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Abstract: 28 

Environmental pressures, such as urbanization and exposure to pollutants may jeopardize 29 

survival of free-living animals. Yet, much remains to be known about such an effect on wild 30 

vertebrate ectotherms, since most studies still failed to explore the relationship between levels 31 

of currently-released pollutants and physiological responses. This study aims at testing the 32 

effect of urbanization and pollution (phthalate, pesticides: organochlorine [OCP] and 33 

pyrethroid pesticides, polychlorobiphenyles: PCB, polybromodiphenylethers: PBDE, 34 

polycyclic aromatic hydrocarbons: PAH and some of their metabolites) on telomere length, a 35 

suggested biomarker of life expectancy, in the European chub Squalius cephalus from urban 36 

and agricultural rivers of the Marne hydrographic network, France. Our results show that 37 

telomere length was reduced in chub from urban rivers. Moreover, among the wide range of 38 

anthropogenic contaminants investigated, high levels of PCBs in muscle and metabolites of 39 

phthalates, PAH and pyrethroids in liver were associated with shorter telomeres in chub. This 40 

study suggests that urbanization and chemical pollution may compromise survival of wild 41 

fish, by accelerating telomere attrition. 42 
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1. Introduction 53 

Chronic exposure to complex mixtures of environmental toxicants may have severe 54 

consequences in free-living animals by reducing reproductive outputs and survival [1], 55 

thereby leading to population collapse [2]. However, we currently lack robust data to link 56 

contaminant burden and survival, probably because studying demographic responses to 57 

chemical exposure requires long-term (years to decades) monitoring surveys of numerous 58 

marked individuals, which are often difficult to achieve in the wild. Aquatic organisms in 59 

urban areas are exposed to a wide array of environmental pollutants, because of sewage and 60 

runoff from artificialized surfaces. 61 

 In that context, the measurement of telomere length has been recognized as a robust 62 

molecular tool to predict life expectancy in endotherms [3,4] and to some extent in ectotherms 63 

[5] and even population vulnerability in wild lizards [6]. Located at the end of eukaryote 64 

chromosomes, telomeres shorten through successive cell division. Beyond a critical telomere 65 

length, the cell starts to senesce, leading to apoptosis and a decline in tissue function [7]. 66 

Importantly, this natural process can be accelerated under stressful environmental conditions 67 

reviewed in [8,9]. In particular, oxidative stress has been recognized as a mechanistic pathway 68 

linking environmental stress and telomere erosion in vertebrates [10,11].  69 

Chemical pollution is part of multiple stress factors generating or enhancing oxidative 70 

stress [12], yet the effect of chemical exposure on telomere length is poorly known for 71 

wildlife, especially for vertebrate ectotherms [13]. To date, studies mostly focused on birds 72 

exposed to trace metals [14], chlorinated [15,16] and halogenated compounds [16,17], which 73 

are classes of organic chemicals either banned or phased-out from use and production. 74 

Currently-release pollutants that are ubiquitous in the environment, such as polycyclic 75 

aromatic hydrocarbons (PAHs), phthalate plasticizers and pesticides [18], are known to 76 

impair telomere length in human cohorts [19,20]. Although exposure pathways and 77 
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concentrations might differ, similar effects are expected on aquatic vertebrates. Indeed, 78 

vertebrates share the ability to regulate the level of internal organic pollutant exposure via 79 

metabolic processes [21] that have the potential to produce reactive oxygen species through 80 

redox cycling or yield more toxic intermediates than the parent pollutant [22]. 81 

In addition, many vertebrates are particularly vulnerable to habitat alterations [23], 82 

other than chemical pollution. With the expanding urbanization, urban river systems have 83 

suffered from profound changes through damming, banking and channelization exerting 84 

additional stress on aquatic organisms. For instance, environmental harshness, disease 85 

prevalence and thermal stress have been associated with disturbed oxidative balance and 86 

shorter telomeres in fishes [24-28].  Non-chemical alterations of river systems, combined to 87 

environmental pollution, could therefore lead to a cumulative effect on telomere shortening. 88 

In this study, we examined the effect of organic pollutant burden and habitat alteration (urban 89 

and agricultural) on relative telomere length of wild populations of European chub, Squalius 90 

cephalus. We expected higher chemical pollution on urban rivers, as previously reported 91 

[29,30] and predicted that telomeres would be shorter in fish from urban rivers compared to 92 

agricultural ones and would decline with pollutant burden. 93 

 94 

2. Materials and Methods 95 

(a) Samples collection and chemical analyses 96 

A total of 118 chub, S. cephalus, were caught by electrofishing within twelve days in 97 

September 2016 from the Marne River and its tributaries, France, on urban and agricultural 98 

areas, representing differently-contaminated riverine habitats (Supplementary material, 99 

Appendix A, table S1 and figures S1and S2).Physico-chemical and hydrological parameters 100 

of each sampling sites are presented in the supplemental material (Appendix A, table S2). Left 101 

pelvic fins were consistently sampled for DNA extraction and scales were removed for age 102 
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determination (see [31], for details). Muscle samples (n = 118) were used for the 103 

quantification of parent organic contaminants and metabolites of pollutants were analyzed in 104 

the liver (n = 93), as the primary organ of xenobiotic biotransformation. Samples were stored 105 

in polycarbonate tubes to limit phthalate contamination and frozen at -20 °C until subsequent 106 

analyses. Metabolites were quantified in fewer individuals (n = 66; Appendix B, table S3) 107 

since some of them did not yield sufficient biological material to carry out chemical analyses. 108 

Analyses of organic pollutants (16 polycyclic aromatic hydrocarbons: PAH; 7 phthalate 109 

esters; 7 pyrethroids; 4 organochlorine pesticides: OCP; 7 polychlorinated biphenyls: PCB; 6 110 

polybrominated diphenyl ethers: PBDE) and their metabolites (11 hydroxylated PAHs; 9 111 

phthalate monoesters; 4 metabolites of pyrethroids) were performed in muscle and liver 112 

respectively, following previously published protocols [32].  113 

 114 

(b) Telomere analysis 115 

Telomere length was determined by quantitative PCR (qPCR; BioRad CFX 96, Bio-Rad 116 

USA) according to [33], adapted for the European chub. Briefly, fin samples were digested 117 

with proteinase K and DNA was extracted using the Nucleospin Tissue Kit (Macherey-118 

Nagel), following the manufacturer’s instructions. DNA concentration and purity were 119 

assessed with a Nanodrop ND1000 spectrophotometer (Thermo Scientific). The telomere 120 

primers were similar to those previously used [34]. The control single-copy gene 121 

Recombination Activating Gene 1 (RAG-1) was selected and amplified using specific primers 122 

[35] designed for the European chub. Reverse and forward primer sequences for both 123 

telomeric and RAG1 genes were, respectively: Tel1b: 5’-124 

CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3’; Tel2b: 5’-125 

GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-3’; RAG1-F: 5’-126 

AGAGAGAGGGGGCTAGATGA-3’ and RAG1-R: 5’-CCATGCTTCTCGCTGACAT-3’. 127 



6 
 

The efficiency of the telomere and RAG‐ 1 assays ranged from 98.8% to 100% and 88.9% to 128 

92.6%, respectively. All qPCR runs were performed using 2.5 ng of DNA per reaction and 129 

using the BioRad SYBR Green Supermix. The universal telomere primers were used at a 130 

concentration of 800 nM, and RAG1-F/RAG1-R at 300 nM. To generate a six-point standard 131 

curve (from 10.0 ng to 0.31 ng) for controlling the amplifying efficiency of the reactions, 132 

serial dilutions of DNA from a pooled sampled of 10 chub were included on the plate. All 133 

samples were randomly distributed across the PCR plates. The reference sample (“golden 134 

sample”) was run in triplicate in all plates to account for inter-plate variation and each sample 135 

was run in duplicate on every plate. Intra-plate variation (coefficient of variation: 136 

100 × SD/mean value) for telomere and RAG-1 were 2.07% and 2.80%, respectively. The 137 

relative telomere length (expressed as T/S ratio) was calculated as the telomere copy number 138 

(T) relative to single-copy gene (S; RAG1), according to [36]. Overall, 20 samples were 139 

excluded due to DNA degradation. As a result, telomere length (T/S ratio) was determined for 140 

98 individuals and was relative to the internal single gene control (RAG-1). Additional 141 

information about the method are presented in supplemental material (Appendix C). 142 

 143 

(c) Statistical analysis 144 

Data were first checked for normality and homogeneity of variances. Differences in age-145 

corrected relative telomere length (RTLc; residuals of RTL against age) between habitats and 146 

sampling sites were tested using Student's t-test and analysis of variances (ANOVA), 147 

respectively. Prior to analyses, all contaminant concentrations were log-transformed to attain 148 

a normal distribution and relationships between contaminant families were assessed using a 149 

Pearson’s correlation matrix (Appendix D, table S4). To test whether relative telomere length 150 

(RTL) was affected by organic pollutant burdens, linear mixed model (LMMs) analyses were 151 

conducted using the lme4 and lmerTest packages [37,38] in R v. 3.3.2 software [39] using the 152 
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restricted maximum likelihood (REML) estimation method. Given that telomeres shortened 153 

with age in this study (F1,92 = 17.8, p ≤ 0.001;  β ± s.e. = -0.038 ± 0.009; Appendix D, figure 154 

S3) and that telomere attrition is linked to normal aging in fish [40, but see 5], RTL was first 155 

corrected with age (RTLc) to account for different age profiles between individuals. Then, 156 

differences in RTLc were assessed with sum-(∑-) contaminant concentrations (log-157 

transformed) of each pollutant family and habitat (urban and agricultural) as fixed effects and 158 

sites as random effects to account for potential genetic variation between chub population. 159 

Indeed, fish from different sampling sites were considered distinct populations given the 160 

relatively short-range movements of chubs [41]. Chemicals being highly correlated with each 161 

other and being characterized by different chemical properties, we used the sum of each 162 

family of organic contaminants to take into account potential mixture effects. Denominator 163 

degrees of freedom for fixed effects were calculated using the Satterthwaite approximation. 164 

The significance of random effect was assessed using likelihood ratio tests (Appendix D, 165 

tables S5 and S6). We performed diagnostic plots and Shapiro normality tests on residuals to 166 

check model assumptions. A significance level of α < 0.05 was used for all tests. 167 

3. Results 168 

RTL was ~ 9.82% longer in fish near agricultural areas than those closest to Paris, at 169 

proximity to urban habitats. Age-corrected relative telomere length (RTLc) of chub 170 

significantly differed between habitats (t-test: t = 2.82, p = 0.006, figure 1A) and among 171 

sampling sites (ANOVA: F5,88 = 4.34, p = 0.001; Appendix D, figure S4B). Organic pollutant 172 

mean levels ± standard deviation in chub tissues are listed in table S3 (Supplementary 173 

material, Appendix B). Fish from urban habitats had higher levels of OCPs (p < 0.001), 174 

phthalates (p = 0.045) and pyrethroid pesticides (p = 0.010) relative to agricultural areas, 175 

representing a contamination increase of 48.6%, 20.8% and 15.4%, respectively, but not for 176 

PAHs, PBDEs, PCBs and ∑metabolites (all p ≥ 0.126).  177 
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 Age-corrected telomere length (RTLc) significantly decreased with increasing levels 178 

of pollutants, especially for pollutants’ by-products (∑ Phthalate metabolites, figure 1B; 179 

LMM: F1,49.9 = 5.57, p = 0.022; ∑metabolites of phthalates, LMM: F1,71.0 = 9.34, p = 0.003 ). 180 

The other chemical families did not show any significant relationships with RTLc (all F ≤ 181 

2.86, p ≥ 0.101; Appendix E, tables S5 and S6). 182 

 183 

4. Discussion 184 

As previously found in birds [41-44], telomeres were shorter in urban habitats 185 

compared to agricultural ones, suggesting higher life-threatening situations for fish in urban 186 

rivers. In fact, fish from urban and agricultural rivers did not differ in their pollutant load, 187 

except for slightly higher plasticizer and pesticide levels in urban watercourses. Urban river 188 

systems have however undergone profound changes, such as damming, banking and 189 

channelization that have led to the disruption of longitudinal connectivity, loss of wetlands 190 

and spawning grounds, but also increased water temperature, pathogens and boat noise 191 

[45,46]. Our study suggest that the diverse and profound degradation of urban streams induce 192 

deleterious effects in fish by accelerating telomere attrition and probably jeopardizing their 193 

survival. Those results are in line with previous findings, stating that environmental stressors 194 

accelerate telomere shortening in avian and fish species [8,25,28]. 195 

To the best of our knowledge this is the first evidence that exposure to organic 196 

pollutants negatively impacts telomere length in fish. In different species of birds, exposure to 197 

environmental contaminants (OCPs, perfluoroalkyl substances: PFAS and trace metals) was 198 

associated with a general reduction in telomere length [13,14-16, but see 17]. The originality 199 

of this study is to investigate currently-released pollutants and their metabolites in a common 200 

freshwater fish species. Among the wide range of analyzed contaminants, the levels of the 201 

sum of metabolites (phthalates, PAHs and pyrethroids) were more prone to explain 202 
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differences in our data than parent pollutants, except for PCBs. In a previous study using the 203 

same data set, metabolites of organic pollutants were negatively correlated to antioxidant 204 

capacity and peroxidase activity in chub plasma [31]. Organic pollutants may therefore 205 

produce oxidative stress by disrupting the pro-oxidant/antioxidant balance, which is a 206 

potential pathway of telomere shortening [11]. Even though the underlying mechanisms are 207 

still poorly understood, we hypothesize that electrophilic intermediates generated through the 208 

metabolization of parent compounds (PAHs, phthalates and pyrethroid pesticides) could 209 

increase oxidative attacks by depleting or weakening defense mechanisms (i.e., antioxidants), 210 

ultimately shortening telomeres. Still, some caution is needed to interpret these findings as 211 

other factors may mask the effects of environmental contaminants when using a cross-212 

sectional approach. Further work is thus advised to support the correlation between levels of 213 

organic contaminants and age-corrected telomere length, by using an experimental approach 214 

and testing other tissues for telomere length (e.g., liver). 215 

Our results reveal physiological costs to fish living in polluted urban habitats, which 216 

may ultimately jeopardize their survival. Moreover, they highlight the importance of 217 

considering metabolites of environmental pollutants to better assess the impacts of currently-218 

released chemicals on wildlife. 219 
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FIGURE CAPTIONS 416 

 417 

FIGURE 1. Age-corrected telomere length (RTLc, residuals RTL ~ age) of chub depending 418 

on A) each habitat (urban: gray and agricultural: orange) and B) on the levels of phthalate 419 

metabolites 
(1)

 (Σ phthalates metabolites, ng g
-1

 dry wt, Liver). Filled diamonds represent the 420 

arithmetic mean and ** indicates a significant difference (p < 0.001). Numbers represent 421 

sample size. Dashed lines represent the 95% confidence interval 422 


