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Abstract

The adsorption of H2 in zeolites by molecular simulations use, in many applications,

single sphere model. Although this representation provides coherent results with ex-

periments above 77K, below this temperature the usual hydrogen representation fails

to reproduce experimental results. The disagreement can be associated to the interplay

of the atomistic heterogeneity and the electric field produced by the zeolite faujasite.

These aspects are generally excluded in classical force fields. For elucidating the influ-

ence of these issues, we performed DFT simulations for the faujasite Na86X at 40K with

and without guest hydrogen molecules for determining the electrical field generated by

the zeolitic structure. Our results show that the electrical field of the host structure

induces a dipole moment on the hydrogens of ≈0.32 D. This value was included in clas-

sical Monte-Carlo simulations by using a dumbbell representation of H2. Despite the

small dipole moment, the simulations revealed an enhancement of adsorbed molecules.

The formation of a dipolar moment in the H2 suggests that at cryogenic temperatures

the agreement with experiments passes through the use of polarizable models of H2.
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Introduction

The molecular hydrogen isotopes produced by nuclear processes require a recycling treatment

for avoiding pollution or follow a molecular sieving treatment for a subsequent industrial use

of H2 and its isotopes. Heavy isotopes are mixed with hydrogen and is challenging to sep-

arate the molecular species. At cryogenic temperatures different solutions are available for

separating hydrogen isotopes from gas mixtures. For instance, distillation1 or adsorption

in microporous material.2–14 At these temperatures the physical chemical properties of hy-

drogen and its isotopes are well differentiated and is reflected by the de Broglie wavelength,

that increases when temperature decreases. This effect, of quantum nature, depends on

the atomic mass and is more pronounced for light species. Specifically, for hydrogen is re-

flected on a larger effective radius than for its isotopes.2–4,15,16 In microporous materials

this effect is large enough to generate distinct adsorption isotherms of H2 and its isotopes.

Furthermore, when dealing with mixtures at low temperatures (i.e., < 77K) it generates

a selective adsorption of heavier isotopes. For zeolites this result has been highlighted by

experiments9,16 and molecular simulation.17–24 Given that isotope selectivity is related to

the differences in steric hindrance within the micropores, different zeolite types (e.g. shape,

size, chemical formulation, etc.) have been compared for selecting the most ad-hoc materials

for isotope separation.9,10 These investigations revealed that cationic zeolites have a higher

selectivity (up to 10 for Na-CHA at 47K) than its siliceous counterpart (3 for CHA under

the same conditions).24 For explaining the high selectivity several authors have assumed

the presence of privileged adsorption sites (the cations).9 This tendency lead to develop

molecular simulations with potentials overestimating the cationic interaction17 and without

giving a satisfactory agreement with experiments below 70K.17,22 As far as we know, the

best agreement with experiments can be obtained by using a classical force field including

the Feymann-Hibbs modification.17–25 This approach includes a temperature dependence

that mimics the de Broglie wavelength effect. Unfortunately, even with this correction the

temperature dependence of the thermodynamic properties still without being reproduced
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accurately below 77K. This rather awkward situation, lasting for more than two decades,

lead us to reconsider the molecular hydrogen representation usually employed in molecular

simulations and revisiting the outcomes from old experimental results.

A common practice, when modeling molecular H2 by classical molecular simulations is

to use a simple sphere model, a strategy reproducing reasonably well the observed thermo-

dynamic adsorption properties above 77K. Below this temperature simulations and experi-

ments mismatch. The force fields traditionally used neglect the molecular polarization and

obviously the neutral sphere representation of H2 too. Nonetheless, long time ago Craw-

ford and Dagg26 reported that the infrared spectra of molecular hydrogen in presence of a

static electric field exhibits an absorption band originated by the dipole moment variation

of H2. Recently it has been shown that empirical potentials including an explicit polar-

ization capture the best the energetics and they are useful for representing accurately the

metal-framework interactions.27

In microporous materials like zeolites, the electric field generated by the structure can

induce a molecular polarization of adsorbed molecules. Here we investigate these effects and

we elucidate how the charge variability modifies the adsorption and diffusion processes in the

Na86X of H2. These studies are developed by using Ab Initio Molecular Dynamics (AIMD)

and Monte-Carlo simulations at 47K.

Computational details

DFT Calculations

We analyzed the faujasite NaX with the Perdew-Burke-Ernzerhof (PBE)28 generalized gradi-

ent approximation functional, associated with several additive dispersion correction schemes,29

implemented in the VASP package30 . The PAW scheme29,31 was used to treat the electron-

ion interactions. The plane wave cutoff energy was set to 500 eV. Given the large size of

the unit cell, the Brillouin zone integration was performed with one Γ- point only. The
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Kohn-Sham equations were solved self-consistently until the energy difference between cy-

cles becomes lower than 10−8 eV. The atomic positions have been fully optimized until forces

are smaller than 0.01 eV/Åper atom. For computing the interaction energies between H2

molecules and the faujasite NaX accurately, we included the missing London dispersion in-

teractions in conventional Kohn-Sham DFT with several vdW (van der Waals) correction

schemes.32,33These methods include pairwise additive correction schemes of Grimme34–36 .

In this context, Tkatchenko and Scheffler (TS)37 developed another approach based on the

determination of C6 according to the chemical environment. Here, we use the original TS

scheme as well as the TS/HI version including an iterative Hirshfeld partitioning developed

and implemented in VASP by Bučko and co-workers.38–42

Monte Carlo simulations

For calculating the adsorption isotherms of H2 in the Na86X zeolite with the Monte Carlo

technique, we used the DL MONTE package43,44 with the grand-canonical ensemble. The

temperature imposed was 47 K and the fugacities range from 10 to 2.0×105 Pa.

The total simulation length consisted on more than 108 Monte Carlo steps encompassing:

translation, rotation, insertion, and deletion moves. For extracting the average number of

adsorbate molecules in the simulation box, the last 10 million cycles are used and representing

104 sampled configurations.

The simulation box consist of 8 unit cells (2 unit cells in each spatial direction) of the

faujasite framework without adsorbate molecules. The zeolite was considered to be rigid and

only displacements of cations(the sodium) and hydrogen molecules were allowed. Besides,

the H-H bonds were also treated as rigid. The initial distribution of cation positions and Al

substitutions were the same as used in our previous studies for the Na86X.
22,23

For accessing the effect of the atomic charges on the adsorption isotherms, different

models for the hydrogen molecule are considered: I) a reference single-sphere model reported

in previous works,23 II) a dumbbell without any partial charges, III) a dumbbell presenting
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a set of partial charges as reported by Pantatosaki et al.,17 IV-VI) introduction in the H2 of

a charge imbalance of 0.01, 0.05 and 0.09, respectively.

The parameters of the chargeless dumbbell model (model I) were obtained by scaling all

the pairwise Lennard-Jones interactions between the H2 molecules and the zeolite atoms by

a factor of two, since now there is the need for considering the interactions between atomic

sites rather than between a whole molecule. This procedure could not be applied for the

interaction between the H atoms themselves. Therefore, the Lennard-Jones parameters of

Pantatosaki et al.17 are used. The same set of Lennard-Jones interactions was also used in

the models including partial charges. Throughout all the models, the interaction between

the sodium cation and the oxygen of the zeolite were treated with a Buckingham potential

and the parameters used are those given by Jaramillo et al.45 In addition, the interaction

among the cations themselves are described by a Lennard-Jones potential taken from ref.22

and based on the parameters of Dang.46

For generating models with a permanent dipole on the hydrogen molecules, a charge

imbalance was introduced by slightly modifying the original charge set of Pantatosaki et

al.17 The original model consist of two positive charges located at the atomic sites of the

molecule and one negative charge at its center of mass, which accounts for interactions

involving the quadrupole moment of H2. Thus, the permanent dipoles are introduced by

increasing one of the positive charges by 0.01, 0.05 and 0.09 and by decreasing the other one

by exactly the same amount. The used parameters are tabulated in tables 2-5.

The Feynmann-Hibbs corrections25 has been implemented to account for the quantum-

mechanical contributions to the adsorption process.22,23 A cut-off radius of 15 Å is em-

ployed for truncating both the Lennard-Jones, and the direct-space Coulomb potentials.

The long-range electrostatic interactions are treated by means of the Ewald sum method

with a precision of 10-6 in the energy. No long range corrections are applied to the dispersion

interactions.
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Table 1: Lennard-Jones parameters for the single sphere model as reported in
ref.23

ϵ (K) σ (Å)
H2 - H2 38.00 2.920
H2 - O 47.00 3.080
H2 - Si 39.00 2.800
H2 - Al 42.50 2.950
H2 - Na 130.00 3.800
Na - Na 50.27 2.586

Table 2: Lennard-Jones parameters for all the dumbbell models considered in
this work.

ϵ (K) σ (Å)
H - Ha 14.50 2.500
H - O 23.50 3.080
H - Si 19.50 2.800
H - Al 21.25 2.950
H - Na 65.00 3.800
Na - Na 50.27 2.586

a Reported in ref.17

Table 3: Buckingham-potential parameters for the dispersion interaction be-
tween the cation and the zeolite Oxygen

A (K) ρ (Å) C (KÅ6)
6.11558×107 0.2468 765898×105

Table 4: Partial charges of the atoms composing the adsorbent

q (e)
O Si Al Na

-1.3076 2.2341 2.0891 0.9960

Table 5: Sets of partial charges of the different dumbbell models of the adsorbate
molecule

q (e)
Model IIIa Model IV Model V Model VI

H1 0.4829 0.4929 0.5329 0.5729
H2 0.4829 0.4729 0.4329 0.3929
CM -0.9658 -0.9658 -0.9658 -0.9658

a Extracted from ref.17
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Results and discussion

Charge distribution: Na86X

Figure 1: The three posible cation positions in the faujasite Na86X. According to the cation
disposition a non equal number of atoms in the eight surpercages is induced.

We performed DFT calculations for a unit cell of Na86X (662 atoms) faujasite for deter-

mining the net atomic charges (NAC). For this structure the whole unit cell counts eight

supercages. In the Na86X each supercage has not the same number of atoms, this variability

is due to the presence of cations in three different sites (Fig.1). The NAC calculations were

performed by using the methodology proposed by T.A Manz in the package DDEC6.47

Having access to the NAC we can determine with ease the electrical field E(rj), generated

by the Na86X at any position rj inside the structure by using the following expression:

E(rj) =

number of atoms∑
i=1

qir̂ij
4 πϵ0 | ri − rj |2

(1)

where qi is the electric charge at ri. The calculated electric field of a H2 placed at the center

of a supercage of the Na86X is approximately of 1.2 × 1010 V/m. Interestingly, this value

is of the same order of magnitude as the one reported by Cohen de Lara et al.,48 for the

NaA structure (≈ 0.96 × 1010 V/m). In Table.6 are given the calculated charge distribu-
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tion of the faujasite analyzed and compared with those reported by Uytterhoeven et al.,49

two decades ago. Our results show that the Na86X exhibits a large charge heterogeneity.

Namely, the oxygens present a charge deviation of 27% from the mean value of ≈ −1.3077e

(e= the elementary charge). This is a consequence of the Na and Al, surrounding the O,

and responsible for the charge heterogeneity in the structure. This last implies steric move-

ments affecting the adsorption of the adsorbent. Worthwhile to mention is that classical

force fields give an excellent agreement with experimental isotherms above 77K.17,22–24 To-

day, as far as we know, the best agreement with experiments is obtained with classical force

fields including the Feymann-Hibbs quantum correction.25 This modification gives a temper-

ature dependence enhancing the agreement with experiments. However, for reproducing the

thermodynamic properties below 77K this correction does not capture the physicochemical

subtleties developing at cryogenic temperatures.

Electrical Charges

Table 6: Electrostatic charges calculated from DFT for the Na86X.

Electrostatic charges (q)
atoms Na O Al Si
NaX 0.9967± 1.95% −1.3077± 27.4% 2.0891± 3.45% 2.2341± 4.5%

Uytterhoeven49 1.0 −0.8427 1.1498 1.3086

Single point energy calculations

As mentioned above Crawford and Dagg26 reported an absorption band in the infrared

spectra of molecular hydrogen in a static electric field. This suggests that adsorbed molecules

can be polarized by the electric field generated by the zeolite. For corroborating this result

we proceed by determine a potential energy surface of the Na86X. For this we performed

single point calculations by inserting H2 molecules inside the eight SC (a total of 900 grid

points homogeneously distributed). For each hydrogen molecule the potential energy and

charge fluctuation are calculated. As expected, the lowest energies are for those points near
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Figure 2: Two trajectories of 80 ps are depicted here. Trajectory A shows a H2 near the supercage
wall with steric displacements near its equilibrium position. Trajectory B shows displacements of
fast particles. The figure shows that the color of the trajectory is not uniform, it has dark and
light regions. Given that the trajectory is the superposition of frames in time, dark regions indicate
that hydrogen molecules remains in a given position for a given lapse of time (between 6 and 10
ps). The NaX color representation is: Al (light blue), O(red), Na (green), Si(royal blue) and H2

trajectories(magenta).

the SC walls (Table 7). Interestingly, the lower energy point is not always near the cation,

it is the case for only three cases over eight.

The absolute values of the charge distribution of each H atom (of the H2 ) located from

the SC center to the walls varies from 0.083 to 0.093 e (≈ 10% variation). With the H2

molecules remaining neutral during the simulation. We quantified here the molecular dipole

moment by the absolute value of the NAC on each hydrogen atom. The highest values are

obtained for those molecules closer to the SC walls and with a dipole moment of ≈ 0.093

(≈ 0.32D).

These results clearly show that the electrical field of the zeolite polarized the hydrogen

molecules and corroborate results given in ref.26

For elucidating how the electric field affects the amount of adsorbed H2 we developed
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Monte-Carlo simulations for the faujasite Na86X at 47K. We used a naive representation of

the adsorbate by a dumbbell with a constant permanent dipole in the range [0.01,0.09] and

we applied the Feynmann-Hibbs quantum correction. The interest of this representation of

H2 is to highlight the role of the polarization of H2 on the adsorption isotherm. In Fig.3 the

experimental values are represented by the solid continuous line, the single model (model

I △) shows that for pressures between 10 and 200 Pa (plain triangles) the model is in

agreement with experimental values, however for higher pressures it tends to a saturation

value. Consider a chargeless dumbbell for H2 ( ▽) given that the kinetic radius of the

dumbbell is more cumbersome than a single sphere, the adsorbed amount of H2 is reduced.

Nonetheless, the form of the two curves are similar and tend to a saturation value of ≈ 16

H2 per supercage (≈ 25% of its full capacity). Now, if we consider a quadrupole (model

III in Table.4) the adsorption uptake is overestimated but crosses the experimental curve

near 1000 Pa. As was mentioned in the previous paragraph the hydrogen molecules are

polarized by the electrical charges of the atoms composing the faujasite structure. Now for

the sake of comprehension of the role of charges let us impose, naively, to the hydrogen

molecule a permanent dipole moment : 0.01 (model IV), 0.05 (model V) and 0.09 (model

VI). The respective isotherms show that as the dipole moment is increased the experimental

curve is crossed at higher pressures (green symbols) and the adsorption is enhanced and

overestimated. If we focus on the experimental curve and the single sphere model at low

pressures, between 10 and 200 Pa, it suggests that the van der Waals interactions between

adsorbate molecules and the zeolite govern the adsorption process. As we increase in pressure

our models III-VI exhibit an enhanced adsorption with the particularity of overestimating

it. Nonetheless, they reveal an interesting feature: crossing the experimental curve at higher

pressure as a function of the imposed dipole moment. When we impose a permanent dipole,

and independently of the magnitude, the representation of the H2 is far to be the most

satisfactory. Nonetheless, it argues in favor of the use of polarizable models at cryogenic

temperatures where the role of charges are leading the adsorption processes at pressures
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above one thousand Pa.

Worthwhile to remark is that all the simulated isotherms tend to a saturation with

the highest value around 18 H2 per SC. This threshold number is far from the theoretical

saturation value (≈ 62 H2). For explaining this discrepancy, let suppose a situation close to

saturation. In this case the parameters governing the quantity of adsorbed molecules are:

the pore volume and the interaction between the adsorbate molecules. The pore volume

is commonly deduced from the saturation quantities and the pure adsorbate equation of

state. Fig.4 gives the fugacity of H2 computed from model III as a function of the density

at 100K, 80K and 40K. They are compared with experimental results from.50 Clearly for

high temperatures ( > 77K) the simulated model is able to reproduce reasonably well the

experimental equation of state (EOS). However at 40K the difference between experimental

data and simulations is amplified. This highlights that the EOS at 40K is not properly

described by the used model and as consequence the interactions between adsorbed molecules

are not accurately modeled.

Thus, a perspective work would be the elaboration of a force field for the adsorbent that

be compatible with polarizable models. Such models have the virtue of being more accurate

for describing the H2 EOS at cryogenic temperatures. Namely, the models proposed by Space

and coworkers.27

Table 7: In this table we give the energy, dipole moment and the nearest neighbor
of H2 molecules placed at the supercage centers.

Energies and dipole moment of H2

Supercage/ atom Energy (eV) dipole moment
1 O -0.47641E+4 -1.7354E-2/1.1483E-2
2 Na -0.47561E+4 -9.17E-2/9.40E-2
3 O -0.47561E+4 8.56E-2/-8.61-2
4 O -0.47677E+4 8.34E-2/-8.35E-2
5 Na -0.47561E+4 9.67E-2/-9.65E-2
6 O -0.47561E+4 -8.38E-2/8.59E-2
7 Na -0.47561E+4 -9.06E-2/8.68E-2
8 O -0.47561E+4 -9.06E-2/9.24E-2
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Figure 3: Adsorption isotherms of NaX at 47K by using different values of charges for the
hydrogen.
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Figure 4: Experimental bulk fugacity of H2 as a function of density compared to simulated
data and results from a dumbbell model (Model III) and using a grand canonical Monte-
Carlo program (see ref.22)
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Molecular diffusivity of H2 in the NaX zeolite

We performed AIMD simulations at 40K for the Na86X, including four or eight H2 molecules

per SC. The generated trajectories of 80 ps revealed that the majority of H2 have their stable

position near the SC walls, as expected. Interestingly, we identified two dynamical regimes:

A) Slow particles: Some particles can have erratic movements around a sitting position

before jumping to another stable position. The calculated sitting times between jumps is

approximately 2.7 ps. These particles contrast with those that once they reached a stable

position near the SC wall do not move afterwards (trapped). Worthwhile to remark is that

”trapped” particles are not always near the cation (Na+). This is illustrated by the trajectory

A in figure 2 where the H2 moves around its sitting position.

B) Fast particles : These particles are characterized by long jumps from a residence

(sitting) position to another. The fast particles have a sitting time of ≈ 0.3 ps and a

jumping length between 1.6 and 2.0 Å (see the trajectory B in Fig. 2).

This behavior has been reported by quasi elastic neutron scattering51 studies of H2 in the

NaA zeolite (from 70 to 150 K). Our studies suggest that the presence of slow and fast

particles is a consequence of the atomistic charge heterogeneity governing the adsorbate-

adsorbent interaction leading to this curious dynamical behavior.

Concluding remarks

We performed electronic structure calculations for studying the adsorption of H2 on the

faujasite Na86X. Our analysis showed that hydrogen molecules are adsorbed preferentially

close to the supercage walls, but not necessarily near the cations. The atomistic and energetic

heterogeneities of such structure is enhanced by the presence of Al and Na+ cations in three

different possible sites. The electrical field produced by the zeolitic structure polarized the

H2 molecules and they acquire a dipole moment of ≈0.32 D. By performing Monte-Carlo

simulations with a dumbbell representing for the hydrogen and by using the calculated dipole
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moment, we obtained isotherms that are strongly dependent on the dipole strength.

Worthwhile to mention is, that our AIMD simulations reveled two distinct dynamical

populations of molecules: slow and fast. With the former fluctuating ≈ 2.7 ps around a

stable position near the faujasite walls for finally jumping to another supercage. The fast

particles have a sitting time of ≈ 0.3 ps with a jumping length in the range of 1.6-2.0 Å. The

interplay of the electrical field of the adsorbent and the dimensions of the porous structure

produce populations of fast and slow particles governing the diffusion processes.

We also have shown, that the induced dipole moment of H2 produced by the electrical

field of the host structure can be determinant for having an agreement with experiments. In

other words, the necessity of going beyond the non polarizable single sphere representation

of the hydrogen.
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