

Sexual and individual signatures are encoded in the temporal rate of Cape Gannet Morus capensis display calls

Kezia Bowmaker-Falconer, Andréa Thiebault, Maëlle Connan, Thierry Aubin, Isabelle Charrier, Pierre Pistorius

► To cite this version:

Kezia Bowmaker-Falconer, Andréa Thiebault, Maëlle Connan, Thierry Aubin, Isabelle Charrier, et al.. Sexual and individual signatures are encoded in the temporal rate of Cape Gannet Morus capensis display calls. Ostrich: Journal of African Ornithology, 2022, 93 (2), pp.106-119. 10.2989/00306525.2022.2113926. hal-03822068

HAL Id: hal-03822068 https://hal.science/hal-03822068

Submitted on 31 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Sexual and individual signatures are encoded in the temporal rate of Cape Gannet Morus capensis display calls

Kezia Bowmaker-Falconer 1*, Andrea Thiebault1*, Maëlle Connan1, Thierry Aubin2, Isabelle Charrier 2 and Pierre Pistorius1

¹ Department of Zoology, Marine Apex Predator Research Unit, Institute for Coastal and Marine Research, Nelson Mandela, University, Port Elizabeth, South Africa

² Université Paris-Saclay, CNRS, UMR, Institut des Neurosciences Paris-Saclay, Orsay, France

* Correspondence: s217093264@madela.ac.za; andrea.thiebault@mandela.ac.za

Sexual and individual signatures are encoded in the temporal rate of Cape gannet display calls

Journal:	Ostrich			
Manuscript ID	TOST-2022-0015.R2			
Manuscript Type:	Research Article			
Keywords:	acoustic sexing, bioacoustics, seabird, Sulidae, South Africa, vocal communication			
Note: The following files were s You must view these files (e.g	submitted by the author for peer review, but cannot be converted to PDF. . movies) online.			
sup_audio1_gannet_male_17U_277.mp4 sup_video1_gannet_male_17U_277_cut.MP4 sup_audio2_gannet_female_19U_616.mp4 sup_audio3_gannet_male_15L_381.mp4 sup_audio4_gannet_female_15R_95.mp4				

SCHOLARONE[™] Manuscripts

Ostrich

Sexual and individual signatures are encoded in the temporal rate of Cape gannet display calls

3 ABSTRACT

Vocalisations play a vital role in animal communication, as they are involved in many biological functions such as mate selection, individual recognition and care of young. Seabirds often breed in large and dense colonies, making successful recognition between mates or between parents-and offspring crucial for reproductive success. Acoustic signals have been shown to play an important role in this regard for several seabird species. Furthermore, most seabird species including the Cape gannet (Morus capensis), are monomorphic, making sex identification for research challenging. Identifying individual and sexual signatures in their vocal productions could thus facilitate sex identification in the field. This study aimed to better understand the potential use of vocalisations for sex and individual recognition in Cape gannets by describing the acoustic structure of their display calls at the nest. Vocalisations of nesting Cape gannets were recorded over a two-week period. Acoustic measurements were extracted from 80 calls (16 individuals) and included 36 variables in both temporal and frequency domains. Twenty acoustic variables showed significant differences in vocalisations between male and female Cape gannets. However, values of the fundamental frequency and the average of Inter-Onset-Interval (time elapsed between successive sound units) appeared to be the most important acoustic variables for sex determination. Both temporal and frequency parameters showed a potential for individual identity coding, again with the average units' Inter-Onset-Interval being the most important variable for individual identification for both females and males. This study provides the first evidence of sex-specific and individual vocal signatures in adult breeding Cape gannets enhancing our understanding of the role of the display calls in

mate recognition. From an applied perspective, identified sex specific differences could
potentially be used as a non-invasive method for field-based sex-determination.

26 Keywords: acoustic sexing, bioacoustics, seabird, Sulidae, South Africa, vocal

27 communication

28 INTRODUCTION

Communication facilitates and may even be vital to biological functions such as recognition (Kumar 2003), reproduction, foraging and defence (McGregor 2005). Sex and individual identification can be essential for successful reproduction and can thus play an important role in an individual's fitness. Differences in the vocalisations among individuals have been identified in mammals (Townsend et al. 2014, Walb et al. 2021), birds (e.g. Beer 1971, Volodin et al. 2005, Tripp and Otter 2006, Curé et al. 2011, Linhart and Šálek 2018), amphibians (Bee et al. 2008) and fish (Vieira et al. 2015). Vocal differences between sexes have also been detected in mammals (e.g. Fischer et al. 2004, Baotic and Stoeger 2017), anurans (e.g. Tobias and Kelley 1987, Preininger et al. 2016) and birds (e.g. Volodin et al. 2005, 2015, Odom and Mennill 2010). Studies on acoustic communication in birds have largely focused on terrestrial species with less but significant research focused on individual recognition in seabirds (Jones et al. 1987, Charrier et al. 2001, Aubin and Jouventin 2002, Curé et al. 2011, Dentressangle et al. 2012, Kriesell et al. 2018, Thiebault et al. 2019a, 2019b).

43 Colonial animals, such as many seabirds, have developed specific acoustic recognition 44 processes that assist with mate location and identification in particularly noisy and chaotic 45 environments (Aubin and Jouventin 1998, Charrier et al. 2001). As central place foragers 46 during the breeding season, seabirds alternate nest duties with foraging bouts at sea (Schreiber 47 and Burger 2002). Identification of their partners and offspring on return to the colony is critical 48 for successful reproduction (Trivers 1972). Vocal signals contain sexual and individual

Ostrich

signatures in a number of seabird species, as shown in the Spheniscidae (e.g. Aubin and Jouventin 2002, Kriesell et al. 2018, Calcari et al. 2022), Laridae (e.g. Charrier et al. 2001, Mathevon et al. 2003, Aubin et al. 2007), Procellariidae (e.g. Bretagnolle and Lequette 1990, Bourgeois et al. 2007), Sulidae (e.g. Dentressangle et al. 2012, Krull et al. 2012) and Alcidae (e.g. Jones et al. 1987, Insley et al. 2003, Klenova et al. 2012) families. Often both temporal and frequency parameters play a role in the discrimination between sexes, as shown in black-legged-kittiwakes Rissa tridactyla (Aubin et al. 2007), Yelkouan shearwaters Puffinus yelkouan (Bourgeois et al. 2007, Curé et al. 2011) and blue-footed boobies Sula nebouxii (Dentressangle et al. 2012). For the display call of king penguins Aptenodytes patagonicus, the syntax of syllables is sex-specific and allows for a 100 % accuracy in sex determination (Kriesell et al. 2018).

Determining the sex of monomorphic seabirds in the field is often a challenge. Although this can potentially be achieved through observations during periods of copulation or when sex-specific behaviours are undertaken (e.g. biting behaviour in male gannets, Jarvis 1971), the sex of study birds are often established through laboratory-based molecular work (Griffiths et al. 1998, Morinha et al. 2012). This has the disadvantage of being invasive as samples (usually blood or feathers for birds) need to be collected from captured individuals. The samples can then only be processed afterwards, which can be problematic when individuals of a particular sex need to be targeted (e.g. tracking studies). This technique is also costly as samples need to be analysed in a laboratory by trained professionals (Beja-Pereira et al. 2009, Volodin et al. 2015). Therefore, the use of a more time-efficient and non-invasive technique for sexing seabirds in the field is desired, such as through their call characteristics (Bourgeois et al. 2007, Kriesell et al. 2018).

Within the family Sulidae, individual signatures in the vocalisations of northern *Morus bassanus* and Australasian *Morus serrator* gannets have been documented (White and White

74 1970, Krull et al. 2012). Sex-specific differences, on the other hand, remain to be studied in 75 Northern gannets and was not found in the Australasian gannets (Krull et al. 2012). The 76 potential for either individual and sex-specific signatures in the third gannet species, the Cape 77 gannets are yet to be investigated.

The Cape gannet is an endangered (ICUN 2021) species endemic to southern Africa, which like other members of the Sulidae family congregates in large, dense colonies during the breeding season (Sherley et al. 2019). Over the last 20 years, the Cape gannet population has declined by 52 % across its six breeding colonies in South Africa (BirdLifeInternational 2021). They are largely sexually monomorphic despite slight differences in gular stripe length, which cannot be used for reliable sex identification, allowing only 65 % of correct classifications (Rishworth et al. 2014). Acoustic analysis of the vocalisation emitted at the nest can thus potentially help determine if individuals and sex can be identified in the field, making research, which informs conservation management, increasingly effective (Lewison et al. 2012, Medeiros et al. 2012).

At their breeding colony, Cape gannets produce a number of vocalisations in specific behavioural contexts (e.g., when landing, meeting with their partner, leaving the nest and fighting, Jarvis 1971). In this study, we focused on the display vocalisations, potentially important for partner recognition (Jarvis 1971). The mutual display (or 'Mutual Greeting' as per (Jarvis 1971) is a ceremony during which the two partners face each other in a synchronised dance with associated vocalisations (Jarvis 1971). This dance is thus performed as a duet, not only during courtship or mating, but also every time they meet again on the nest during the breeding season, suggesting an important role for sexual and individual recognition. However, during the mutual display, the calls of each partner overlap, preventing an accurate acoustic analysis. The same behaviour is also performed solitarily, putatively as a form of territorial

Ostrich

3 4	98
5 6	99
7 8	100
9 10 11	101
12 13	102
14 15	103
16 17 18	104
19 20	105
21 22 22	106
23 24 25	107
26 27	108
28 29 30	109
30 31 32	110
33 34	111
35 36 37	112
38 39	113
40 41	114
42 43 44	115
45 46	116
47 48	117
49 50 51	118
52 53	119
54 55	120
56 57 58	121
59 60	122

behaviour or a nest ownership display (the 'Solo Bow' as per Jarvis 1971). For this study we
analysed the single display calls, produced during the 'Solo Bow' behaviour.
This study aims to better understand the potential use of vocalisations for sex and individual
recognition in Cape gannets by 1) describing the acoustic characteristics of the single display
call (henceforth referred to as display call) of nesting Cape gannets, 2) determining if there are

sex-specific vocal features in these calls, potentially allowing for field-based sex determination

and, 3) assessing the occurrence of individual vocal signatures in the display calls.

106 **METHODS**

107 **Ethics statement**

Permits for fieldwork, along with all experimental protocols were approved by SANParks:
PISTP1238 and Nelson Mandela University Ethics Committee (reference: A10-SCI-ZOO008), and were carried out in accordance with the approved guidelines.

111 Data collection

112 Data were collected on Cape gannets during their brooding phase in December 2015 on Bird 113 Island (33°50'26"S 26°17'10"E, Algoa Bay, South Africa), which holds the largest breeding 114 colony of Cape gannets with more than 90 000 breeding pairs (Sherley et al. 2019). Two clumps of twenty Cape gannet nests each were marked with unique numbers and these were 115 116 mapped. At least one partner per nest was marked using short-term animal marking sticks for 117 individual identification. In addition for some of these nests, a breeding adult was captured 118 using a pole with a hook as part of another study (Thiebault et al. 2019b) and two breast feathers 119 were plucked for sex identification based on DNA analyses.

Over 16 consecutive days, the vocalisations and associated behaviour of all the breeding adults
 from the study nests were recorded daily for approximately 1-5 hours (total of 122h18min of
 recordings), either during the morning (approx. 9am to 12pm) or during the late afternoon

(approx. 4pm to 7pm), when gannet nest activities are typically relatively high (Rishworth and Pistorius 2018). A total of 184 display calls were recorded, among which 97 were produced by molecular-sexed gannets (74 calls from six males and 23 calls from four females). From these recordings, acoustic measurements were taken from a total number of 80 calls, which were comprised of sixteen different individuals including six males (4-6 calls per individual totalling 31 calls), four females (4-6 calls per individual totalling 19 calls) and six unsexed individuals (five calls per individual totalling 30 calls). Recordings included all vocalisations spontaneously emitted by gannets across the two-week period, so that all individuals included in the analyses were recorded repeatedly on different days. Vocalisations were recorded using a Beyer-Dynamic M 69 TG microphone (frequency response: 50 Hz-16 kHz \pm 2.5 dB) connected to a digital recorder Zoom H4N (sampling frequency 44.1 kHz). The microphone was placed ~1 m from the study nests for recording purposes. A long cable allowed the observer to lie at \sim 5 m distance from the colony, thus minimizing potential observer effects. The identity of vocalising birds, together with their behaviour when vocalising were manually noted by a single observer throughout fieldwork. Annotated behaviours with associated vocalisations included: landing and returning to nest, leaving the nest, mutual display, single display ('Solo bow' as per Jarvis 1971) and fighting (two gannets grabbing each other's beaks). In addition, a video camera recorded the monitored nests to allow for further behavioural observations during data analyses.

142 Molecular sexing

Genomic DNA was extracted from the plucked feathers using a Chelex extraction method, implemented previously on Cape gannets (Rishworth et al. 2014). Fragments of the sex-linked CHF-1 gene were amplified using 2550F (5'-GTTACTGATTC GTCTACGAGA-3') and CHF-1 gene were amplified using 2550F (5'-GTTACTGATTC GTCTACGAGA-3') and 2718R (5' -TTGAAATGATCCAGTGCTTG-3') primers, with females revealing in agarose gel as two fragments (ZW) and males as a single fragment (ZZ) (Fridolfsson and Ellegren

Ostrich

1999). Polymerase chain reactions in a 15 µL solution containing 7.5 µL GoTaq® G2 Hot Start Green Master Mix (Promega), 0.4 µmol of each primer and 46 – 247 ng of genomic DNA were performed using a C1000 Touch Thermal Cycler (BioRad). Initial denaturing of DNA was set at 94°C for 2 min, followed by 41 cycles with a denaturation step at 94°C for 30 s, an annealing step at 50°C for 30 s and an extension step at 72°C for 45 s. A final extension step of 5 min at 72°C was added after the last cycle. PCR products (5 µL) were separated on a 1.8% agarose gel with 1X TAE buffer. After electrophoresis at 100 V for 30 min, gels were stained with GelRed[™] Nucleic Acid Gel stain (Biotium) and bands were visualized under ultraviolet light.

156 Measure of acoustic variables

To increase the precision of frequency measurements, sound data were resampled at 16 kHz because no call was observed to contain energy at frequencies higher than 8kHz and analysed using Avisoft-SASLab Pro (version 5.2, Avisoft Bioacoustics, Germany). A call was defined as temporally distinct sounds associated with a display dance behaviour (Fig. 1, Supplementary Video S1). A call was divided into up-movement and down-movement parts, based on bird behaviour, specifically according to their head movement of the bird (i.e. from the analysis of body movement observed in synchrony with the call), that is successively facing up and down, as observed from the recorded videos (Supplementary Video S1). Each up-movement and down-movement parts were further composed of several sound units (Fig. 1). Calls were selected by visual inspection of spectrograms for measurements wherever the quality of recordings allowed (i.e. low background noise and no overlap with other calls). Among the monitored and recorded birds, we selected only the individuals for the acoustic analysis for which a minimum of four calls were recorded with sufficient acoustic quality (number four arbitrarily chosen as a trade-off between a reasonable number of calls per individual and a reasonable number of individuals kept for the analyses). For each selected bird, a maximum of six calls per individual (selected randomly) were kept for acoustic measurements to limit

imbalance among individuals in the dataset. Acoustic variables were measured on one of each up-movement and down-movement parts, selected in the middle of the entire call to ensure full momentum of the behaviour, as well as on the first unit of each measured part. A total of 36 acoustic variables were measured, 17 from the up-movement part (5 temporal variables and 12 frequency variables), 17 from the down-movement part (5 temporal variables and 12 frequency variables and two from the whole up-and-down movement sequence (temporal variables). From the average energy spectrum displayed between 0.3 and 5 kHz, the fundamental frequency (F0, Hz), the frequency of maximum amplitude (Fmax, Hz), the first (Q25, Hz), the second (Q50, Hz) and the third (Q75, Hz) quartiles were measured automatically, as well as the percentage of energy occurring below 1200 Hz (E1200). These six frequency acoustic variables were measured on each up and down movement parts, as well as on the first unit of each part, bringing the total number of frequency acoustic variables to 24. From the oscillogram, the duration (in s) of the part and of the first unit of each part were measured, as well as the number of units in each part (separated by ~ 0.1 s strong amplitude declines) and the number of segments in a unit (separated by ~ 0.01 s by strong amplitude declines; Fig. 1). In addition, the pulse rate (Hz) of sound units was automatically extracted (using the 'Pulse train analyses' function in Avisoft-SASLab Pro) as a measure of the temporal rate of segment emission within a unit. These six temporal acoustic variables were measured on each of the up and down movement parts. In addition, the temporal rate of sound production was also evaluated using the measure of Inter-Onset-Intervals (IOI), defined as the "time elapsed between the beginning of one event (i.e. onset) and the beginning of the next event" (Ravignani et al. 2017). For each call, the IOI was calculated on a whole up-and-down sequence, this being an up part followed by a down part. The average and standard deviation of IOI measured between successive units were calculated for each measured call, bringing the number of temporal variables to 12 in total.

Sexual dimorphism in display calls

The mean, standard deviation and range of all 36 acoustic variables were calculated and compared between sexes. The distribution of each acoustic variable was tested for normality using a Shapiro-Wilk test. As the majority of them were not normally distributed, the distribution between sexes were compared using non-parametric tests. The variances of distributions were compared using a Fligner-Killeen test of homogeneity of variance and their medians using a Kruskal-Wallis rank sum test. We chose against a two-way nested Anova statistical test (which would take into account the repeated measures of calls from each individual), because of the non-normality of the majority of the acoustic variables and the imbalance of the data set (31 calls from males versus 19 calls from females). To limit any potential bias due to repeated measures we restricted the dataset to a similar number of call per individual (4-6 calls), so that the differences observed between sexes could not be driven by individual variability. The acoustic structure of calls emitted by the two sexes was then compared in a multivariate analysis. Only variables for which at least one of the Kruskal-Wallis or Fligner-Killeen statistical tests resulted in significant differences were kept (21 acoustic variables). The random forest algorithm (RF) was chosen because it does not require assumptions on the distribution of predictor variables (Breiman 2003). The global accuracy of prediction is estimated intrinsically in the algorithm using a bootstrap process and calculated as a proportion of correct classification. In addition, we used the indicator "precision" (Altman 1994) to calculate the number of correct predictions per class (sexes), based on the confusion matrix. We then compared this accuracy of prediction per class to a prediction by chance, calculated as the number of calls in the class (male or female) divided by the total number of calls (following the method in Thiebault et al. 2019a). This allows us to evaluate the strength of the prediction in comparison to a random allocation of class based on occurrences. Furthermore, the bootstrap process in the RF algorithm can be used to estimate the importance

of variables for predictions. This was used to identify the acoustic variables contributing the most to the sex identification. Collinearity between variables was tested since a high collinearity between two important variables may affect their ranking in the list of important variables. Three couples of variables were found with a high collinearity (>0.9). For each couple, one variable was removed (the most difficult one to interpret). This resulted in a set of 18 acoustic variables included in the RF to compare sexes.

The RF was run in R software using the package "randomForest" (Liaw and Wiener 2014). The number of trees to be grown from bootstrap samples of the dataset (parameter "ntree") was set at 200. This ensured convergence of the results (Supplementary Fig. S1) as well as robustness in the measure of variable importance (Genuer et al. 2008). To set the number of variables to be randomly selected at each node (parameter "mtry") we used the default value for classification: the square root of the total number of variables (18), so four in our case.

235 Individual signatures in display calls

The individual signatures were studied within sexes, allocating a sex to birds where no samples were collected for molecular-sexing, based on the acoustics of their display calls (see results on sexual dimorphism). For each sex, we assessed the potential of individual coding (PIC) for each of the 36 acoustic variables by dividing the coefficient of variation between individuals (CV inter-individual) calculated on all individuals pooled together with the mean of CVs calculated for each individual (CV intra and inter-individual) (Robisson et al. 2010). The CV calculated according formula was to the for small samples sizes: $CV = \{100(SD/Xmean)[1+(1/4n)]\},\$ where SD is the standard deviation, Xmean the mean for each individual and n the number of calls per individual (Sokal and Rohlf 1995). A PIC value greater than 1 means that the inter-individual variability is greater than the intra-individual variability and so the given variable can be interpreted as individual-specific. In addition, the

Ostrich

247 distribution of each variable per individual was compared using a Kruskal-Wallis rank sum248 test.

Individual identity can be coded from a combination of variables, so the set of acoustic variables was then compared per individual using a multivariate analysis. The RF algorithm was used to classify the acoustic structure of calls per individual following the same method as explained in the section on sexual dimorphism, but different sets of variables were included in the different models, depending on the univariate statistical results and the collinearity between variables. For males, all variables were considered since they all resulted in a significant difference according to the Kruskal-Wallis test. Among these, five couples of variables were found to be highly correlated (>0.9) so five variables were removed from the set to reduce collinearity and improve the identification of important variables. This resulted in a total of 31 acoustic variables included in the RF for males. Consequently, the algorithm for individual differences among males was applied with the parameter "mtry" set at six (square root of 31) and, with the parameter "ntree" set at 4000 to ensure convergence of the results (Supplementary Fig. S1). For females, correlation was tested among the 18 variables that showed significant differences among individuals according to the Kruskal-Wallis test. Only one couple of variables was highly correlated (>0.9) resulting in a total of 17 acoustic variables included in the RF comparing individuals among females. Consequently, the RF algorithm for females was applied with the parameter "mtry" set at four (square root of 17) and with the parameter "ntree" set at 1000 to ensure convergence of the results (Supplementary Fig. S1).

RESULTS

268 The display call of Cape gannets

269 The display call was always associated with a characteristic up (A) and down (B) movement
270 (Fig. 1, Supplementary Video S1). It was composed of a series of distinct sound units

(separated by strong amplitude declines of ~ 0.1 s) emitted successively throughout the dance (Fig. 1C). The up and down movement was typically repeated two or three times (up to four times) during the whole display behaviour. Each up and each down part were composed of a specific number of sound units (ranging between two and eight), and each unit was furthermore composed of a series of segments, separated by ~0.01s strong amplitude declines. The number of sound units within each part, as well as the number of segments within units (ranging between two and seven), varied among individuals. Fig. 1C shows the spectrogram of the up-movement part of a given individual (Fig. 1C) composed of two units, whilst the down-movement part was comprised of three units. Within the units of the up-movement part the first unit was comprised of four segments and within the units of the down-movement part the first unit was also comprised of four segments.

282 Sexual dimorphism in display calls

To assess acoustic variations between sexes in the display calls of Cape gannets, we analysed 31 calls from molecular-sexed males and 19 calls from molecular-sexed females (4-6 calls per individual). The variables showing the highest statistical differences between sexes (p<0.001 for both tests on median and variance, Table 1) were the IOIm (values ranging between 0.25-0.36 in females versus 0.35-0.50 in males), the fundamental frequency (values ranging between 336-389 in females versus 272-402 in males in the up-movement part), and the duration of the first unit of both up-movement and down-movement parts (Table 1). Overall, variables showed more differences in terms of the median of distribution than the variance, with 20 and 10 variables significantly different according to the Kruskal-Wallis and the Fligner-Killeen tests, respectively (Table 1). The majority (7/12) of acoustic variables related to the temporal domain (e.g., IOIm, number and duration of units, number of segments, pulse rate) showed high significant differences (p<0.01), whereas for frequency parameters, only the fundamental frequency showed a high significant difference between sexes (p<0.001, Table 1). In females

Page 13 of 41

Ostrich

this ranged between 330-388 and in males between 374-404. Interestingly, even if the IOIm (units' temporal rate) was different between males and females, with a faster tempo in females than in males (Supplementary Audios S1-4), the unit rate seemed consistent for both sexes as shown by the small value of IOIsd. The IOI in females ranged between 0.25-0.37 and in males between 0.35-0.51.

The RF classification for the two sexes showed a global accuracy of prediction of 98% with a near perfect classification. The indicators precision showed that 95 % (18/19) of female calls and 100 % (31/31) of male calls were correctly classified. These predictions were 2.5 and 1.6 times better than a prediction by chance for females and males, respectively (Table 2).

The most important variables to correctly predict the sex of an individual from its display call was by far the IOIm (units' temporal rate), with a mean decrease in accuracy of >10% when this variable was not included (Fig. 2). The second most important variable was the fundamental frequency during the up-movement part (Fig. 2). The following three important variables to correctly predict the sex of an individual still related to the fundamental frequency (during the down-movement part) and temporal variables measured on units (number of units and duration of the first unit in the up-movement part, Fig. 2). Among the 18 acoustic variables included in the RF comparing sexes, six out of the seven temporal variables appeared in the top ten most important variables. In comparison, only four out of the eleven frequency variables appeared in the top ten, with all four being measures of fundamental frequencies on different parts of the call (Fig. 2).

Compared to males, females had a lower fundamental frequency for both up-movement and down-movement parts (up-movement part average 356 Hz vs 387 Hz for females and males respectively, down-movement part average 392 Hz vs 428 Hz for females and males respectively, Table 1). Females produced a higher number of sound units (up-movement part average 4.1 vs 2.5 units for females and males, respectively, down-movement part average 2.5

vs 1.9 for females and males respectively, Table 1) at a higher temporal rate (IOI mean 0.31 vs 0.42 for females and males respectively, Table 1, Supplementary Audios S1-4). Ultimately, the two most important variables identified by the RF algorithm, were IOIm and F0 during the up-movement part, which appeared to be sufficient to distinguish the sex of a Cape gannet based on its display call with no overlap area (Fig. 3). Two thresholds could be identified (380 Hz for the UpF0 and 0.35 s for the IOI mean, Fig. 3) and if used simultaneously they allowed to successfully discriminate with 100 % accuracy the sex of the Cape gannet. Following this method, we were able to identify one female and five males among the sex-unknown recorded individuals.

330 Individual signature in display calls

The individual vocal signatures were assessed separately for each sex, using the entire data set which included five females (four molecular-sexed and one acoustically-sexed) and 11 males (six molecular-sexed and five acoustically-sexed). For males, all of the acoustic variables measured showed PIC values greater than one, with significant differences between individuals (Kruskal-Wallis test p<0.001, n = 56 calls from 11 individuals, Table 3). For females, the majority of the variables also showed PIC values greater than one, but not all of them (24 out of 36 variables with a PIC < 1.1), with 18 of them also showing significant differences (Kruskal-Wallis test, p < 0.01 or p < 0.05, n = 24 calls from five individuals). The variable with the highest PIC for both males and females was the IOIm, with a PIC value of 3.2 and 2.3 respectively. Other variables with PIC values greater than two included the number of units in the up-movement part and the duration of the first unit during the down-movement part, both for males only (Table 3).

Since a call is a single unit from which we measured different variables, the potential individual
 signatures were more realistic when considering a combination of acoustic variables. The RF
 classification for individuals showed a global accuracy of prediction of 90% for females and

Ostrich

76% for males. The percentage of correct classification varied between 40% and 100% depending on individuals, with a median value of 80% for males and 86% for females (Table 2). These predictions were between 5.9 and 14.3 times better than a prediction by chance Interestingly, the most important variable to discriminate individuals was different depending on the sex of the gannets (Fig. 4). In both cases, the IOIm (units' temporal rate) together with a frequency variable were the two most important variables to distinguish individuals. For females, the Fmax in the down-movement part was important, followed by the IOIm. For males, the IOIm was the most important, followed by the F0 in the down-movement part.

DISCUSSION

This paper presents an exhaustive description of the acoustic structure of the display call in adult, nesting Cape gannets. We showed that the vocalisations associated with the characteristic up and down head movement behaviour could be used reliably for identification of sexes and individuals. Both the frequency variables (mostly fundamental frequency, but also frequency of maximum amplitude) and a measure of the temporal rate of unit production within a vocalisation (IOI Inter-Onset-Interval, Ravignani et al. 2017) were the most important variables to discriminate sexes and individuals. Furthermore, our findings clearly demonstrate that the sex of Cape gannets could be identified directly in the field using non-invasive methodology, as opposed to retrospective costly and timely genetic analyses.

364 Sexual dimorphism in display calls

The display calls produced by female and male Cape gannets can be differentiated by a combination of both temporal and spectral acoustic variables, thus the sex information is based on a multi-parametric coding of the call. More specifically, we found that two acoustic variables were clearly discriminating between sexes in Cape gannets: the fundamental frequency and the temporal Inter-Onset-Interval between successive sound units within a call.

There was no overlap area when considering these two acoustic parameters (Fig. 3), suggesting
that our results are robust despite the small sample size and that the sex of a Cape gannet can
be determined from its call characteristics without any uncertainty.

The difference observed in fundamental frequency, with females displaying a lower fundamental frequency value than males, could result from differences in the anatomy of the vocal apparatus (Budka and Osiejuk 2013, Hardouin et al. 2014) and/or differences in sexual hormones (Gahr 2007). Differences in body size could also contribute to differences in fundamental frequency (Favaro et al. 2017), however there is no evidence that suggests that there are differences in body size between males and females in Cape gannets (Rishworth et al., 2014). In addition, female calls on average consisted of more units, even though the total duration of their calls did not vary significantly from males, which demonstrates that females call at a faster rate (Supplementary Audios S1-4). The potential drivers of these differences in call rate, however, remain unclear.

In gannet species, anecdotal evidence for differences in the vocalisations between sexes in Cape gannets and northern gannets has been suggested before (Nelson 1978) but has never been thoroughly investigated in either of the two species. In Australasian gannets, sexual differences were not found in a variety of different call elements (Krull et al. 2012). However, the authors did not measure any temporal parameters or the fundamental frequency, limiting the ability for comparison with our study.

Vocal dimorphism has been found in a number of seabird species, where some acoustic parameters substantially vary between sexes. Differences in the fundamental frequency between sexes have been found in other species such as black-legged kittiwakes (Aubin et al. 2007), yelkouan shearwaters (Bourgeois et al. 2007) and king penguins (Kriesell et al. 2018). Differences in the temporal rate of sound production between sexes has not been commonly studied in seabirds (but see Gémard et al. 2021) but other temporal parameters including the

Ostrich

duration of different parts of the call (sound units or silences between successive units) have
been shown to be sexually dimorphic in black-legged kittiwakes (Aubin et al. 2007) and
yelkouan shearwaters (Curé et al. 2011).

The existence of a sexual signature in the Cape gannet vocalisations does not necessarily indicate that these are used by the gannets themselves for individual identification. Further playback experiments would be necessary to determine this (e.g. Charrier et al. 2001, Curé et al. 2011). Nonetheless, the observed differences in the calls between males and females can be used to determine the sex of an individual directly in the field, therefore using a method that is non-invasive and less costly compared to currently-used genetic analyses. Temporal vocal recognition (based on the temporal rate of units) would require some training but seems feasible, as has been shown for petrels (James and Robertson 1985), prions (Genevois and Bretagnolle 1994), shearwaters (Brooke 1978) and penguins (Kriesell et al. 2018). Alternatively, reliable sexing can certainly be achieved through recording vocalisations in the field and using signal processing software to measure the two discriminating variables (IOI and fundamental frequency). The use of both variables simultaneously seems necessary to avoid the potential overlapping values between males and females and to ensure a 100% certainty of sex-identification (Fig. 3). In addition, the recording of a few vocalisations (e.g. 2-3 calls per individual) is probably necessary to further reduce potential confusion and errors. Indeed, we also observed intra-individual variations in the vocalisations, so that if the measures on a particular call may unfortunately fall within the overlap area, the repetitive measures of several calls will most probably allow for a reliable sex-identification.

416 ²

Individual signatures in display calls

54 417 This study provided quantitative evidence of individual signatures in the display calls of adult
55
56 418 breeding Cape gannets, which most likely plays an important role in individual recognition in
58 419 these large breeding colonies (White and White 1970, Sherley et al. 2019). Two acoustic

features appeared to contribute the most to differentiate individuals, the Inter-Onset-Interval (related to the temporal rate of unit production) and frequency parameters during the down-movement part (Fmax for females and F0 for males). Spectral differences, such as the fundamental frequency and energy distribution in seabird vocalisations have been associated with anatomical differences in their airways (Riede and Goller 2010, Favaro et al. 2015) and according to the source-filter theory (Fitch 1999). Slight differences in vocal tract anatomy between individuals most likely explain the differences in the fundamental frequency among individuals we found in this study. It remains unclear if the differences in the temporal rate could also result from differences in the anatomy among the different individuals, or if it could be related to differences in body condition, hormone levels, motivation or personality (Gahr 2007).

431 In northern gannets, differences among individuals were evident in the envelopes of their 432 landing calls (White and White 1970). Individual signatures have also been found in the 433 frequency parameters of the nesting vocalisations of Australasian gannets (Krull et al. 2012). 434 The results of these studies (White and White 1970, Krull et al. 2012), demonstrate that 435 individual recognition might be essential in breeding colonial gannets, and that this recognition 436 could be largely based on acoustic signals.

Individual signatures are common in the vocalisations of nesting colonial seabirds (Aubin and Jouventin 2002, Aubin et al. 2007, Favaro et al. 2015), although the signatures can be carried on a variety of acoustic variables. Individual vocal signatures were found in the greeting calls of black-legged kittiwakes, on both temporal and frequency features (Aubin et al. 2007). In the yelkouan shearwater individual signatures were identified in the display calls and were particularly evident when looking at temporal parameters (Curé et al. 2011). In blue-footed boobies individual discrimination was sufficient using only spectral features for females, however individual discrimination in males required both temporal and spectral features

Ostrich

כ ⊿
4 r
с С
0
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

445 (Dentressangle et al. 2012). Temporal parameters seem to be important for individual vocal
446 signatures in other seabird species, emphasising the potential importance in individual
447 signatures in gannet species.

448 Conclusion

Cape gannets breed in large and dense colonies and most likely rely on a combination of signals 449 450 to identify individuals as well as the opposite sex. This study demonstrated that sexual and individual signatures are carried in their display call, and potentially provides a valuable tool 451 452 for identification in the field, which could play an important role in opportunistic field-based 453 studies and therefore helpful in population monitoring and conservation. The temporal rate of 454 unit production within a display call played a primary role for both sexual and individual 455 discrimination, suggesting this aspect should be considered more often in non-passerines 456 species.

457 **REFERENCES**

458 Altman, DG. 1994. Statistics notes: Diagnostic tests 1: sensitivity and specificity. *British*459 *Medical Journal* 308: 1552.

- 460 Aubin T, Jouventin P. 1998. Cocktail–party effect in king penguin colonies. *Proceedings of*461 *the Royal Society of London. Series B: Biological Sciences* 265: 1665–1673.
- 462 Aubin T, Jouventin P. 2002. How to vocally identify kin in a crowd: The penguin model.
 463 Advances in the Study of Behavior (31 vol.). Elsevier. pp 243–277.

464 Aubin T, Mathevon N, Staszewski V, Boulinier T. 2007. Acoustic communication in the
465 Kittiwake Rissa tridactyla: potential cues for sexual and individual signatures in long
466 calls. *Polar Biology* 30: 1027–1033.

467 Baotic A, Stoeger AS. 2017. Sexual dimorphism in African elephant social rumbles. *PLOS*468 *ONE* 12: e0177411.

- Beer, CG. 1971. Individual recognition of voice in the social behavior of birds. Individual recognition of voice in the social behavior of birds. Advances in the Study of Behavior 3:27-74. Bee MA, Kozich CE, Blackwell KJ, Gerhardt HC. 2008. Individual variation in advertisement calls territorial male green frogs, Rana clamitans: implications for individual discrimination. International Journal of Behavioural Biology 107: 65-84 Beja-Pereira A, Oliveira R, Alves PC, Schwartz MK, Luikart G. 2009. Advancing ecological understandings through technological transformations in non-invasive genetics. Molecular Ecology Resources 9: 1279–1301. BirdLife International. Species factsheet: Morus capensis. Downloaded from http://www.birdlife.org. 2021. Accessed on 23/11/2021
- Bourgeois K, Curé C, Legrand J, Gómez-Díaz E, Vidal E, Aubin T, Mathevon N. 2007. Morphological versus acoustic analysis: what is the most efficient method for sexing yelkouan shearwaters Puffinus yelkouan? Journal of Ornithology 148: 261–269.
- Breiman, L. 2003. Manual – Setting up, using, and understanding random forests V4.0. Berkeley: University of California.
- Bretagnolle V, Lequette B. 1990. Structural Variation in the Call of the Cory's Shearwater (Calonectris diomedea, Aves, Procellariidae). Ethology 85: 313–323.
- Brooke ML. 1978. Weights and measurements of the Manx shearwater, Puffinus puffinus. Journal of Zoology 186: 359–374.
- Budka M, Osiejuk TS. 2013. Formant Frequencies are Acoustic Cues to Caller Discrimination and are a Weak Indicator of the Body Size of Corncrake Males. Ethology 119: 960-969.

Ostrich

3 4	492
5 6	493
7 8	494
9 10	495
11 12 13	496
14 15	497
16 17	498
18 19	499
20 21 22	500
23 24	501
25 26	502
27 28	502
29 30 21	503
31 32 33	504
34 35	505
36 37	506
38 39	507
40 41	508
42 43	509
44 45 46	510
47 48	511
49 50	512
51 52	513
53 54	514
55 56 57	515
58 59	
60	

492 Calcari C, Pilenga C, Baciadonna L, Gamba M, Favaro, L. 2021. Long-term stability of vocal
493 individuality cues in a territorial and monogmomous seabird. *Animal Cognition* 24:
494 1165-1169.

495 Charrier I, Mathevon N, Jouventin P, Aubin T. 2001. Acoustic Communication in a Black496 Headed Gull Colony: How Do Chicks Identify Their Parents? *Ethology* 107: 961–974.

497 Curé C, Aubin T, Mathevon N. 2011. Sex Discrimination and Mate Recognition by Voice in
498 the Yelkouan shearwater *puffinus yelkouan*. *Bioacoustics* 20: 235–249.

499 Dentressangle F, Aubin T, Mathevon N. 2012. Males use time whereas females prefer
500 harmony: individual call recognition in the dimorphic blue-footed booby. *Animal*501 *Behaviour* 84: 413–420.

502 Favaro L, Gamba M, Alfieri C, Pessani D, McElligott AG. 2015. Vocal individuality cues in
 503 the African penguin (*Spheniscus demersus*): a source-filter theory approach. *Scientific* 504 *Reports* 5: 17255.

- 505 Favaro L, Gamba M, Gili C, Pessani D. 2017. Acoustic correlates of body size and individual identity in banded penguins. *PLOS ONE* 2: e0170001
- 8507Fischer J, Kitchen DM, Seyfarth RM, Cheney DL. 2004. Baboon loud calls advertise male90508quality: acoustic features and their relation to rank, age, and exhaustion. Behavioral2509Ecology and Sociobiology 56: 140–148.

510 Fitch, WJ. 1999. Acoustic exaggeration of size in birds via tracheal elongation: comparative
and theoretical analyses. *Journal of Zoology* 248: 31–48.

512 Fraser GS, Jones IL, Hunter FM. 2002. Male-female differences in parental care in
513 monogomous crested auklets. 104: 413–423.

514 Fridolfsson AK, Ellegren H. 1999. A Simple and Universal Method for Molecular Sexing of
 515 Non-Ratite Birds. *Journal of Avian Biology* 30: 116.

3 4	516	Gahr M 2007. Sexual Differentiation of the Vocal Control System of Birds. Advances in							
5 6 7	517	<i>Genetics</i> 59: 67–105.							
/ 8 9	518	Gémard C, Aubin T, Reboud EL, Bonadonna F. 2021. Call rate, fundamental frequency, and							
10 11	519	syntax determine male-call attractiveness in blue petrels Halobaena caerulea.							
12 13	520	Behavioral Ecology and Sociobiology 75: 55.							
14 15 16	521	Genevois F, Bretagnolle V. 1994. Male blue petrels reveal their body mass when calling.							
10 17 18	522	Ethology Ecology & Evolution 6: 377–383.							
19 20	523	Genuer R, Poggi JM, Tuleau C. 2008. Random Forests: some methodological insights.							
21 22	524	arXiv:0811.3619 [stat].							
23 24 25	525	Griffiths R, Double MC, Orr K, Dawson RJG. 1998. A DNA test to sex most birds. Molecular							
26 27	526	<i>Ecology</i> 7: 1071–1075.							
28 29	527	Hardouin LA, Thompson R, Stenning M, Reby D. 2014. Anatomical bases of sex- and size-							
30 31 32	528	related acoustic variation in herring gull alarm calls. Journal of Avian Biology 45: 157–							
33 34	529	166.							
35 36	530	Insley SJ, Paredes R, Jones IL. 2003. Sex differences in razorbill Alca torda parent—offspring							
37 38 30	531	vocal recognition. Journal of Experimental Biology 206: 25-31.							
40 41	532	IUCN. The IUCN Red List of Threatened species. Version 2021-3.							
42 43	533	https://www.iucnredlist.org. 2021. Accessed on 23/11/2021							
44 45 46	534	James PC, Robertson HA. 1985. The Calls of Male and Female Madeiran Storm-Petrels							
40 47 48	535	(Oceanodroma castro). The Auk 102: 391–393.							
49 50	536	Jarvis MJF. 1971. The systematic position of the South African gannet. Journal of African.							
51 52	537	<i>Ornithology</i> 43: 211–216.							
53 54 55	538	Jones IL, Falls JB, Gaston AJ. 1987. Vocal recognition between parents and young of ancient							
56 57	539	murrelets, Synthliboramphus antiquus (Aves: Alcidae). Animal Behaviour 35: 1405-							
58 59 60	540	1415.							

1 2		
- 3 4	541	Klenova AV, Zubakin VA, Zubakina EV. 2012. Inter- and intra-season stability of vocal
5 6	542	individual signatures in a social seabird, the crested auklet. Acta Ethologica 15: 141-
7 8 0	543	152.
9 10 11 12 13 14 15	544	Kriesell HJ, Aubin T, Planas-Bielsa V, Benoiste M, Bonadonna F, Gachot-Neveu H, Le Maho
	545	Y, Schull Q, Vallas B, Zahn S, et al. 2018. Sex identification in King Penguins
	546	Aptenodytes patagonicus through morphological and acoustic cues. Ibis 160: 755–768.
16 17 18	547	Krull CR, Ranjard L, Landers TJ, Ismar SMH, Matthews JL, Hauber ME. 2012. Analyses of
19 20	548	sex and individual differences in vocalizations of Australasian gannets using a dynamic
21 22	549	time warping algorithm. The Journal of the Acoustical Society of America 132: 1189-
23 24 25	550	1198.
23 26 27	551	Kumar A. 2003. Acoustic communication in birds. Resonance 8: 44-55.
28 29	552	Lewis R, Oro D, Godley BJ, Underhill L, Bearhop S, Wilson RP, Ainley D, Arcos JM,
30 31	553	Boersma, PD, Borboroglu PG, Boulinier T, Frederiksen M, Genovart M, González-
32 33 34	554	Solis J, Green JA, Grémillet D, Hamer KC, Hitlon GM, Hyrenbach KD, Martínez-
34 35 36	555	Abrain A, Montevecchi WA, Phillips RA, Ryan PG, Sagar P, Sydeman WJ, Wanless
37 38	556	S, Watanuki Y, Weimerskirch H, Yorio P. 2012. Research priorities for seabirds:
39 40 41	557	improving conservation and management in the 21st century. Endangered Species
42 43	558	Research 17: 93-121.
44 45	559	Liaw A, Wiener M. 2014. Package 'randomForest': Breiman and Cutler's random forests for
46 47 48	560	classification and regression. R Development Core Team 4.
49 50	561	Linhart P, Šálek M. 2018. Correction: The assessment of biases in the acoustic discrimination
51 52	562	of individuals. PLOS ONE 13: e0203357.
53 54	563	Mathevon N, Charrier I, Jouventin P. 2003. Potential for individual recognition in acoustic
55 56 57	564	signals: a comparative study of two gulls with different nesting patterns. Comptes
58 59	565	Rendus Biologies 326: 329–337.
60		

2 3	566	Medeiros RJ, King RA, Symondson WOC, Cadiou B, Zonfrillo B, Bolton M, Morton R,
4 5	567	Howall S. Clinton A. Falguairas M. Thomas P.I. Malagular avidance for conder
6 7	307	Howen S, Chinton A, Feiguenas M, Thomas KJ. Molecular evidence for gender
8 9	568	differences in the migratory behaviour of a small seabird. PLOS ONE 7(9): e46330
10 11	569	McGregor PK. 2005. Animal Communication Networks. 673.
12 13	570	Morinha F, Cabral JA, Bastos E. 2012. Molecular sexing of birds: A comparative review of
14 15 16	571	polymerase chain reaction (PCR)-based methods. Theriogenology 78: 703-714.
17 18	572	Nelson, JB. 1978. The Sulidae: Gannets and Boobies. Oxford: Oxford University Press.
19 20	573	Odom KJ, Mennill EJ. 2010. A Quantitative Description of the Vocalizations and Vocal
21 22	574	Activity of the Barred Owl. The Condor 112: 549–560.
23 24 25	575	Paredes R, Insley SJ. 2010. Sex-biased aggression and male-only care at sea in Brünnich's
25 26 27	576	Guillemots Uria lomvia and Razorbills Alca torda: Aggression and male-only care in
28 29	577	Alcini. Ibis 152: 48–62.
30 31	578	Preininger D, Handschuh S, Boeckle M, Sztatecsny M, Hödl W. 2016. Comparison of female
32 33 34	579	and male vocalisation and larynx morphology in the size dimorphic foot-flagging frog
35 36	580	species. Herpetological Journal 26: 187–197.
37 38	581	Ravignani A, Honing H, Kotz SA. 2017. Editorial: The Evolution of Rhythm Cognition:
39 40 41	582	Timing in Music and Speech. Frontiers in Human Neuroscience 11: 303.
41 42 43	583	Riede T, Goller F. 2010. Peripheral mechanisms for vocal production in birds – differences
44 45	584	and similarities to human speech and singing. Brain and Language 115: 69–80.
46 47	585	Rishworth GM, Pistorius PA. 2018. Intrinsic and extrinsic controls on foraging effort in an
48 49 50	586	iconic Benguela seabird. Journal of Marine Systems 188: 142-148.
51 52	587	Rishworth GM, Connan M, Green DB, Pistorius PA. 2014. Sex differentiation based on the
53 54	588	gular stripe in the apparently monomorphic Cape gannet. African Zoology 49: 107–112.
55 56 57	589	Robisson P, Aubin T, Bremond JC. 2010. Individuality in the Voice of the Emperor Penguin
57 58 59 60	590	Aptenodytes forsteri: Adaptation to a Noisy Environment. Ethology 94: 279–290.

Page 25 of 41

1

Ostrich

2		
3 4	591	Schreiber EA, Burger J (eds) 2002. Biology of marine birds. Boca Raton, Florida: CRC Press.
5 6	592	Sherley RB, Crawford RJ, Dyer BM, Kemper J, Makhado AB, Masotla M, Pichegru L,
/ 8 0	593	Pistorius PA, Roux JP, Ryan PG, et al. 2019. The status and conservation of the Cape
9 10 11	594	Gannet Morus capensis. Ostrich 90: 335–346.
12 13 14 15	595	Sokal RR, Rohlf FJ. 1995. Biometry: The Principles and Practice of Statistics in Biological
	596	Research (2nd ed.). Journal of the American Statistical Association 77: 946.
16 17 18	597	Sueur J, Aubin T, Simonis C 2008. Seewave, a free modular tool for sound analysis and
19 20	598	synthesis. Bioacoustics 18: 213–226.
21 22	599	Thiebault A, Charrier I, Aubin T, Green DB, Pistorius PA. 2019a. First evidence of underwater
23 24 25	600	vocalisations in hunting penguins. PeerJ 7: e8240.
25 26 27	601	Thiebault A, Charrier I, Pistorius P, Aubin T. 2019b. At sea vocal repertoire of a foraging
28 29 30 31 32 33 34	602	seabird. Journal of Avian Biology 50: jav.02032.
	603	Tobias M, Kelley D. 1987. Vocalizations by a sexually dimorphic isolated larynx: peripheral
	604	constraints on behavioral expression. The Journal of Neuroscience 7: 3191–3197.
35 36	605	Townsend SW, Charlton BD, Manser MB. 2014. Acoustic cues to identity and predator context
37 38	606	in meerkat barks. Animal Behaviour 94: 143–149.
39 40 41	607	Tripp TM, Otter KA. 2006. Vocal individuality as a potential long-term monitoring tool for
42 43	608	Western Screech-owls, Megascops kennicottii. Canadian Journal of Zoology 84: 744–
44 45	609	753.
46 47	610	Trivers, RL. 1972. Parental investment and sexual selection Aldine, Chicago. Aldine,
48 49 50	611	Chicago.
51 52	612	Vieira A, Fonseca PJ. 2015. Call recognition and individual identification of fish vocalizations
53 54	613	based on automatic speech recognition: An example with the Lusitanian toadfish. The
55 56 57	614	Journal of the Acoustical Society of America 138: 3941
57 58		
60		

Volodin IA, Volodina EV, Klenova AV, Filatova OA. 2005. Individual and Sexual Differences

in the Calls of the Monomorphic White-Faced Whistling Duck Dendrocygna viduata.

628 (Algoa Bay, South Africa). Characteristic up (A) and down (B) movement associated with the

Ostrich

Figure 2. Analyses on sex-specific signatures in the Cape gannet display calls: ranking of the
importance of acoustic variables for sex determination, calculated as a mean decrease in
accuracy in the random forest algorithm. Only the first 10 variables are shown here. Up = upmovement part. Dn = down-movement part. U1 = first unit.

Figure 3. Mean Inter-Onset-Intervals measured along the up and down sequence, as a function
of the fundamental frequency during the up-movement part in the display call of Cape gannets.
Bird ID = individual identification of different birds. Females (filled orange symbols) and
males (dark blue open symbols) were genetically sexed.

2			
3		(A)	(B)
4		Dn Frequency of max amplitude (Hz)	Up&Dn Inter-Onset-Interval mean (s)
5		Up&Dn Inter-Onset-Interval mean (s)	Dn Fundamental frequency (Hz)
6		Dn U1 Duration (s)	Dn U1 Duration (s)
7		Dn E1200 (%)	Up U1 Duration (s)
8		Dn Q50 (Hz)	Up Duration (s)
9		Dn L11 Frequency of max amplitude (Hz)	Dn U1 Q75 (Hz)
10			Dn 075 (Hz)
11			
12			
13		Up Fundamental frequency (Hz)	Dn E1200 (%)
14		Up U1 Fundamental frequency (Hz)	Dn Q50 (Hz)
15		8 10 12 14	16 20 25 30 35 40 45 50 55
16 17 18	645	Figure 4. Analyses on individual voca	al signatures among females (A) and among males (B) in
10 19 20	646	the display calls of Cape gannets.	Ranking of the importance of acoustic variables for
20 21 22	647	individual distinction calculated as a r	mean decrease in accuracy in the random forest algorithm.
23 24	648	Only the first 10 variables are shown	n here. Up = up-movement part. Dn = down-movement
25 26	649	part. U1 = first unit. Q25, Q50, Q75	= first, second and third quartile of energy distribution.
27 28 20	650	E1200 = percentage of energy occurr	ing below 1200 Hz.
29 30 31	651		
32 33	652		
34 35	653		
36 37	654		
38 39 40	655		
41 42	656		
43 44 45	657		
46 47	658		
48 49 50	659		
50 51 52	660		
53 54	661		
55 56 57	662		
58			
59			
60			

TABLES

Table 1. Summary of distribution of acoustic variables measured on the display calls produced
by breeding male and female Cape gannets. Differences in variance of distribution per context
were evaluated using the Fligner–Killeen test of homogeneity of variance. Differences in
median of distribution per variable were evaluated using the Kruskal–Wallis rank sum test.
Q25, Q50, Q75 = first, second and third quartile of energy distribution. E1200 = percentage of
energy occurring below 1200 Hz.

		Males (N=31 calls from 6 individuals)	remates (N=19 calls from 4 individuals)	Non-parar	netric tests
Acoustic variables	Acoustic domain	Means ± SD [Range]	Means ± SD [Range]	Kruskal-Wallis p-value	Fligner-Killeen p-value
	Unit	rate over up and down moveme	ent parts		
Units' Inter-Onset-Interval mean (s)	temporal	$0.42 \pm 0.05 \; [0.35 \text{-} 0.50]$	$0.31 \pm 0.03 \; [0.25 \text{-} 0.36]$	<0.001	<0.001
Units' Inter-Onset-Interval sd (s)	temporal	$0.016 \pm 0.010 \; [0.003 \text{-} 0.043]$	$0.011 \pm 0.006 \ [0.002\text{-}0.021]$	NS	NS
		Up-movement part			
Duration (s)	temporal	$0.90 \pm 0.22 \; [0.55 \text{-} 1.27]$	$1.13 \pm 0.50 \; [0.48 2.57]$	NS	NS
No. of units	temporal	2.5 ± 0.5 [2.0-3.0]	$4.1 \pm 1.4 \; [2.0\text{-}8.0]$	<0.001	<0.05
Fundamental frequency (Hz)	frequency	387 ± 7 [373-402]	356 ± 14 [336-389]	< 0.001	< 0.001
Frequency of maximum amplitude (Hz)	frequency	$1134 \pm 489 \; [377\text{-}2021]$	980 ± 271 [678-1475]	NS	<0.01
Q25 (Hz)	frequency	$1041 \pm 188 \ [695 \text{-} 1459]$	965 ± 131 [750-1122]	<0.05	NS
Q50 (Hz)	frequency	1502 ± 180 [976-1823]	$1439 \pm 155 \ [1164 1658]$	NS	NS
Q75 (Hz)	frequency	2125 ± 238 [1488-2626]	2047 ± 198 [1724-2435]	NS	NS
Energy below 1200 Hz (%)	frequency	35 ± 11 [16-65]	$40 \pm 8 \ [29 - 52]$	<0.05	NS
Unit 1 Duration (s)	temporal	0.25 ± 0.05 [0.10-0.34]	0.18 ± 0.02 [0.15-0.23]	< 0.001	<0.001
Unit 1 No. of segments	temporal	4.1 ± 0.9 [3.0-6.0]	3.1 ± 0.32 [3.0-4.0]	<0.001	<0.05
Unit 1 Pulse Rate (Hz)	temporal	18.91 ± 2.70 [9.62-22.39]	21.28 ± 1.76 [18.17-24.82]	<0.001	NS
Unit 1 Fundamental Frequency (Hz)	frequency	380 ± 10 [357-395]	367 ± 20 [336-410]	<0.05	<0.01
Unit 1 Frequency of maximum amplitude (Hz)	frequency	1026 ± 412 [367-1578]	1077 ± 328 [320-1539]	NS	NS
Unit 1 Q25 (Hz)	frequency	1023 ± 183 [675-1380]	986 ± 152 [738-1187]	NS	NS
Unit 1 Q50 (Hz)	frequency	1503 ± 188 [886-1761]	1417 ± 155 [1140-1687]	<0.05	NS
Unit 1 Q75 (Hz)	frequency	2132 ± 235 [1496-2496]	2011 ± 176 [1718-2406]	<0.05	NS
Unit 1 E1200 Hz (%)	frequency	35 ± 10 [16-62]	40 ± 8 [26 -53]	<0.05	NS
		Down-movement part			
Duration (s)	temporal	$0.64 \pm 0.17 [0.34-0.93]$	$0.66 \pm 0.15 \; [0.51 \text{-} 0.97]$	NS	NS
No. of units	temporal	$1.9 \pm 0.5 \ [1.0-3.0]$	2.5 ± 0.6 [2.0-4.0]	<0.05	NS
Fundamental frequency (Hz)	frequency	428 ± 13 [406-451]	392 ± 24 [324-438]	< 0.001	NS
Frequency of maximum amplitude (Hz)	frequency	834 ± 434 [403-1746]	952 ± 266 [724-1512]	NS	NS
Q25 (Hz)	frequency	927 ± 196 [461-1248]	927 ± 137 [782-1216]	NS	NS
Q50 (Hz)	frequency	1539 ± 241 [845-1785]	1465 ± 202 [1177-1860]	NS	NS
Q75 (Hz)	frequency	2210 ± 273 [1290-2609]	2148 ± 217 [1854-2487]	NS	NS
Energy below 1200 Hz (%)	frequency	35 ± 10 [22-67]	37 ± 8 [24-51]	NS	NS
Unit 1 Duration (s)	temporal	0.28 ± 0.07 [0.19-0.41]	0.19 ± 0.02 [0.14-0.24]	<0.001	<0.001
Unit 1 No. of segments	temporal	4.6 ± 1.1 [3.0-7.0]	3.1 ± 0.5 [2.0-4.0]	<0.001	<0.05
Unit 1 Pulse Rate (Hz)	temporal	19.56 ± 3.05 [11.36-26.53]	20.64 ± 3.56 [7.78-25.03]	NS	NS
Unit 1 Fundamental Frequency (Hz)	frequency	425 ± 13 [397-450]	396 ± 28 [342-435]	<0.001	<0.001
Unit 1 Frequency of maximum amplitude (Hz)	frequency	899 ± 504 [398-2078]	1193 ± 318 [750-1789]	<0.05	NS
Unit 1 Q25 (Hz)	frequency	1054 ± 209 [648-1367]	1032 ± 139 [855-1230]	NS	NS
Unit 1 Q50 (Hz)	frequency	1669 ± 265 [898-2109]	1516 ± 233 [1269-2234]	< 0.01	NS
Unit 1 Q75 (Hz)	frequency	2382 ± 219 [1667-2625]	2172 ± 265 [1789-2750]	<0.01	NS
		21 + 10 [17 (0]	22 + 6 [22 44]	NC	210

57 670

59 671

Ostrich

Table 2. Comparison of the accuracy of prediction obtained by chance (number of calls in a class divided by the total number of calls in the given analysis) or prediction using the random forest algorithm (indicator precision), for the analysis on sexual dimorphism (classifying females or males) and for the analysis on individual signatures among females or males (classifying individuals).

Class (Sex or Individual)	N calls	Accuracy by ch	ance (%	%) Accura	acy with RF (%)	Improvement		
		Sexual d	imorph	ism				
Female	19	38			95	2.5		
Male	31	62			100	1.6		
		Individual sign	ature ir	n Females	6			
15D	6	25			96	2.4		
138	0	23	-		80	5.4		
190	4	16.:	5		80	4.8		
250	4	16.:	5		100	6.1		
43U	5	21			83	4.0		
4M	5	21			100	4.8		
		Individual sig	j nature i	in Males				
151	5	9			40	4.4		
171	6	10	5		83	7 9		
101	6	10	5		57	7.9 5 A		
1711	4	10	5		100	J. 4 14-2		
25M	4	1			100	14.3	T-1-1	n
36U	5	9			75	8.3	lable	3.
43M	5	9			67	7.4		
5M	5	9			100	11.1	Anolyzan of	+1a -
7U	5	9			80	8.9	Analyses of	ine
80U	5	9			71	7.9		
c30C	5	9			100	11.1	individual vo	001
\$5	5 г	9	E.	emales	80	8.9	marviauai vo	Cal
	e	N=56 calls from 11 individuals)) (N-24 calls fr	om 5 individuals)				
coustic variables	Acoustic domain	PIC Kruskal-Wallis p-value down movement parts	PIC	Kruskal-Wallis p-value	signatures	in the displa	ay call of males a	and
uits' Inter-Onset-Interval mean (s)	temporal	3.22 <0.001	2.30	<0.01				
nits' Inter-Onset-Interval sd (s)	temporal	1.35 <0.001	1.04	NS	females C	Cape ganne	ets. Potential	for
Puration (s)	temporal	1.57 <0.001	1.52	<0.05				
lo. of units	temporal	2.03 <0.001	1.38	<0.05	:	anding (DI	C) r_{1}	4 - 1
indamental frequency (Hz)	frequency	1.32 <0.001	1.48	<0.01	individual	coding (PI	() were calcula	tea
requency of maximum amplitude (Hz)	frequency	1.13 <0.001	1.49	<0.05 NS				
50 (Hz)			0.97					
(50 (112)	frequency	1.58 <0.001	0.97	NS	for each as	oustio vorio	bla The different	000
75 (Hz)	frequency frequency	1.58 <0.001 1.44 <0.001	1.06	NS NS	for each ac	oustic varia	ble. The differen	nce
75 (Hz) nergy below 1200 Hz (%)	frequency frequency frequency	1.58 <0.001 1.44 <0.001	1.06 1.04 1.58	NS NS NS	for each ac	oustic varia	ble. The differer	nce
75 (Hz) nergy below 1200 Hz (%) nit I Duration (s) nit I No. of segments	frequency frequency frequency temporal temporal	1.58 <0.001 1.44 <0.001	1.06 1.04 1.58 1.35	NS NS NS NS	for each ac	oustic varia	ble. The differen	nce
75 (Hz) 75 (Hz) energy below 1200 Hz (%) nit 1 Duration (s) nit 1 No. of segments nit 1 Pulse Rate (Hz)	frequency frequency frequency temporal temporal temporal	1.58 <0.001	1.06 1.04 1.58 1.35 1.05	NS NS NS NS NS	for each ac in median	oustic varia of distrib	ble. The differen	nce ble
75 (Hz) inergy below 1200 Hz (%) init 1 Duration (s) Init 1 No. of segments init 1 Pulse Rate (Hz) Init 1 Fundamental Frequency (Hz)	frequency frequency frequency temporal temporal temporal frequency	1.58 <0.001	1.06 1.04 1.58 1.35 1.05 1.42	NS NS NS NS NS < 0.05	for each ac in median	oustic varia of distrib	ble. The differen	nce ble
(25) (Hz) änergy below 1200 Hz (%) Jnit 1 Duration (%) Jnit 1 No. of segments Jnit 1 Puse Rate (Hz) Jnit 1 Fundamental Frequency (Hz) Jnit 1 Frequency of maximum amplitude (Hz Jnit 1025 (Hz)	frequency frequency frequency temporal temporal frequency) frequency frequency	1.58 <0.001	1.06 1.04 1.58 1.35 1.05 1.42 1.20 1.06	NS NS NS NS <0.05 <0.05	for each ac in median	oustic varia of distrib	ble. The differen ution per varia ruskal–Wallis ra	nce ble
(2-0 (iz)) Paregy below 1200 Hz (%) Jnit 1 Duration (%) Jnit 1 No. of segments Jnit 1 Pusc Rate (Hz) Jnit 1 Fundamental Frequency (Hz) Jnit 1 Q25 (Hz) Jnit 1 Q25 (Hz)	frequency frequency frequency temporal temporal frequency) frequency frequency frequency frequency	1.58 <0.001	1.06 1.04 1.58 1.35 1.05 1.42 1.20 1.06 0.94	NS NS NS NS NS <0.05 <0.05 NS NS	for each ac in median evaluated u	oustic varia of distrib using the K	ble. The differer ution per varia ruskal–Wallis ra	nce ble ank
yor (Lz) inergy below 1200 Hz (%) init 1 Duration (s) Jinit 1 No. of segments Jinit 1 Pusc Rate (Hz) Jinit 1 Fundamental Frequency (Hz) Jinit 1 Q25 (Hz) Jinit 1 Q25 (Hz) Jinit 1 Q75 (Hz)	frequency frequency temporal temporal temporal frequency frequency frequency frequency frequency	1.58 <0.001	1.06 1.04 1.58 1.35 1.05 1.42 1.20 1.06 0.94 0.93	NS NS NS NS ⊲0.05 ⊲0.05 NS NS NS	for each ac in median evaluated u	oustic varia of distrib using the K	ble. The differer ution per varia ruskal–Wallis ra	nce ble ank
75 (Hz) nergy below 1200 Hz (%) nit 1 Duration (s) nit 1 No. of segments nit 1 Fundamental Frequency (Hz) nit 1 Fundamental Frequency (Hz) nit 1 Q55 (Hz) nit 1 Q25 (Hz) nit 1 Q75 (Hz) nit 1 Q75 (Hz) nit 1 E1200 Hz (%)	frequency frequency frequency temporal temporal temporal frequency frequency frequency frequency frequency	1.58 <0.001	1.06 1.04 1.58 1.35 1.05 1.42 1.20 1.06 0.94 0.93 1.05	NS NS NS NS <0.05 NS NS NS NS NS	for each ac in median evaluated u sum test.	oustic varia of distrib using the K NS = non-	ble. The differer ution per varia ruskal–Wallis ra significant. A P	nce ble ank PIC
Vor (Lz) inergy below 1200 Hz (%) ini T Duration (s) Jini T No. of segments Jini T Puse Rate (Hz) Jini T Fundamental Frequency (Hz) Jini T Q25 (Hz) Jini T Q25 (Hz) Jini T Q75 (Hz) Jini T Q75 (Hz) Jini T Q20 Hz (%) Junit O(s)	frequency frequency temporal temporal temporal frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency	1.58 <0.001	1.06 1.04 1.58 1.35 1.05 1.42 1.20 1.06 0.94 0.93 1.05	NS NS NS NS NS <0.05 NS NS NS NS NS	for each ac in median evaluated u sum test.	oustic varia of distrib using the K NS = non-	ible. The differer ution per varia ruskal–Wallis ra significant. A P	nce ble ank PIC
yo (Lz) program	frequency frequency frequency temporal temporal temporal frequency frequency frequency frequency frequency temporal temporal	1.58 <0.001	1.06 1.04 1.58 1.35 1.05 1.42 1.20 1.06 0.94 0.93 1.05	NS NS NS NS NS <0.05 <0.05 NS NS NS NS NS	for each ac in median evaluated u sum test.	oustic varia of distrib using the K NS = non-	ble. The differer ution per varia ruskal–Wallis ra significant. A P	nce ble ank PIC
Vor (Lz) (F75 (Hz) inergy below 1200 Hz (%) init 1 Duration (s) init 1 No. of segments init 1 Pusk Rate (Hz) init 1 Fundamental Frequency (Hz) init 1 Prequency of maximum amplitude (Hz) init 1 Q25 (Hz)	frequency frequency frequency temporal temporal temporal frequency frequency frequency frequency frequency temporal temporal frequency	1.58 <0.001	0.97 1.06 1.04 1.58 1.35 1.05 1.42 1.20 1.06 0.94 0.93 1.05 0.94 1.07 1.17 1.7	NS NS NS NS NS <0.05 <0.05 NS NS NS NS NS NS S NS <0.05	for each ac in median evaluated u sum test. 1 value >1	oustic varia of distrib using the K NS = non- indicates	ible. The differer ution per varia ruskal–Wallis ra significant. A F a potential	nce ble ank PIC for
Vor (Lz) (F75 (Hz) inergy below 1200 Hz (%) init 1 Duration (s) init 1 No. of segments init 1 Pusk Rate (Hz) init 1 Fundamental Frequency (Hz) init 1 Frequency of maximum amplitude (Hz) init 1 Q25 (Hz) init 1 Q25 (Hz) init 1 Q25 (Hz) init 1 Q25 (Hz) variation (s) io. of units undamental frequency (Hz) requency of maximum amplitude (Hz) V5 (Hz)	frequency frequency frequency temporal temporal temporal frequency frequency frequency frequency temporal temporal frequency frequency frequency frequency	1.58 <0.001	0.97 1.06 1.04 1.58 1.35 1.42 1.20 1.06 0.94 0.93 1.05 0.94 1.07 1.17 1.47	NS NS NS NS NS <0.05 <0.05 <0.05 NS NS NS NS <0.05 <0.01 <0.01	for each ac in median evaluated u sum test. 1 value >1	oustic varia of distrib using the K NS = non- indicates	ible. The differer ution per varia ruskal–Wallis ra significant. A F a potential	nce ble ank PIC for
220 (Hz) 275 (Hz) 201 markine (s) 201 Janit Durarkine (s) 201 Janit No. of segments 201 Janit 1 Puse Rate (Hz) 201 H Frequency of maximum amplitude (Hz) 201 H 255 (Hz) 201 Janit 1 Q55	frequency frequency frequency temporal temporal temporal frequency frequency frequency frequency temporal temporal frequency frequency frequency frequency frequency frequency frequency frequency frequency	1.58 <0.001	0.97 1.06 1.04 1.58 1.35 1.42 1.20 1.06 0.94 0.93 1.05 0.94 1.07 1.17 1.94 1.47 1.68	NS NS NS NS NS <0.05 <0.05 NS NS NS NS NS <0.05 <0.01 <0.01	for each ac in median evaluated u sum test. 1 value >1	of distrib of distrib using the K NS = non- indicates	ible. The differer ution per varia ruskal–Wallis ra significant. A F a potential	nce ble ank PIC for
Zex (Lz)	frequency frequency frequency temporal temporal temporal frequency frequency frequency frequency temporal temporal frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency	1.58 <0.001	0.97 1.06 1.04 1.58 1.35 1.42 1.20 1.06 0.94 0.93 1.05 0.94 1.07 1.17 1.94 1.47 1.68 1.32	NS NS NS NS NS <0.05 <0.05 NS NS NS NS S NS <0.05 <0.01 <0.01 <0.01 <0.05	for each ac in median evaluated u sum test. 1 value >1 individual	oustic varia of distrib using the K NS = non- indicates coding, wi	ible. The differer ution per varia ruskal–Wallis ra significant. A F a potential ith the highest	nce ble ank PIC for the
225 (Hz) inergy below 1200 Hz (%) inergy below 1200 Hz (%) ini 1 Duration (s) ini 1 Puise Rate (Hz) ini 1 Puise Rate (Hz) ini 1 Puise Rate (Hz) ini 1 Puise Rate (Hz) ini 1 Q25 (Hz) ini 1 Q50 (Hz) ini 1 Q50 (Hz) ini 1 Q50 (Hz) ini 1 Q50 (Hz) ini 1 Puise Rate (Hz) 225 (Hz) 250 (Hz)	frequency frequency frequency temporal temporal temporal frequency frequency frequency frequency temporal temporal temporal temporal frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency frequency	1.58 <0.001	0.94 1.06 1.04 1.58 1.35 1.42 1.20 1.06 0.94 0.93 0.94 1.05 0.94 1.07 1.17 1.94 1.47 1.68 1.32 1.65	NS NS NS NS NS <0.05 <0.05 NS NS NS NS <0.05 <0.01 <0.01 <0.01 <0.05 <0.01	for each ac in median evaluated u sum test. 1 value >1 individual	oustic varia of distrib using the K NS = non- indicates coding, wi	ible. The differen ution per varia ruskal–Wallis ra significant. A F a potential ith the highest	nce ble ank PIC for the
22 (12) 27 (12) inergy below 1200 Hz (%) in 1 Duration (s) Jint 1 No. of segments Jint 1 Pulse Rate (Hz) Jint 1 Pulse Rate (Hz) Jint 1 Fundamental Frequency (Hz) Jint 1 Pulse Rate (Hz) Jint 1 Q25 (Hz) Jint 1 Q25 (Hz) Jint 1 Q25 (Hz) Jint 1 Q25 (Hz) Jint 1 E1200 Hz (%) Duration (s) So. of units 'undamental frequency (Hz) 'requency of maximum amplitude (Hz) 225 (Hz) 20 (Hz) 275 (Hz) Jint 1 Q20 Hz (%) Jint 1 Duration (s) Inergy below 1200 Hz (%)	frequency frequency frequency temporal temporal temporal frequency frequency frequency frequency temporal frequency	1.58 <0.001	0.97 1.06 1.04 1.58 1.35 1.42 1.20 1.42 1.20 0.94 0.93 1.05 0.94 1.07 1.17 1.94 1.47 1.68 1.32 1.65 1.32 1.65 1.32 1.65	NS NS NS NS S 0.05 S NS NS NS NS NS NS NS NS S 0.05 S 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.05 NS	for each ac in median evaluated u sum test. 1 value >1 individual	oustic varia of distrib using the K NS = non- indicates coding, wi	ible. The differen ution per varia ruskal–Wallis ra significant. A F a potential ith the highest	nce ble ank PIC for the
225 (Hz) Energy below 1200 Hz (%) Energy below 1200 Hz (%) Jini 1 Duration (s) Jini 1 Pulse Rate (Hz) Jini 1 Pulse Rate (Hz) Jini 1 Pulse Rate (Hz) Jini 1 Q25 (Hz) Jini 1 Q55 (Hz) Jini 1 Q57 (Hz) Jini 1 Q57 (Hz) Jini 1 Q57 (Hz) Duration (s) No. of units Fundamental frequency (Hz) Frequency of maximum amplitude (Hz) Q25 (Hz) Q36 (Hz) Q35 (Hz) Q37 (Hz) Q37 (Hz) Jini 1 Dulse Rate (Hz)	frequency frequency temporal temporal temporal frequency frequency frequency frequency frequency temporal temporal frequency	1.58 <0.001	0.94 1.06 1.04 1.58 1.35 1.42 1.20 1.42 1.20 0.94 0.93 1.05 0.94 1.07 1.17 1.94 1.47 1.68 1.32 1.65 1.37 1.70 1.29	NS NS NS NS NS <0.05 <0.05 NS NS NS NS NS 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 NS NS	for each ac in median evaluated u sum test. 1 value >1 individual	of distrib of distrib using the K NS = non- indicates coding, wi	ible. The differen ution per varia ruskal–Wallis ra significant. A F a potential ith the highest	nce ble ank PIC for the
(2-0 (Lr)) (275 (Hz) Energy below 1200 Hz (%) Unit 1 Duration (s) Unit 1 No. of segments Unit 1 Fundamental Frequency (Hz) Unit 1 Fundamental Frequency (Hz) Unit 1 C25 (Hz) Unit 1 Q25 (Hz) Unit 1 Q25 (Hz) Unit 1 Q75 (Hz) Unit 1 Q75 (Hz) Duration (s) No. of units Fundamental frequency (Hz) Frequency of maximum amplitude (Hz) Q25 (Hz) Q25 (Hz) Energy below 1200 Hz (%) Unit 1 Duration (s) Unit 1 Duration (s) Unit 1 Duration (s) Unit 1 Duration (s) Unit 1 Pundamental Frequency (Hz)	frequency frequency frequency temporal temporal frequency f	1.58 <0.001	0.97 1.06 1.04 1.58 1.35 1.42 1.20 1.42 1.20 0.94 0.93 1.05 0.94 1.07 1.17 1.94 1.47 1.68 1.32 1.65 1.37 1.70 1.39 1.99 1.19	NS NS NS NS NS <0.05 <0.05 NS NS NS NS NS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.05 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 	for each ac in median evaluated u sum test. 1 value >1 individual	of distrib of distrib using the K NS = non- indicates coding, wi	ible. The differen ution per varia ruskal–Wallis ra significant. A P a potential ith the highest	nce ble ank PIC for the
(20) (L1) (27) (H2) Energy below 1200 Hz (%) Unit 1 Duration (%) Unit 1 No. of segments Unit 1 Fundamental Frequency (H2) Unit 1 Fundamental Frequency (H2) Unit 1 Q25 (H2) 225 (H2) 225 (H2) 230 (H2) 245 (H2) 250 (H2) 250 (H2) 250 (H2) 251 (H2) 161 Duration (%) Jnit 1 Duration (%) Jnit 1 Duration (%) Jnit 1 Pundamental Frequency (H2) Jnit 1 Pundamental Frequency (H2) Jnit 1 Pundamental Frequency (H2) Jnit 1 Pundamental Frequency (H2) Jnit 1 Fundamental Frequency (H2) Jnit 1 Fundame	frequency frequency frequency temporal temporal frequency temporal temporal temporal temporal temporal temporal tempora	1.58 <0.001	0.94 1.06 1.04 1.58 1.05 1.42 1.20 0.94 0.93 1.05 0.94 1.07 1.17 1.94 1.47 1.68 1.32 1.65 1.37 1.70 1.99 1.19 1.11 1.11	NS NS NS NS NS NS NS NS NS NS NS NS NS N	for each ac in median evaluated u sum test. 1 value >1 individual	of distrib of distrib using the K NS = non- indicates coding, wi	ible. The differer ution per varia ruskal–Wallis ra significant. A P a potential ith the highest	nce ble ank PIC for the
225 (Hz) 275 (Hz) Energy below 1200 Hz (%) Unit 1 Duration (%) Unit 1 No. of segments Jnit 1 Fundamental Frequency (Hz) Jnit 1 Fundamental Frequency (Hz) Jnit 1 Q25 (Hz) Jnit 1 Duration (%) So. of units 'undamental frequency (Hz) Y25 (Hz) Joint 1 Duration (%) Jnit 1 Pulse Rate (Hz) Jnit 1 Frequency of maximum amplitude (Hz) Init 1 Pulse Rate (Hz) Jnit 1 Frequence (Hz)	frequency frequency temporal temporal temporal (frequency frequency	1.58 <0.001	0.94 1.06 1.04 1.58 1.35 1.42 1.20 1.06 0.94 0.93 1.05 1.42 1.20 1.42 1.20 1.42 1.20 1.42 1.20 1.42 1.20 1.42 1.20 1.42 1.20 1.42 1.20 1.42 1.20 1.42 1.20 1.45 1.35 1.47 1.47 1.48 1.32 1.49 1.49 1.49 1.49 1.47 1.47 1.48 1.32 1.49 1.49 1.49 1.49 1.49 1.47 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.55 1.37 1.79 1.19 1.19 1.19 1.55 1.37 1.79 1.19 1.19 1.55 1.37 1.79 1.19 1.55 1.37 1.79 1.19 1.55 1.37 1.79 1.55	NS NS NS NS NS NS NS NS NS NS NS NS NS N	for each ac in median evaluated u sum test. 1 value >1 individual	oustic varia of distrib using the K NS = non- indicates coding, wi	ible. The differer ution per varia ruskal–Wallis ra significant. A P a potential ith the highest	nce ble ank PIC for the
220 (Hz) 275 (Hz) Energy below 1200 Hz (%) Jini 1 Duration (%) Jini 1 No. of segments Jini 1 Push Rate (Hz) Jini 1 Fundamental Frequency (Hz) Jini 1 Q25 (Hz) Jini 1 Q25 (Hz) Jini 1 Q25 (Hz) 20 (Hz) 2	frequency frequency frequency temporal temporal temporal frequency	1.58 <0.001	0.94 1.06 1.04 1.58 1.35 1.42 1.20 1.06 0.94 0.93 1.07 1.17 1.47 1.68 1.32 1.65 1.37 1.70 1.29 1.19 1.19 1.19 1.29 1.30	NS NS NS NS NS NS NS NS NS NS NS NS NS N	for each ac in median evaluated u sum test. 1 value >1 individual	oustic varia of distrib using the K NS = non- indicates coding, wi	ible. The differer ution per varia ruskal–Wallis ra significant. A F a potential ith the highest	nce ble ank PIC for the
(LL) (LL) (SIL2) (FI	frequency frequency temporal temporal temporal temporal frequency	1.58 <0.001	0.94 1.06 1.04 1.58 1.35 1.42 1.20 1.06 0.94 0.93 1.07 1.07 1.07 1.07 1.47 1.68 1.32 1.65 1.37 1.70 1.29 1.19 1.11 1.29 1.19 1.19	NS NS NS NS NS NS NS NS NS NS NS NS NS N	for each ac in median evaluated u sum test. 1 value >1 individual	oustic varia of distrib using the K NS = non- indicates coding, wi	ible. The differer ution per varia ruskal–Wallis ra significant. A F a potential ith the highest	nce ble ank PIC for the

3 4	697	value is, the highest the potential is. Q25, Q50, Q75 = first, second and third quartile of energy
5 6	698	distribution. E1200 = percentage of energy occurring below 1200 Hz.
7	(00	
8 9	699	
10	700	
11 12		
13	701	
14 15	702	
15 16	102	
17	703	
18 19	704	
20	/04	
21 22	705	
23		
24 25	706	
26	707	
27 28		
29	708	
30 31	709	
32	10)	
33	710	
34 35	711	
36	/11	
37 38		
39	712	SUPPORTING INFORMATION

SUPPORTING INFORMATION

Supplementary Figure S1. Convergence of the random forest algorithm observed as a decrease and stabilisation of global error of prediction as a function of the number of trees grown for the three random forest analyses: (A) comparing calls between sexes (females in red, males in green and global error in black), (B) comparing calls among female individuals (each individual represented by a different colour, with the global error in black), (C) comparing calls among male individuals (each individual represented by a different colour, with the global error in black).

- Supplementary Video S1. Display call of a male Cape gannet (individual 17U).
- Supplementary Audio S1. Display call of a male Cape gannet (individual 17U).

1 2		
2 3 4	722	Supplementary Audio S2. Display call of a female Cape gannet (individual 19U).
5 6	723	Supplementary Audio S3. Display call of a male Cape gannet (individual 15L).
7 8 9	724	Supplementary Audio S4. Display call of a female Cape gannet (individual 15R).
10 11		
12 13		
14 15 16		
17 18		
19 20		
21 22 23		
23 24 25		
26 27		
28 29 20		
30 31 32		
33 34		
35 36 37		
38 39		
40 41		
42 43 44		
45 46		
47 48 40		
50 51		
52 53		
54 55 56		
57 58		
59 60		

URL: http://mc.manuscriptcentral.com/tost

1			Males	Females			
2			(N=31 calls from 6 individuals)	(N=19 calls from 4 individuals)	Non-parametric tests		
3 4 5	Acoustic variables	Acoustic domain	Means ± SD [Range]	Means ± SD [Range]	Kruskal-Wallis p-value	Fligner-Killeen p-value	
5 Unit rate over up and down movement parts							
7	Units' Inter-Onset-Interval mean (s)	temporal	$0.42 \pm 0.05 \; [0.35 \text{-} 0.50]$	$0.31 \pm 0.03 \; [0.25 \text{-} 0.36]$	<0.001	<0.001	
8	Units' Inter-Onset-Interval sd (s)	temporal	$0.016 \pm 0.010 \; [0.003 \text{-} 0.043]$	$0.011 \pm 0.006 \; [0.002 \text{-} 0.021]$	NS	NS	
9							
10	Duration (s)	temporal	$0.90 \pm 0.22 \; [0.55 1.27]$	$1.13 \pm 0.50 \; [0.48 \text{-} 2.57]$	NS	NS	
12	No. of units	temporal	$2.5\pm 0.5\;[2.0\text{-}3.0]$	$4.1 \pm 1.4 \; [2.0\text{-}8.0]$	<0.001	<0.05	
13	Fundamental frequency (Hz)	frequency	$387 \pm 7 \; [373 \text{-} 402]$	$356 \pm 14 \; [336\text{-}389]$	<0.001	<0.001	
14	Frequency of maximum amplitude (Hz)	frequency	$1134 \pm 489 \; [377\text{-}2021]$	$980\pm271\;[678\text{-}1475]$	NS	<0.01	
15	Q25 (Hz)	frequency	$1041 \pm 188 \; [695\text{-}1459]$	$965 \pm 131 \; [750\text{-}1122]$	<0.05	NS	
16	Q50 (Hz)	frequency	$1502 \pm 180 \; [976\text{-}1823]$	$1439 \pm 155 \; [1164\text{-}1658]$	NS	NS	
18	Q75 (Hz)	frequency	$2125\pm238[1488\text{-}2626]$	$2047 \pm 198 \; [1724\text{-}2435]$	NS	NS	
19	Energy below 1200 Hz (%)	frequency	35 ± 11 [16-65]	$40\pm 8[29-52]$	<0.05	NS	
20	Unit 1 Duration (s)	temporal	$0.25 \pm 0.05 \; [0.10 \text{-} 0.34]$	$0.18 \pm 0.02 \; [0.15 \text{-} 0.23]$	<0.001	<0.001	
21	Unit 1 No. of segments	temporal	4.1 ± 0.9 [3.0-6.0]	$3.1\pm 0.32\;[3.0\text{-}4.0]$	<0.001	<0.05	
22	Unit 1 Pulse Rate (Hz)	temporal	18.91 ± 2.70 [9.62-22.39]	$21.28 \pm 1.76 \; [18.17\text{-}24.82]$	<0.001	NS	
24	Unit 1 Fundamental Frequency (Hz)	frequency	380 ± 10 [357-395]	367 ± 20 [336-410]	<0.05	<0.01	
25	Unit 1 Frequency of maximum amplitude (Hz)	frequency	1026 ± 412 [367-1578]	$1077\pm 328\;[320\text{-}1539]$	NS	NS	
26	Unit 1 Q25 (Hz)	frequency	1023 ± 183 [675-1380]	$986 \pm 152 \; [738\text{-}1187]$	NS	NS	
27	Unit 1 Q50 (Hz)	frequency	1503 ± 188 [886-1761]	$1417 \pm 155 \; [1140\text{-}1687]$	<0.05	NS	
28	Unit 1 Q75 (Hz)	frequency	2132 ± 235 [1496-2496]	$2011 \pm 176 \; [1718\text{-}2406]$	<0.05	NS	
30	Unit 1 E1200 Hz (%)	frequency	35 ± 10 [16-62]	40 ± 8 [26 -53]	<0.05	NS	
31	Down-movement part						
32	Duration (s)	temporal	$0.64 \pm 0.17 [0.34-0.93]$	$0.66 \pm 0.15 \; [0.51 \text{-} 0.97]$	NS	NS	
33	No. of units	temporal	1.9 ± 0.5 [1.0-3.0]	$2.5\pm 0.6\;[2.0\text{-}4.0]$	<0.05	NS	
35	Fundamental frequency (Hz)	frequency	428 ± 13 [406-451]	$392\pm24\;[324\text{-}438]$	<0.001	NS	
36	Frequency of maximum amplitude (Hz)	frequency	834 ± 434 [403-1746]	952 ± 266 [724-1512]	NS	NS	
37	Q25 (Hz)	frequency	927 ± 196 [461-1248]	927 ± 137 [782-1216]	NS	NS	
38	Q50 (Hz)	frequency	1539 ± 241 [845-1785]	$1465 \pm 202 \ [1177-1860]$	NS	NS	
39	Q75 (Hz)	frequency	$2210 \pm 273 \; [1290\text{-}2609]$	2148 ± 217 [1854-2487]	NS	NS	
40	Energy below 1200 Hz (%)	frequency	35 ± 10 [22-67]	37 ± 8 [24-51]	NS	NS	
42	Unit 1 Duration (s)	temporal	$0.28 \pm 0.07 \; [0.19 \text{-} 0.41]$	$0.19 \pm 0.02 \; [0.14 \text{-} 0.24]$	<0.001	<0.001	
43	Unit 1 No. of segments	temporal	$4.6 \pm 1.1 \; [3.0\text{-}7.0]$	3.1 ± 0.5 [2.0-4.0]	<0.001	<0.05	
44	Unit 1 Pulse Rate (Hz)	temporal	$19.56 \pm 3.05 \; [11.36\text{-}26.53]$	$20.64 \pm 3.56 \ [7.78\text{-}25.03]$	NS	NS	
45	Unit 1 Fundamental Frequency (Hz)	frequency	$425 \pm 13 \; [397\text{-}450]$	396 ± 28 [342-435]	<0.001	<0.001	
47	Unit 1 Frequency of maximum amplitude (Hz)	frequency	$899\pm 504\;[3982078]$	$1193 \pm 318 \hspace{0.1 cm} [750\text{-}1789]$	<0.05	NS	
48	Unit 1 Q25 (Hz)	frequency	$1054\pm209[648\text{-}1367]$	$1032 \pm 139 \; [855\text{-}1230]$	NS	NS	
49	Unit 1 Q50 (Hz)	frequency	$1669 \pm 265 \; [898\text{-}2109]$	$1516 \pm 233 \; [1269\text{-}2234]$	<0.01	NS	
50	Unit 1 Q75 (Hz)	frequency	$2382 \pm 219 \; [1667\text{-}2625]$	$2172\pm265\;[1789\text{-}2750]$	<0.01	NS	
51	Unit 1 E1200 Hz (%)	frequency	31 ± 10 [17-60]	33 ± 6 [23-44]	NS	NS	

Ostrich

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
30
40
40 41
47
42 43
ΔΔ
45
46
40 47
47 48
0 ⊿0
77 50
50
51 52
52 52
55
55
55
50
57

) Improven	ccuracy with RF (%)	uracy by chance (%) Ac	N calls Acc	Class (Sex or Individual)
-		Sexual dimorphism		
2.5	95	38	19	Female
1.6	100	62	31	Male
	nales	lividual signature in Fen	Ind	
3.4	86	25	6	15R
4.8	80	16.5	4	19U
6.1	100	16.5	4	25U
4.0	83	21	5	43U
4.8	100	21	5	4M
	ales	dividual signature in M	In	
4.4	40	9	5	15L
7.9	83	10.5	6	17U
5.4	57	10.5	6	19M
14.	100	7	4	25M
8.3	75	9	5	36U
7.4	67	9	5	43M
11.	100	9	5	5M
8.9	80	9	5	7U
7.9	71	9	5	80U
11.	100	9	5	c30C
8.9	80	9	5	S5

1				Malaa		Famalaa		
2 3				(N=56 calls from 11 individuals)		(N=24 calls from 5 individuals)		
4 5	Acoustic variables	Acoustic domain	PIC	Kruskal-Wallis p-value	PIC	Kruskal-Wallis p-value		
6	Unit rate over up and down movement parts							
7	Units' Inter-Onset-Interval mean (s)	temporal	3.22	<0.001	2.30	<0.01		
0 9	Units' Inter-Onset-Interval sd (s)	temporal	1.35	<0.001	1.04	NS		
10		Up-mov	ement part					
11	Duration (s)	temporal	1.57	<0.001	1.52	<0.05		
12	No. of units	temporal	2.03	<0.001	1.38	<0.05		
13	Fundamental frequency (Hz)	frequency	1.32	<0.001	1.48	<0.01		
15	Frequency of maximum amplitude (Hz)	frequency	1.13	<0.001	1.49	<0.05		
16	Q25 (Hz)	frequency	1.32	<0.001	1.06	NS		
17	Q50 (Hz)	frequency	1.58	<0.001	0.97	NS		
18	Q75 (Hz)	frequency	1.44	<0.001	1.06	NS		
20	Energy below 1200 Hz (%)	frequency	1.59	<0.001	1.04	NS		
21	Unit 1 Duration (s)	temporal	1.87	<0.001	1.58	NS		
22	Unit 1 No. of segments	temporal	1.32	<0.001	1.35	NS		
23	Unit 1 Pulse Rate (Hz)	temporal	1.19	<0.001	1.05	NS		
24	Unit 1 Fundamental Frequency (Hz)	frequency	1.19	<0.001	1.42	<0.05		
26	Unit 1 Frequency of maximum amplitude (Hz)	frequency	1.37	<0.001	1.20	<0.05		
27	Unit 1 Q25 (Hz)	frequency	1.14	<0.001	1.06	NS		
28	Unit 1 Q50 (Hz)	frequency	1.25	<0.001	0.94	NS		
29	Unit 1 Q75 (Hz)	frequency	1.22	<0.001	0.93	NS		
30	Unit 1 E1200 Hz (%)	frequency	1.24	<0.001	1.05	NS		
32	Down-movement part							
33	Duration (s)	temporal	1.16	<0.001	0.94	NS		
34	No. of units	temporal	1.42	<0.001	1.07	NS		
35	Fundamental frequency (Hz)	frequency	1.89	<0.001	1.17	<0.05		
30	Frequency of maximum amplitude (Hz)	frequency	1.07	<0.001	1.94	<0.01		
38	Q25 (Hz)	frequency	1.27	<0.001	1.47	<0.01		
39	Q50 (Hz)	frequency	1.52	<0.001	1.68	<0.01		
40	Q75 (Hz)	frequency	1.51	<0.001	1.32	<0.05		
41	Energy below 1200 Hz (%)	frequency	1.45	<0.001	1.65	<0.01		
42	Unit 1 Duration (s)	temporal	2.02	<0.001	1.37	<0.05		
44	Unit 1 No. of segments	temporal	1.51	<0.001	1.70	NS		
45	Unit 1 Pulse Rate (Hz)	temporal	1.23	<0.001	1.29	NS		
46	Unit 1 Fundamental Frequency (Hz)	frequency	1.51	<0.001	1.19	NS		
4/ ⊿ହ	Unit 1 Frequency of maximum amplitude (Hz)	frequency	1.07	<0.001	1.11	<0.05		
-+c 49	Unit 1 Q25 (Hz)	frequency	1.09	<0.001	1.25	NS		
50	Unit 1 Q50 (Hz)	frequency	1.31	<0.001	1.25	<0.05		
51	Unit 1 Q75 (Hz)	frequency	1.26	<0.001	1.30	<0.05		
52 53	Unit 1 E1200 Hz (%)	frequency	1.27	<0.001	1.19	<0.05		

