations Z ε0 N ∈ D ε N such that for any integer 1 ≤ k ≤ α η , the configuration at time kη satisfies (4. [START_REF] Golse | Stokes-Fourier and acoustic limits for the Boltzmann equation: convergence proofs[END_REF])

∀1 ≤ j ≤ N, v j ≤ R n ,
and any microscopic cluster of particles is of size at most n. Adapting to our framework the proof of Proposition 2.7 of [START_REF] Bodineau | Long-time correlations for a hard-sphere gas at equilibrium[END_REF] implies that (4.20)

P ε c Υ ε N ≤ 1 α n ε d .
We check that for any configuration in Υ ε N , the velocities are bounded from above by R during the kinetic time interval [0, α]. Indeed, at each intermediate time kη, the velocities of configurations in Υ ε N , are smaller than R n by (4.19). Furthermore the clusters are all of size less than n and in the time interval [k η, (k + 1)η] particles within a cluster cannot interact with particles in other clusters. As the total kinetic energy of a finite number of particles is preserved by the hard sphere dynamics, the velocity of each particle will remain less than R. Thus (4.18) is implied by (4.20).

We are now in position to complete the proof of (4.17). Thanks to (4.18), it is enough to replace the event A by the similar event à for the process ( ξε τ ) τ ≥0 . It thus remains to prove The statement of Proposition 6.2.3 from [START_REF] Bodineau | Statistical dynamics of a hard sphere gas: fluctuating Boltzmann equation and large deviations[END_REF] is not precise enough to conclude directly mainly due to the diverging prefactor 1 α 2 . However all the required estimates can be found in [START_REF] Bodineau | Statistical dynamics of a hard sphere gas: fluctuating Boltzmann equation and large deviations[END_REF] and we are going to detail the relevant parts of the argument.

We proceed as in (4.7) and introduce an additional time cut-off µ -7 3 ε instead of a to filter the very small scales 1

α 2 P ε Ã = 1 α 2 P ε ⎛ ⎜ ⎜ ⎝ sup 0≤τ,σ≤α 2 τ -σ ≤2a ξε τ -ξε σ 2 -k ≥ δ ′ 16 ⎞ ⎟ ⎟ ⎠ ≤ 1 α 2 P ε ⎛ ⎜ ⎝ j C 2 Bµ -7 3 ε ξ ε (φ j ) 1 3 
(1

+ j 2 ) k a 2γ-4 3 ≥ δ ′ 64 ⎞ ⎟ ⎠ + 1 α 2 P ε ⎛ ⎜ ⎜ ⎜ ⎝ j 4 (1 + j 2 ) k sup σ-τ ≤2µ -7 3 ε σ,τ ∈[0,α 2 ] ξε τ (φ j ) -ξε σ (φ j ) 2 ≥ δ ′ 64 ⎞ ⎟ ⎟ ⎟ ⎠ ,
with the analogous notation of (4.4) on this short time scale Bµ In our procedure, it was necessary to use first a time cut-off a in (4.7) in order to reduce to estimates in the kinetic time scale. Indeed the error term (4.12) occurring in the comparison with the limiting equations on the diffusive time scale [0, T ] was too crude to be efficient up to the smallest time scale µ -7 3 ε . On the kinetic scale better controls can be derived and one can show as in Lemma 6.2.6 of [START_REF] Bodineau | Statistical dynamics of a hard sphere gas: fluctuating Boltzmann equation and large deviations[END_REF] (with the Remark 6.2.8 to take care of the large velocities) that

1 α 2 P ε ⎛ ⎜ ⎝ j C 2 Bµ -7 3 ε ξε (φ j ) 1 3 
(1

+ j 2 ) k a 2γ-4 3 ≥ δ ′ 64 ⎞ ⎟ ⎠ ≤ C 2 64 α 2 δ ′ a 2γ-4 3 .
As a ≪ α, this term vanishes in the diffusive limit. By using the proof of Lemma 6.2.5 of [START_REF] Bodineau | Statistical dynamics of a hard sphere gas: fluctuating Boltzmann equation and large deviations[END_REF] (with the Remark 6.2.8 to take care of the logarithmic divergence), we deduce that second term vanishes also in the diffusive limit

1 α 2 P ε ⎛ ⎜ ⎜ ⎜ ⎝ j 4 (1 + j 2 ) k sup σ-τ ≤2µ -7 3 ε σ,τ ∈[0,α 2 ] ξε τ (φ j ) -ξε σ (φ j ) 2 ≥ δ ′ 64 ⎞ ⎟ ⎟ ⎟ ⎠ ≤ C α 2 µ -1 3 ε → 0.
Combining the previous results, (4.21) holds. This completes the proof of Proposition 4.1.

(2. 1 )

 1 kinetic scale : t = αt kin with t kin = O(1), acoustic scale : t = O(1), diffusive scale : t = τ α with τ = O(1).

(4. 21 ) lim µε→∞ 1 α 2 P

 2112 ε Ã = 0.

τ -σ γ 1 τ -σ >µ -7 3 ε

 3 with b = 6 , γ = 7 3.

  The following result states that this covariance is well approximated on R + by

	Mg α ( equation (1.13) starting from g 0 ∈ L 2 τ α )hdxdv where g α is the solution of the scaled linearized Boltzmann M , defined by the norm (2.3) g L 2 M ∶= T d ×R d 1 g 2 Mdxdv 2 .

Theorem 2.1 (

[START_REF] Bodineau | Long-time correlations for a hard-sphere gas at equilibrium[END_REF]

, Linearized Boltzmann equation). Consider a system of hard spheres at equilibrium in a d-dimensional periodic box with d ≥ 3. Let g 0 and h be two Lipschitz functions on T d ×R d and let g α be the unique solution in L ∞ (R + ; L 2 M ) to (1.13) associated with the initial data g 0 . Then, in the low density regime µ