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Highlights 26 

 27 

 We analyzed POPs levels in 174 European pond turtles in the Camargue 28 

wetland. 29 

 Only 3 POPs were detected in more than 10% of individual turtles. 30 

 Sex, date, and mass did not explain the occurrence and levels of POPs in 31 

turtles. 32 

 The occurrence and levels of PCB 153 increased with turtle age.  33 

 Turtles from the two study sites differed in POP burdens, possibly due to 34 

different hydraulic system. 35 

  36 
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Abstract 37 

Many banned persistent organic pollutants (POPs) remain for decades in the aquatic 38 

environment and can have harmful effects on long-lived predators because of their 39 

high bioaccumulation and biomagnification potentials. We investigated the 40 

occurrence and levels of 18 polychlorinated biphenyls (PCBs) and 16 organochlorine 41 

pesticides (OCPs) in European pond turtles (n = 174) from April to July 2018 in the 42 

Camargue wetland, France. Although the Camargue was highly contaminated in the 43 

last decades, plasma occurrence and levels of POPs were very low: we detected only 44 

3 of the 34 compounds we analyzed in more than 10% of the turtles. POP burdens 45 

did not differ between males and females and was uncorrelated with sampling date 46 

and body mass. We observed differences in POP burdens between turtles from the 47 

two sampling sites. One possible explanation is  the agricultural hydraulic system: 48 

plasma occurrence and levels were higher for PCB-52 and HCB in turtles captured in 49 

drainage channels, but lower for PCB-153 at the site that receives irrigation. Finally, 50 

the occurrence and levels of PCB 153 in turtles increased with age, likely because of 51 

bioaccumulation and much higher exposure 20-30 years ago than now. 52 

 53 

Key words:  reptiles, PCB, organochlorine pesticides, delta wetlands 54 

 55 
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1. Introduction  57 

In Europe, the production and use of persistent organic pollutants (POPs) are 58 

prohibited or severely restricted since 2004 through the Stockholm Convention 59 

(http://www.pops.int/), but POPs still cause environmental concerns. 60 

Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) remain in 61 

the environment for decades because of their slow biodegradation and improper 62 

handling of contaminated wastes.  Levels of POPs in animals increase with age 63 

(Vives et al., 2005; Binnington & Wania, 2014) and trophic level (Goutte et al., 2020). 64 

Exposure to POPs causes a wide range of adverse effects, including neurotoxicity, 65 

endocrine disruption, immune dysfunction, reproductive impairment, and 66 

developmental abnormalities, which may ultimately compromise survival and 67 

reproductive output and lead to population declines of wild vertebrates (Goutte et 68 

al., 2014, 2015; Salice et al., 2014).  69 

Pollution, and especially industrial and agricultural discharge, is one of the 70 

major threats to freshwater ecosystems (Holt, 2000; Dudgeon et al., 2006).  Wetlands 71 

support an extremely rich biodiversity, but are among the most transformed and 72 

threatened ecosystems of the world (Revenga et al., 2005), experiencing rates of 73 

population declines and species extinctions far higher than those in forests, 74 

grasslands, and coastal ecosystems (Dudgeon et al., 2006). Deltas are often exposed to 75 

high water pollution from intensive agriculture (Kuenzer & Renaud, 2012) and from 76 

discharge of contaminants in upstream waters. The Camargue, in the Rhône River 77 

delta, is the largest wetland in France and is of international importance under the 78 

Ramsar Convention (https://www.ramsar.org/), but it is heavily impacted by 79 

http://www.pops.int/
https://www.ramsar.org/
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human activities (Cheiron et al., 2018). The contamination of water bodies by 80 

agricultural, industrial, and urban discharges has been well studied over the past 81 

decades (Comoretto et al., 2007). In particular, levels of PCBs in sediments of the 82 

Rhône River increase from upstream to downstream, reaching 417 μg/kg dw for the 83 

sum of 7 PCB congeners (28, 52, 101, 118, 138, 153, and 180, Mourier et al. 2014). 84 

Mean flux over the 2011–2016 period averaged 14 kg/year for PCB 180 in suspended 85 

particulate matter at the outlet of the Rhône River basin  (Poulier et al., 2019). 86 

Previous studies conducted in the Camargue confirmed that birds (Berny et al., 2002) 87 

and fish (Roche et al., 2002, 2003, 2009a) are exposed to OCPs and PCBs.  88 

Freshwater turtles remain poorly studied in ecotoxicology although they can 89 

provide useful information on local contamination because of their longevity 90 

(Campbell & Campbell, 2002 ; EL Hassani et al., 2019 ; Gaus et al., 2019), high trophic-91 

level, and low dispersal capacity (Ming-ch’eng Adams et al., 2016). Moreover, as 92 

ectothermic vertebrates, they have a lower ability to metabolize pollutants than 93 

endothermic mammals and birds (de Solla, 2015). The European pond turtle, Emys 94 

orbicularis, a long-lived (> 40-80 years) opportunistic predator (fish, amphibian, 95 

crayfish) and scavenger (Ottonello et al. 2005; Ficetola & De Bernardi, 2006), is facing 96 

significant population declines due to multiple environmental alterations, including 97 

water pollution (Cheylan 1998). This species is listed as “near threatened” (NT) on 98 

the UICN Red List of threatened species in France (REF). Pollution by trace metal 99 

elements has been studied in E. orbicularis (Namroodi et al., 2017 ; Guillot et al., 2018 ; 100 

Beau et al., 2019), but data are lacking on burdens of POPs.  101 
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We studied contamination levels in two populations of E. orbicularis at the 102 

Natural Reserve of the Tour du Valat, in the Camargue, France. Several individuals 103 

were of known-age due to   capture-mark-recapture (CMR) program, starting more 104 

than 20 years ago (Olivier et al., 2010 ; Ficheux et al., 2014 ; Arsovski et al., 2018). The 105 

hydraulic system combines irrigation canals originating from the Rhône river and 106 

drainage canals, which are exposed to various environmental contaminants from the 107 

Rhône river and agricultural plots, especially rice fields (Chauvelon, 1996). In the 108 

present study, we assessed recent (2018) levels of OCPs and PCBs in plasma of the 109 

European pond turtle (n = 174). We tested the effects of individual traits (mass, sex, 110 

and age) on POP burdens. We expected that older and larger individuals should 111 

have higher levels of POPs because of bioaccumulation and length of exposure. 112 

Moreover, we compared POP burdens of turtles from two populations in different 113 

locations in the agricultural hydraulic system (irrigation vs drainage). We expected 114 

high levels of OCPs in turtles from the drainage site, as a possible consequence of the 115 

remobilization of pesticides from agricultural soils, and high levels of PCBs in turtles 116 

from the irrigation channel, as a possible consequence of the historical 117 

contamination. 118 

 119 

2. Material and methods 120 

2.1. Sampling sites and capture 121 

We conducted the study in the Natural Reserve of the Tour du Valat (43°30’ N, 4°40’ 122 

E, Fig. 1) in France. We captured European pond turtles (n = 174) in canals and 123 

marshes from 24 April to 26 July 2018 by hand or with funnel traps (Olivier et al., 124 
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2010; Ficheux et al., 2014). We captured turtles at two sites: (1) irrigation canals and 125 

their associated marshland (site of Esquineau, n = 126) and (2) drainage canals of the 126 

Fumemorte basin and marshes filled with water by these canals (site of Faïsses, n = 127 

48). The sex ratio was the same between the two sites (58.3% females at Faïsses and 128 

60.3% females at Esquineau, Pearson's Chi-squared test, p = 0.95).  129 

Individual turtles were identified as part of a long-term CMR program with 130 

shallow notches on the marginal and nuchal scales in unique combinations (Olivier, 131 

2002 ; Olivier et al., 2010). Individuals were weighed and sexed by visual observation 132 

of the secondary sexual characters. The year of birth can be determined if the first 133 

capture occurred within the first 5 years of life by counting the number of growth 134 

streaks (Castanet, 1988). This long-term survey starts in 1997, although a few tens of 135 

individuals were also marked as adults from 1976. In our data set, 66 of the 174 136 

individuals were of known-aged (5 to 26 year-old, corresponding to a first capture 137 

between 1997 and 2018) and some were first captured as adults in 1976, thus being 138 

considered as more than 44 year-old. When turtles were captured after their first 5 139 

years of life (N = 108 in the present study), we determined a stage of growth 140 

according to growth streaks located on the plastron (Olivier, 2002). By combining 141 

estimated age and stage of growth, we then attributed an age class to each turtle: 4 to 142 

8 year-old (N = 20), 9 to 13 year-old (N = 46), 14 to 22 year-old (N = 54), and 23 to 44+ 143 

year-old (N = 54). Turtles were released on the same day at their capture site.  144 

 145 

2.2. Blood sampling 146 

Plasma is a good matrix to determine individual burdens of POPs because blood 147 

sampling is minimally invasive and because circulating levels of POPs in blood are 148 
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significantly correlated to concentrations of POPs stored in fat (Keller et al., 2004 ; 149 

Dabrowska et al., 2006), liver, kidney, and muscle tissues  (Van de Merwe et al., 2010).  150 

We collected blood samples (2 ml, always less than 1% of the turtle body mass) from 151 

the dorsal coccygeal vein (Innis & Knotek, 2020; Keller et al., 2004) with a Terumo 152 

Company® syringe (Somerset, USA) pre-impregnated with heparin to prevent blood 153 

clotting during collection and equipped with a 25G needle (Franklin Lakes, USA). 154 

We then centrifuged the samples to separate the plasma from the red blood cells. We 155 

collected blood samples from 174 individuals (126 from Esquineau and 48 from 156 

Faïsses), 66 individuals were of known age ranging from 5 to 31 years old (32 females 157 

and 19 males from Esquineau; 9 females and 6 males from Faïsses). Samples were 158 

stored at −18 °C until analysis in the UMR 7619 METIS of Sorbonne Université, 159 

France. 160 

 161 

2.3. Chemical analyses   162 

We determined the levels of 17 OCPs (p,p′-DDT and metabolites (p,p′-DDE and p,p′-163 

DDD); pentachlorobenzene (PeCB); hexachlorobenzene (HCB); 164 

pentachloronitrobenzene (Quintozene); four isomers of hexachlorocyclohexane (α-, 165 

β-, γ- (lindane), δ-HCH); aldrin; endrin; isodrin; telodrin (Isonbenzan); heptachlor; 166 

heptachlor epoxide; heptachlor endo-epoxide), 7 marker PCBs (M-PCBs, IUPAC 167 

numbers # 28, 52, 101, 118, 138, 153 and 180), and 12 dioxin-like PCBs (DL-PCBs, 168 

IUPAC numbers # 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169 and 189) in the 174 169 

plasma samples. 170 

Samples were processed through Solid Phase Extraction (SPE), using hexane: 171 

dichloromethane, 9:1, using a validated protocol (Tapie et al. 2011) that was adapted 172 
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for plasma samples (see Supplementary Material for a detailed description of the 173 

procedure and method validations). PCBs and OCPs were analyzed using an Agilent 174 

7890 A gas chromatograph (GC) coupled to a 7000 B triple quadrupole mass 175 

spectrometer system (MS/MS) (Agilent Technologies, Les Ulis, France). Recovery 176 

rates (% RR) of compounds were assessed on replicate plasma samples of European 177 

pond turtles (n = 4) with spiked solutions (100 ng of each compound). The 178 

repeatability of the method was assessed in terms of relative standard deviation (% 179 

RSD) of the recovery. RR and RSD are provided in Table S2 (Supplementary 180 

Material). Recovery rates were not satisfactory (< 75% or > 125%) for isodrin, endrin, 181 

heptachlor epoxid, heptachlor-endo-epoxide, p,p'-DDD, PCB-77, PCB-189 (Table S2) 182 

and they were not further considered.  183 

 184 

2.4. Statistical analyses 185 

We performed statistical analyses with R software version 3.3.2 (R Core Team, 2016). 186 

Only POPs detected (i.e. > LOQ) in at least 10% of the samples were included in the 187 

statistical analyses. Since age and weight were positively correlated (t = 3.65, df = 64, 188 

p = 0.0005) and females were significantly heavier than males (W = 474, p < 0.0001), 189 

body mass, sex and age were tested separately..  190 

We used generalized linear models (GLM) with a binomial distribution and a 191 

logit link function to test for the effects of sex, site, the interaction sex * site, sampling 192 

date, and age (or body mass) on contaminant occurrence. For each model, we used a 193 

backward elimination to progressively remove non-significant terms (p > 0.05). For 194 

all analyses, model specification and validation were based on residual analysis. 195 
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The effects of sex, sampling site, date, and age (or body mass) on pollutant 196 

concentrations were tested by considering left-censored data, i.e. pollutant levels 197 

below the LOQ. To do so, group comparisons and linear regressions were performed 198 

using Peto-Prentice tests and tobit models respectively, with the function cendiff of 199 

the NADA package and the function tobit of the AER R-package. 200 

 201 

3. Results 202 

 203 

3.1. POP levels and occurrences 204 

In 37 of the 174 samples, all contaminant levels were below the limit of 205 

quantification, which represented 10.4% of turtles sampled in Faïsses and 24.4% of 206 

turtles sampled in Esquineau. Eleven compounds were never detected in the plasma 207 

samples: PeCB, Lindane, Quintozene, Heptachlor, and the dioxin-like PCBs: PCB-208 

118, -105, -114, -126, -156, -157 and -167. The following seven compounds were 209 

detected at least in one sample from Esquineau, but not in samples from Faïsses: 210 

alpha-HCH, 44'-DDT and PCBs 28, 101, 123, 169 (Table 1). Overall, the contaminant 211 

concentrations in the plasma samples were very low (Table 1). 212 

 213 

3.2. Influence of individual traits, sampling site, and date on POP occurrences and 214 

levels 215 

Only three POPs (HCB, PCB-52 and -153) had substantial occurrence, being detected 216 

in more than 10% of individuals (Table 1). Plasma occurrences of PCB-52 and HCB 217 

were significantly higher in turtles captured at Faïsses compared to Esquineau, while 218 
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the occurrence of PCB-153 was higher in turtles captured at Esquineau (Tables 1 and 219 

2). HCB occurrence slightly increased with sampling date (Table 2). Sex, mass, and 220 

age class did not explain POP occurrence in turtles, except for PCB-153 whose 221 

detection frequency was higher in older individuals (Table 2).   222 

Levels of HCB and PCB-52 were significantly higher in turtles from Faïsses, 223 

while PCB-153 levels tended to be higher in turtles from Esquineau (Tables 1 and 3). 224 

Moreover, levels of PCB-153 were lower in the youngest turtles (Table 3, Fig. 2). Sex, 225 

mass, and date did not explain variation in levels of POPs among turtles (Table 3). 226 

 227 

4. Discussion 228 

 229 

The aim of this study was to characterize legacy levels of POPs (OCPs and PCBs) in 230 

the plasma of European pond turtles in the Camargue, France, and to determine 231 

whether these levels were a function of individual traits and habitat types. Plasma 232 

levels of POPs were low and often below limits of quantification (from 0.2 to 3.1 233 

ng/mL). We found significant differences in burdens of POPs between turtles from 234 

the two sampling sites and these differences could be attributed to the hydraulic 235 

system (drainage/irrigation). The occurrence and levels of PCB-153 were higher in 236 

older turtles.  237 

The Rhône River has been historically contaminated, leading to an 238 

accumulation of POPs in sediments downstream (Mourier et al. 2014). Previous 239 

studies conducted on several animal taxa in the Camargue confirmed high exposure 240 

during the last decades, with high concentrations of PCBs in muscles of eels (Anguilla 241 

anguilla) fished between 1997 and 2000 (Roche et al., 2004), but also in eggs of little 242 
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egrets (Egretta garzetta) collected in 1996 (Berny et al., 2002). We detected low levels of 243 

POPs in the pond turtle in Camargue, which could indicate a decline in legacy POP 244 

exposure for wild species in the Camargue. Although a longitudinal study of the 245 

same species at the same locations would be required to test this hypothesis, 246 

decreasing PCB concentrations have been observed in the Rhône River sediments 247 

over the last decades (Liber et al., 2019) and water analyses conducted by the Nature 248 

Protection National Society (SNPN) have not detected PCBs and OCPs in the 249 

Fumemorte canal since 2011 (Cheiron, 2019). Moreover, organochlorine 250 

contamination across food webs tended to diminish in the Vaccarès lagoon (Roche et 251 

al., 2009a), the largest water body of the Camargue Biosphere Reserve. Exotic red 252 

swamp crayfish (Procambarus clarkii), the main prey of European pond turtles in the 253 

Camargue (Ottonello et al., 2005), were not contaminated by POPs in 2019 (i.e. < 254 

LOQ, with LOQ ranging from 0.9. to 1.98 ng/g dw, unpublished data).  255 

One of the first studies looking at the plasma concentration of POPs in turtles 256 

documented high PCBs and OCPs levels in snapping turtles (Chelydra serpentina), in 257 

Ontario, Canada and sampled in 2001–2004 (Letcher et al., 2015): plasma 258 

concentrations of OCPs (sum of 17 contaminants) ranged from 0.2 to 236 ng/g w.w. 259 

and the most abundant pesticide was p,p’-DDE (mean ± SE: 27 ± 6 ng/g w.w.). In our 260 

study, plasma concentrations of POPs (sum of 16 contaminants) were much lower, 261 

ranging from 0 to 2 ng/g w.w and p,p’-DDE levels didn’t exceed 2.3 ng/g ww. 262 

Snapping turtles are freshwater turtles with similar feeding habits than European 263 

pond turtle: they also consume plant and animal matter, including aquatic 264 

invertebrates, fish, frogs, reptiles (Ernst et al. 1994).Other studies of turtles 265 

https://en.wikipedia.org/wiki/Omnivore
https://en.wikipedia.org/wiki/Invertebrate
https://en.wikipedia.org/wiki/Fish
https://en.wikipedia.org/wiki/Frog
https://en.wikipedia.org/wiki/Reptile
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documented plasma concentrations of POPs comparable to those in our study; for 266 

instance, for PCB 153 and HCB in another freshwater species, the Western pond 267 

turtle (Actinemys marmorata) in Sequoia National Park, USA, in 2012 (Meyer et al., 268 

2016), as well as in marine turtle, such as Loggerhead sea turtles (Caretta caretta) in 269 

the Eastern Atlantic Ocean in 2011-2012 (Bucchia et al., 2015), and in Green turtles 270 

(Chelonia mydas) and Hawksbill turtles (Eretmochelys imbricata) in Cape Verde 271 

between 2009 and 2011 (Camacho et al., 2014).  272 

In terms of occurrence of POPs, our results in European pond turtles were low 273 

compared to other studies (Bucchia et al., 2015 ; Meyer et al., 2016). The occurrences 274 

of dioxin-like PCBs in 8% of European pond turtles, as well as p,p’-DDE in 2% of 275 

individuals were much lower than those found in plasma of Loggerhead sea turtles 276 

that ranged from 63% in the Atlantic Ocean to 100% in the Adriatic Sea for dioxin-277 

like PCBs and 100 % for p,p’-DDE  (Bucchia et al., 2015).  278 

Despite low detection frequencies and levels, we found differences in POP 279 

burdens between turtles from the two sampling sites. Turtles in Faïsses, a site 280 

receiving water from drainage canals, exhibited significantly higher occurrence and 281 

levels of HCB compared to turtles from Esquineau, likely because of the 282 

remobilisation of trapped OCPs in soils. On the other hand, the occurrence and levels 283 

of PCB 153 were higher in turtles from Esquineau, a site with irrigation channels. A 284 

previous study has documented higher concentrations of PCBs in the aquatic fauna 285 

in irrigation canals compared to the drainage canals downstream of rice fields (Roche 286 

et al., 2009b). We also found that concentrations of PCB-52 were higher in turtles at 287 

Faïsses, however, which may be due to a lower sedimentation rate of PCB-52 288 
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associated with its lower molecular weight and a greater solubility due to a lower 289 

level of chlorination compared to PCB-153 (Gong et al., 1998 ; Alkhatib & Weigand, 290 

2002). The processes of deposition and release of PCBs from the irrigation part to the 291 

drainage part of the canals need to be further studied. In addition, other populations 292 

of pond turtles in the two types of hydraulic systems should be studied to confirm 293 

this pattern. 294 

The occurrence and levels  of PCB-153 were lower in the youngest individuals 295 

(4 to 8 year old), which could be attributed to a shorter exposure period. PCB-153 is a 296 

recalcitrant chemical with a high hydrophobicity (high octanol-water partition 297 

coefficient), high resistance to metabolic transformation, and slow respiratory 298 

elimination through air-exhalation (high octanol-air partition coefficient). PCB-153 is 299 

also more prone to bioaccumulation than many other PCB congeners (Kelly et al. 300 

2007), especially in long-lived air-breathing predatory species (Rowe, 2008). It is also 301 

possible that there is a dietary shift during growth in pond turtles leading to the 302 

consumption of higher trophic-level prey with age, and these higher trophic level 303 

prey would be more PCB contaminated due to biomagnification. This hypothesis, 304 

however, is not supported by dietary studies of E. orbicularis in Camargue), showing 305 

a shift to a more herbivorous diet with age, using prey items identification in faecal 306 

samples (Ottonello et al., 2005) or no difference in the proportion of plants, 307 

invertebrates and vertebrates, using metabarcoding analyses (Duccotterd et al. 308 

2020).)  309 

We did not detect differences in POP loads between male and female pond 310 

turtles, despite males often being more contaminated than females in other turtle 311 
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species (Guirlet et al., 2010 ; Bangma et al., 2019; Lambiase et al., 2021) due to a 312 

transfer of pollutants from the mother to the eggs through vitellogenesis (Moss et al., 313 

2009 ; de Solla, 2010).  314 

 315 

  316 
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Figure captions 525 

Figure 1: Sampling locations for European pond turtles in the regional nature reserve 526 

of Tour du Valat, Camargue, France. The two capture locations are Esquineau (in 527 

blue), irrigated with water pumped from the Rhône River, and Faïsses (in orange), 528 

consisting of drainage canals of agricultural parcels. 529 

 530 

Figure 2:  Increase in plasma PCB 153 (ng/mL) levels in European pond turtles with 531 

age class (4 to 8, 9 to 13, 14 to 22, 23 to higher than 44 years old). Each point 532 

represents an individual. Red and green squares correspond to mean and median 533 

levels for age class, respectively. Age class was estimated according to growth 534 

streaks located on the plastron (see methods). 535 


