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On a Generalization of the Liouville Conformal Theorem to General Rigid Geometric Structures

For any n ≥ 3, the classical Liouville theorem asserts that any local conformal diffeomorphism defined on a connected open subset of S n can be uniquely extended to a Möbius transformation. In this article, we formulate and prove a generalization of this theorem to general rigid geometric structures.

Introduction

For any n ≥ 2, let S n be the n-dimensional sphere endowed with the canonical conformal structure c n . The global isometries of (S n , c n ), usually called the Möbius transformations, are the elements of the finite dimensional linear group O(1, n + 1) which acts transitively over S n . For n = 2, S 2 is naturally identified with the Riemann sphere such that each bi-holomorphic map is locally c 2 -isometric. Therefore, the local isometries of (S 2 , c 2 ) are rarely extendable to global isometries. However, for any n ≥ 3, the celebrated Liouville theorem asserts that for any local c n -isometry ϕ defined on a connected open subset U of S n , there exists a unique Möbius transformation Φ such that ϕ = Φ | U . This kind of extendability of local isometries can be formualted simply as follows: Definition 1.1. Let (M, σ) be a C ∞ connected manifold endowed with a locally homogeneous geometric structure. Let I(M, σ) be the group of C ∞ global isometries of (M, σ). We say that (M, σ) is completely homogeneous, Therefore, (S 2 , c 2 ) is not completely homogeneous, while the Liouville theorem asserts that for any n ≥ 3, (S n , c n ) is completely homogeneous. It is well-known that for any n ≥ 3, (S n , c n ) is a so-called manifold endowed with a rigid geometric structure (see Section 2), called simply in the following a rigid geometric manifold, while (S 2 , c 2 ) is not rigid. Therefore, it appears quite natural and interesting to generalize this theorem of Liouville to general rigid geometric structures.

However, several crucial points must be taken into account about such a generalization. Firstly, it seems only appropriate to formulate such a generalization in the context of simply connected spaces, as in the case of the classical Liouville theorem: let (T 2 , g) be the dimension-two torus endowed with its plat Riemannian metric. Any translation of R 2 gives rise to local isomtries of T 2 , which are, however, rarely extendable to global isomtries of T 2 . Secondly, a kind of completeness seems necessary to any such generalization: any translation of R 2 gives rise to local isometries of R 2 {(0, 0)}, which are, however, rarely extendable to global isometries defined over R 2 {(0, 0)}. In this perspective, we formulate the following notion of completeness for general rigid geometric structures: Definition 1.2. If we let (M, σ) be a C ∞ connected rigid geometric manifold, we denote by ( M , σ) a universal covering space of M endowed with the lifted rigid geometric structure. We say that (M, σ) is weakly complete if any C ∞ locally isometric map ψ: ( M , σ) → (N, σ N ) must be a surjective covering map onto a connected component of N .

In the special case that (M, σ) is a Riemannian manifold, if it is complete in the classical sense, which means that all its maximal geodesics are defined over R, then it is well-known that (M, σ) is weakly complete. In Section 7, we shall prove that this is equally the case for C ∞ connections of the general frame bundles. Essentially, our notion of weak completeness asserts that ( M , σ) cannot be embedded isometricly into a bigger connected manifold of the same dimension. In the case that the universal covering space M is compact, it is well-known that any local diffeomorphism from M into another connected manifold must be a surjective covering map. Therefore, any rigid geometric manifold (M, σ) admitting a compact universal covering space is weakly complete. In particular, we have the following: Proposition 1. For any n ≥ 3, (S n , c n ) is weakly complete.

There is still another point which is crucial for generalizing the Liouville theorem: let x ∈ M and g be the finite-dimensional Lie algebra of the germs at x of C ∞ local σ-Killing fields (see Section 2). Let h = {Y ∈ g | Y (x) = 0}, which is a Lie subalgebra of g. Let Ḡ be the connected and simply connected Lie group with g as its right-invariant Lie algebra. Let H be the connected Lie subgroup of Ḡ integrating h. According to [START_REF] Tricerri | Locally homogeneous Riemannian manifolds[END_REF], we have the following definition:

Definition 1.3. The rigid geometric manifold (M, σ) is said to be geometrically regular if H is a closed subgroup of Ḡ.

In Section 6, we shall prove a general criterion for the geometrical regularity, which implies in particular the following: Proposition 2. For any n ≥ 3, (S n , c n ) is geometrically regular. Now by taking into account of all these elements, our generalization of the Liouville theorem can be formulated as follows:

Theorem 1.4. Let (M, σ) be a C ∞ connected and simply connected locally homogeneous rigid geometric manifold. If (M, σ) is weakly complete and geometrically regular, then it is completely homogeneous. Moreover, under the notations above, Γ = ∩ a∈ Ḡa Ha -1 is a discrete normal subgroup of Ḡ such that Ḡ Γ is isomorphic to the identity component of I(M, σ).

We mention that the group of C ∞ global isometries I(M, σ) is the counterpart of the classical Möbius group in our general context. In the Riemannian case, it was proved in [START_REF] Tricerri | Locally homogeneous Riemannian manifolds[END_REF] that there exist examples of locally homogeneous Riemannian manifolds which are not geometrically regular, while we shall see in Section 6 that some hyperbolicity implies strikingly the geometrical regularity. Definition 1.5. Let (M, σ) be a C ∞ locally homogeneous rigid geometric manifold. A C ∞ local isometry ϕ of (M, σ) is said to be a local hyperbolic isotropy if ϕ fixes some point x of M such that its differential D x ϕ has no eigenvalue of modulus 1.

In Section 6, we shall prove that if (M, σ) admits a local hyperbolic isotropy, which is the case for (S n , c n ), then it must be geometrically regular. Therefore the following result, which is a special case of Theorem 1.4, gives a rather concrete generalization of the Liouville theorem: Theorem 1.6. Let (M, σ) be a C ∞ connected and simply connected locally homogeneous rigid geometric manifold. If M is compact and (M, σ) admits a local hyperbolic isotropy, then (M, σ) is completely homogeneous. Morerover, under the notations above, Γ = ∩ a∈ Ḡa Ha -1 is a discrete normal subgroup of Ḡ such that Ḡ Γ is isomorphic to the identity component of I(M, σ).

We obtain the following corollary (see Section 7):

Corollary 1. Let (M, Q) be a C ∞ connected
and simply connected manifold endowed with a locally homogeneous C ∞ connection of a certain frame bundle F k M . If the connection Q is complete and (M, Q) admits a local hyperbolic isotropy, then (M, Q) is completely homogeneous.

According to Theorems 1.4 and 1.6, the identity component of I(M, σ) is essentially determined by the Lie algebra g. In order to understand g, one important method consists of giving an infinitesimal characterization of local Killing fields. In the case of real analytic Riemannian manifolds, K. Nomizu obtained in [START_REF] Nomizu | On local and global existence of Killing vector fields[END_REF] a beautiful characterization of the 1-jets of vector fields which can be integrated into real analytic local Killing fields. This result has been generalized recently to real analytic connections by A. Candel and R. Quiroga-Barranco in [START_REF] Candel | Gromov's centralizer theorem[END_REF] (see also [START_REF] Candel | Parallelisms, prolongations of Lie algebras and rigid geometric structures[END_REF]). However, all these results concern the real analytic case, while our context is rather C ∞ . In Section 5, we shall prove the following result in the C ∞ context, which shows that the structure of g can be understood via straightforward calculations: Proposition 3. Let (M, σ) be a C ∞ rigid geometric manifold which is locally homogeneous over an open-dense subset Ω ⊆ M . Let x ∈ Ω and g r x be the space of r-th order Killing jets at x, then for any r ≥ d(Ω) + 3 (see Sections 2 and 3 for their definitions), g r

x is Lie algebraicly isomorphic to g.

Our main result Theorem 1.4 will be proved in the last section 8. Sections 2-7 concern the C ∞ rigid geometric manifolds whose pseudogroup of local isometries admits a dense orbit.

Generalities about rigid geometric structures

Let M and N be two C ∞ manifolds and let x ∈ M . For any k ∈ N and any C ∞ local map φ defined over an open neighborhood of x into N , we denote by j k x φ the k-jet of f at x. For any x ∈ M and any y ∈ N , we denote by

J k (x,y) (M, N ) all such k-jets sending x to y. Let D k (x,y) (M, N ) = {j k x φ ∈ J k (x,y) (M, N ) | j 1 x φ is inversible}, which is an open subset of J k (x,y) (M, N ).
For any l ≥ k ≥ 0, we denote by π l k the natural projection from

J l (x,y) (M, N ) onto J k (x,y) (M, N ). Let n ∈ N * . For any k ≥ 1, the k-th order general linear group G k (n, R) is defined as D k (0,0) (R n , R n ),
which is naturally a Lie group with respect to the composition of k-jets. Let T k 0 R n be the vector space of (k -1)-jets at zero of C ∞ vector fields defined on R n . Then G k (n, R) admits a natural linear faithful representation over T k 0 R n such that for any

j k 0 φ ∈ G k (n, R) and any j k-1 0 Y ∈ T k 0 R n , j k 0 φ(j k-1 0 Y ) = j k-1 0 (DφY ).
With respect to this representation, G k (n, R) becomes naturally a real algebraic group. Moreover, for any l ≥ k ≥ 1, the natural projection π l k is a homomorphism of real algebraic groups.

Let M be a C ∞ manifold of dimension n. The k-th order frame bundle over M is defined as R)principal bundle with respect to the composition of k-jets. Definition 2.1. Let Z be a smooth real algerbaic variety admitting an algebraic action of

F k M = ∪ x∈M D k (0,x) (R n , M ), which is a G k (n,
G k (n, R) from left. A C ∞ geometric structure of order k and type Z on M is a C ∞ equivariant map σ : F k M → Z, which means that for any j k 0 f ∈ F k M and any j k 0 φ ∈ G k (n, R), σ(j k 0 f • j k 0 φ) = (j k 0 φ) -1 • σ(j k 0 f ).
Such equivariant maps are in bijection with C ∞ sections of the associated bundle F k M × Z fibered over M . We call the couple (M, σ) a C ∞ rigid geometric manifold of order k and type Z.

Let M and N be two C ∞ manifolds, and let f be a C ∞ local diffeomorphism between M and N . We denote by f * the natural map from F k M into F k N defined via the composition of k-jets. If σ M and σ N are two C ∞ geometric structures of type Z and of order k defined respectively over M and N , then f is said to be a C ∞ local isometry if σ M • f * = σ N , wherever defined. We denote by I loc (M ) the space of all C ∞ local σ M -isometries defined on some open subset of M into M , which is a pseudogroup acting naturally on M . Now we suppose that σ is a C ∞ geometric structure of order k and type Z defined on a n-dimensional manifold M . For any i ≥ 0, let

J i n Z = ∪ x∈Z J i (0,x) (R n , Z)
, which is naturally a smooth real algebraic variety admitting a naturally induced algebraic action of G k+i (n, R) from the left (see [START_REF] Candel | Gromov's centralizer theorem[END_REF]). By deriving the C ∞ geometric structure σ (see [START_REF] Candel | Gromov's centralizer theorem[END_REF]), we obtain a C ∞ equivariant map σ i : F k+i M → J i n (Z), i.e. a C ∞ geometric structure of order (k + i) and type J i n (Z), which is said to be the i-th order prolongation of σ.

For any x, y ∈ M , the space of the (k + i)-th order isometric jets of σ sending x to y is defined as

I k+i x,y = {j k+i x φ ∈ D k+i (x,y) (M, M ) | σ i • φ * | F k+i x M = σ i | F k+i x M }.
It is clear that for any ϕ ∈ I loc (M ) defined over a certain open subset U , j k+i x ϕ ∈ I k+i x,ϕ(x) , ∀x ∈ U . We denote by I k+i (M ) = ∪ x,y∈M I k+i x,y the space of all (k + i)-th order isometric jets, which is a subset of D k+i (M ) = ∪ x,y∈M D k+i x,y (M, M ). For x = y, the space I k+i x,x is naturally a real algebraic subgroup of D k+i (x,x) (M, M ). Moreover, for any j ≥ i ≥ 0, the natural projection π k+j k+i : I k+j x,x → I k+i x,x is a homomorphism of real algebraic groups.

Definition 2.2. If i is a non-negative integer, a C ∞ geometric structure σ of order k and type Z defined over M is said to be i-rigid, or just simply rigid, if for any x ∈ M , π k+i+1 k+i

: I k+i+1 x,x → I k+i x,x is injective.
This definition is due to M. Gromov (see [START_REF] Gromov | Rigid transformation groups, Géométrie différentielle[END_REF]), which generalizes the finite type reductions of the frame bundle F k M . Some well-known examples of rigid geometric structures are Riemannian or pseudo-Riemannian metrics, connections (see Section 7) and conformal structures defined on manifolds of dimension greater or equal to three.

A C ∞ vector field X defined over some open subset of M is called a Killing vector field if its flow ϕ t preserves the geometric structure σ, whenever defined. It naturally induces a local flow ϕ

(k) t
over some open subset of F k M such that for any frame

j k 0 ψ, ϕ (k) t (j k 0 ψ) = j k ψ(0) ϕ t • j k 0 ψ. Let X (k) be the tangent field of ϕ (k)
t , it is well-known that X is Killing if and only if Dσ(X (k) ) ≡ 0, where σ is viewed as an equivariant map from

F k M into Z.
Comparable to the definition of isometric jets and according to [START_REF] Candel | Gromov's centralizer theorem[END_REF], we have the following: Definition 2.3. Under the notations above, let x ∈ M and X be a C ∞ vector field defined over some open neighborhood of x. For any i ≥ 0, the (k + i)-th order jet j k+i x X is said to be a (k + i)-th order Killing jet at x, if for some frame η

∈ F k+i x M , D η σ i (X (k+i) (η)) = 0,
where σ i : F k+i M → J i n Z denotes the i-th order prolongation of σ.

We mention that due to the equivariance of

σ i , if D η σ i (X (k+i) (η)) = 0 for some frame η ∈ F k+i x M , then D ζ σ i (X (k+i) (ζ)) = 0 for any ζ ∈ F k+i x M
. We denote by g k+i x the space of (k + i)-th order Killing jets at x and

h k+i x = {j k+i x Y ∈ g k+i x | Y (x) = 0}
. We mention that for any i ≥ 0, the linear spaces g k+i x and h k+i x can be explicitly determined via purely algebraic calculations. For any j ≥ i ≥ 0, there exists a natural projection π j i :

g k+j x → g k+i x such that π j i (j k+j x Y ) = j k+i x Y .
3 Open-dense theorem

The following striking structural theorem was proved by M. Gromov in [START_REF] Gromov | Rigid transformation groups, Géométrie différentielle[END_REF] (see also the expository paper [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF]): Even though our main result Theorem 1.4 assumes the local homogeneity of (M, σ), the structural Theorem 3.1 is still essential for us, because the arguments in its proof give in fact much useful information for the study of local isometries. Recall that the proof of Theorem 3.1 is well written in [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF], which shows especially that for r large enough, any r-th order isometric jet close to the identity can be integrated to a C ∞ local isometry.

Our key observation here is that the proof of the stronger Theorem 3.1 given in [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF], after some adaptations, shows in fact the following more concrete version of the open-dense theorem. For the sake of completeness, we shall sketch in some detail its proof and focus on the differences between the proof below and that in [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF].

Let us begin with the following definition: let (M, σ) be a C ∞ rigid geometric manifold of order k and type Z and suppose that σ is i-rigid for a certain i. It is well-known that for any x ∈ M and for any l ≥ j ≥ i, the projection π k+l k+j : I k+l x,x → I k+j x,x is also injective (see [START_REF] Candel | Gromov's centralizer theorem[END_REF]). Therefore, ∀x ∈ M , the dimension of I k+j

x,x depends dicreasingly on j. Thus the following integer is well-defined and finite: 

d(x) = inf {k + s | s ≥ i; dim(I k+j x,x ) = dim(I k+s x,x ), ∀j ≥ s},
(Ω) = d(x), which is independent of the choice of x. For any r ≥ d(Ω) + 2, I r (Ω) is a C ∞ submanifold of D r (Ω).
For any x, y ∈ Ω and any η ∈ I r x,y , there exists a unique germ of C ∞ local isometry denoted by η such that j r x η = η. Moreover, the C ∞ local isometry η depends smoothly on the isometric jet η in the following sense: for any x, y ∈ Ω and any η ∈ I r x,y , there exists an open neighborhood U of x in M and an open neighborhood V of η in I r (Ω) such that for any ζ ∈ V , the C ∞ local isometry ζ can be defined on U and the evaluation map

E : U × V → M defined as E(a, ζ) = ζ(a), is C ∞ .
Proof: for any subset A ⊂ M , we denote by A • its interior and by A - its closure. We suppose that the orbit I loc (a) is dense in M . Lemma 3.4. Under the notations above, for any i ≥ 0, I k+i (a)

• is opendense in M and a ∈ I k+i (a) • .

Proof. This lemma is the adaptation of the lemma in Section 2.2 of [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF]. By a classical result of M. Rosenlicht (see [START_REF] Rosenlicht | A remark on quotient spaces[END_REF]),

J i n Z can be stratified into G k+i (n, R)-invariant C ∞ submanifolds J i n Z = Z 0 ∪ • • • ∪ Z l such that for any 0 ≤ j ≤ l, Z j is open in Z 0 ∪ • • • ∪ Z j and π : Z j → G k+i (n, R) Z j is a C ∞ fiber bundle.
Let j be the biggest number such that

σ i (F k+i M ) ∩ Z j = ∅. Thus (σ i ) -1 (Z j ) is open in F k+i M .
Denote by ρ i the maximal rank of σ i on (σ i ) -1 Z j and define

S = {η ∈ F k+i M | σ i (η) ∈ Z j , rank η (g i ) = ρ i }, which is open in (σ i ) -1 Z j . Let V = pr(S) be the projection of S into M , which is open in M such that S = F k+i V . Let σi : M → W = G k+i (n, R) J i n Z be the natural quotient map of σ i .
Then by the same argument as in Section 2.2 of [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF], we can see that σi | V is C ∞ and of constant rank, which implies that

I k+i (a) ∩ V is a C ∞ closed submanifold of V .
Now regarding the difference of the lemma in Section 2.2 of [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF], the following further argument is available in our case: since I loc (a) -= M and I loc (a) ⊆ I k+i (a), then I k+i (a) -= M and thus

I k+i (a) ∩ V is dense in V . Moreover, since I k+i (a) ∩ V is closed in V , then V ⊆ I k+i (a).
Since I loc (a) is dense in M , then there exists some C ∞ local isometry ϕ sending a small open neighborhood of a, say U a , into an open subset of V . Since for any b ∈ U a , j k+i b,ϕ(b) ϕ is an isometric jet and V ⊆ I k+i (a), then U a ⊆ I k+i (a), which implies in particular that a ∈ I k+i (a) • . Moreover there exists an open neighborhood of I loc (a) which is contained in

I k+i (a). Therefore I k+i (a) • is open-dense in M . Let r = k + i and U r = I k+i (a) • , which is open-dense in M . For any r > r, we have U r ⊆ U r . This U r is different from that in Section 2.2 of [1].
Following [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF], we define q r : I r (M ) → M × M such that q r (j r x φ) = (x, φ(x)). The lemma of local nature in Section 2.3 of [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF] turns out to be global in our case.

Lemma 3.5. I r (U r ) is a C ∞ submanifold of constant dimension of D r U r and q r : I r (U r ) → U r × U r is a C ∞ surjective submersion.
Proof. Following the argument in Section 2.3 of [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF], we suppose that j r x φ ∈ I r (U r ) and φ(x) = y. Take a coordinate chart θ of an open neighborhood V of x. Then θ gives canonically a C ∞ local section s of pr : F r V → V . Take a small open neighborhood V of y. Then by using the local section s, D r (V, V ) can be naturally identified with V × F r V : for any j r z ψ ∈ D r (V, V ), we identify it to the element (z,

j r z ψ • s(z)) ∈ V × F r V . Therefore, under this identification, I r (U r ) ∩ D r (V, V ) = {(z, h ) | (z, h ) ∈ V × F r V , σ i (s(z)) = σ i (h )}. Since σ i | F r Ur is of constant rank, say d i , then I r (U r ) ∩ D r (V, V ) is a C ∞ submanifold of codimension d i of D r (V, V ). So I r (U r ) is a C ∞ submanifold of codimension d i of D r U r . Since U r = I r (x) • , then q r (I r (U r )) = U r × U r . To see that q r | I r (Ur) is a submersion, we define m r : F r M × F r M → D r M such that m r (j r 0 φ, j r 0 ψ) = j r φ(0) (ψ • φ -1 ),
which is naturally a G r (n, R)-principal bundle. We define

L r = {(η, ζ) | (η, ζ) ∈ F r M × F r M, g i (η) = g i (ζ)}.
It is easy to see that L r = m -1 r (I r (M )). In particular, we have

L r ∩ (F r U r × F r U r ) = m -1 r (I r (U r )). Therefore L r ∩ (F r U r × F r U r ) is a C ∞ submanifold of F r U r × F r U r . Let (pr, pr) be the natural projection from L r ∩ (F r U r × F r U r ) to U r × U r . It is clear that q r • m r = (pr, pr).
Since m r is a submersion, then in order to prove that q r is a submersion, we need only see that (pr, pr) is a submersion. Now for any (η, ζ) ∈ L r ∩ (F r U r × F r U r ), the same argument as in Section 2.3 of [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF] shows that D ζ pr 2 and D η pr 1 are both surjective.

The followng lemma is the global version in our case of the corollary in Section 2.3 of [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF]:

Lemma 3.6. For any r ≥ d(a), π r+1 r : I r+1 (U r+1 ) → I r (U r ) is a C ∞ local diffeomorphism.
Proof. By the lemma above, for any y, z ∈ U r , I r y,z = q -1 r (y × z) is a C ∞ submanifold of D r (U r ). Since σ is rigid, then for any x ∈ M , π r+1 r | I r+1

x,x is an injective homomorphism, which implies that π r+1 r | I r+1

x,x is an immersion. Thus the natural projection π r+1 r : I r+1 y,z → I r y,z is equally an immersion for any y, z ∈ U r+1 . Moreover, since by the lemma above, q r+1 | I r+1 (U r+1 ) is a submersion, we deduce that π r+1 r | I r+1 (U r+1 ) is an immersion. Therefore in order to prove the lemma, we need only see that I r (U r ) is of constant dimension for any r large enough: we know that for any r, a ∈ U r and that dim(I r a,a ) is constant for any r ≥ d(a). Moreover, since by the lemma above,

dim(I r (U r )) = dim(I r a,a ) + dim(M × M ), then dim(I r (U r )) is constant for any r ≥ d(a).
Now with the help of all these lemmas, we are able to finish the proof of Theorem 3.3 as in Sections 3.1-3.3 of [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF]: following Section 3.3 of [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF], let n = dim(M ) and r be an integer such that r ≥ d(a) + 2, and let η ∈ I r (U r ). By Lemma 3.6, there exists a small open neighborhood V r of η in

I r (U r ) such that if V r-1 = π r r-1 (V r ), then π r r-1 | Vr and π r-1 r-2 | V r-1 are both C ∞ diffeomorphisms onto their images. Now we consider V r-1 as a C ∞ differential relation, whose holonomic solutions are nothing but C ∞ local isometries. This differential relation is clearly C ∞ -complete since the natural pro- jection π r-1 r-2 | V r-1 is a C ∞ diffeomorphism onto its image V r-2 (see Section 3.2 of [1]).
It is also consistent, which means that for any θ ∈ V r-1 , there exists a C 1 section of the bundle π r-1 0 : J r-1 (M, M ) → M with values in V r-1 , passing through θ and tangent at θ to a holonomic n-plan (see Section 3.2 of [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF]): in the case of V r-1 being close to the (r -1)-jet of the identity, the consistency of V r-1 is proved in the second lemma of Section 3.3 of [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF]. We note that Lemma 3.5 above shows that I r-1 (U r-1 ) is everywhere defined locally as the preimages of constant rank applications, which is the key ingredient used in Section 3.3 of [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF]. Therefore by Lemma 3.5, we observe that the proof of consistency in [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF] is available in our case for any local V r-1 , without being assumed close to the (r -1)-jet of the identity. We also note that the n-holonomic plans are provided by the r-th order isometric jets in V r .

Therefore, according to the Frobenius theorem adapted to jet spaces (see Section 3.2 of [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF]), for any θ ∈ V r-1 there exists a unique germ of C ∞ solution of V r-1 passing through θ. In particular, there exists a unique germ of C ∞ local isometry denoted by η which integrates π r r-1 (η). Moreover, since (M, σ) is i-rigid and r ≥ k + i + 2, then η is in fact the unique C ∞ local isometry integrating the r-th order isometric jet η.

The C ∞ -dependence of η on η is equally a result of the Frobenius theorem: according to the proof of the Frobenius theorem in Section 3.2 of [START_REF] Benoist | Orbites des structures rigides (d'après M. Gromov[END_REF], the C ∞ local isometries are nothing but the C ∞ local leaves of a certain C ∞ n-dimensional distribution defined with the help of (π r-1 r-2 ) -1 | V r-2 , and transversal to the fibers of the bundle of (r -2)-th order jets. Thus if one local leaf projects to a small open subset U of M , then any nearby local leaves can project to an open subset containing U . Moreover, since the ndimensional distribution is C ∞ , then the local leaves depend smoothly on their base points, which means precisely that the evaluation map defined in Theorem 3. x,x is isomorphic to I r x,x . In particular, I loc x,x is naturally a real algebraic group.

Corollary 3. Under the notations above, let φ and ψ be two C ∞ local isometry of (M, σ) both defined on a connected open subset U ⊂ Ω. Then φ is equal to ψ on U if and only if for some r ≥ d(Ω) + 2 and some x ∈ U , j r x φ = j r x ψ.

Proof. We define the closed subset U = {y ∈ U | j r y φ = j r y ψ}, which is open by Theorem 3.3. Therefore, if U is not empty, then U = U .

Model homogeneous space

Let (M, σ) be a C ∞ rigid geometric manifold. We suppose that its pseudogroup I loc (M ) admits a dense orbit, say Ω, which is then by Theorem 3.3 open-dense in M . Under the notations of the section above, let r be an integer such that r ≥ d(Ω) + 2 and x ∈ Ω. Let g be the set of germs at x of C ∞ local Killing fields and h = {Y ∈ g | Y (x) = 0}. Proposition 4. g is a finite-dimensional Lie algebra, and h is a Lie subalgebra of g. Moreover, for any Y, Z ∈ g, Y = Z as germs of vector fields at x if and only if j r

x Y = j r x Z.

Proof. For any Y, Z ∈ g, their bracket is defined as the germ of the local vector field [Y, Z] at x. As we have seen in Section 2 the local flow of a vector field X lifts naturally to a local flow on the principal fiber bundle F k (M ), which induces a vector field X (k) on F k (M ). The following relations are well-known (see Lemma 4.4 in [START_REF] Candel | Gromov's centralizer theorem[END_REF]):

(Y + Z) (k) = Y (k) + Z (k) , (aY ) (k) = a • Y (k) , [Y (k) , Z (k) ] = [Y, Z] (k) .
Recall that a vector field X is Killing if and only if Dσ(X (k) ) ≡ 0. Therefore, we deduce from the formulae above that Y + Z, aY and [Y, Z] are all local Killing fields, thus g is a Lie algebra and h is a Lie subalgebra of g. Suppose that Y ∈ g such that j r x Y = 0 and denote by φ Y t its flow of local isometries. By [START_REF] Candel | Gromov's centralizer theorem[END_REF] we have for any t close to 0,

exp(t • j r x Y ) = j r x φ Y t .
Since j r x Y = 0, then j r x φ Y t ≡ j r x Id for any t close to 0. Thus by Theorem 3.3, there exists an open neighborhood U of x such that φ Y t is defined on U and φ Y t | U = Id | U . We deduce that Y = 0 in g, which implies that g is of finite dimension.

Let Ḡ be the connected and simply connected Lie group with g as its right-invariant Lie algebra. Let H be the connected Lie subgroup of Ḡ integrating h. Recall that (M, σ) is said to be geometrically regular if H is a closed subgroup of Ḡ. In this case, the quotient space Ḡ/ H is a C ∞ manifold. By Lemma 3.4, I r

x,• = ∪ y∈Ω I r x,y is a C ∞ submanifold of D r (Ω). Let V r be a small open neighborhood of j r x (Id) in I r x,• . If V r is small enough, then by Theorem 3.3, the following operation V r × V r → I r

x,• is well-defined and

C ∞ : for any η, ζ ∈ V r , η • ζ = j r x (η • ζ)
, where η and ζ denote respectively the C ∞ local isometries integrating η and ζ. We call this operation the multiplication of V r with values in I r x,• ; the neutral element is just j r

x Id which will be denoted by e. The inverse element of any η near e will be denoted by η -1 . Let T e (V r ) be the tangent space at e of V r .

Proposition 5. T e (V r ) is naturally a Lie algebra.

Proof. In fact, T e (V r ) can be naturally identified with local right-invariant fields on V r as follows: for any u ∈ T e (V r ) and any β ∈ V r we define a local vector field ū on V r such that ū(β) = DR β (u), where R β denotes the right-multiplication by β. Since the multiplication of V r is associative when defined, then ū is right-invariant on V r when defined. Therefore, for any α ∈ V r and any small t, we have φ ū t (α) = φ ū t (e) • α, where φ ū denotes the local flow generated by ū. In particular, we obtain for any small numbers t and s, φ ū t+s (e) = φ ū t (e) • φ ū s (e), which means that {φ ū t (e)} gives a local homomorphism from R into V r .

On the other hand, it is clear that each local right-invariant vector field W on V r is uniquely determined by W (e). So for any u, v ∈ T e (V r ), we can define its bracket [u, v] such that [u, v] = [ū, v]. In this way T e (V r ) becomes a Lie algebra.

Let U be an open neighborhood of zero in T e (V r ). If U is small enough, then the application exp : U -→ V r such that exp(u) = φ ū 1 (e) is well-defined and C ∞ . Since {φ ū t (e)} is a local homomorphism, then for any small t and s, we have exp(tu) • exp(su) = exp((t + s)u). It is clear that D e exp = Id, which implies that exp is a C ∞ local diffeomorphism near zero. We can equally define the local homomorphism Ad : V r → Aut(T e (V r )) such that for any v ∈ T e (V r ),

Ad(η)(v) = ∂ ∂t | t=0 (η -1 • exp(tv) • η)).
Recall that we are consistently using right-invariant Lie algebras. We also define ad :

T e (V r ) → Der(T e (V r )) such that ad(u)(v) = [u, v].
It is easily verified that D e Ad = ad. By using these notations and using the same arguments as in the proof of Theorem 4.29 of chapter one of [START_REF] Kolar | Natural operations in differential geometry[END_REF], we can see that the classical Campbell-Baker-Hausdorff theorem is also valid for V r and its associated Lie algebra T e (V r ), i.e. for any u, v ∈ U ⊆ T e (V r ), we have

exp(u) • exp(v) = exp(u + v - 1 2 [u, v] + • • • ),
which is the same formula as that for Lie groups.

We define ρ : T e (V r ) → g such that

ρ(u)(y) = ∂ ∂t | t=0 (φ ū t (e)) -(y),
where φ ū t (e) -denotes the C ∞ local isometry integrating φ ū t (e). Then the same arguments as in the proof of Proposition 4.1 of chapter one of [START_REF] Kobayashi | Foundations of Differential Geometry[END_REF] show the following: Proposition 6. ρ : T e (V r ) → g is a Lie algebra isomorphism.

Propositions 5 and 6 imply the following corollary, which is a reformulation of the local homogeneity: Corollary 4. Under the notations above, for any u ∈ T x Ω, there exists a C ∞ local Killing field Z such that Z(x) = u. Moreover, there exists an open neighborhood U of x such that for any y ∈ U there exists a certain real number t and a C ∞ local Killing field Y whose flow verifies φ Y t (x) = y. Proof. According to the proof of Lemma 3.4, the projection pr : I r x,• → Ω defined as pr(j r

x φ) = φ(x) is a C ∞ surjective submersion. Since I r x,x acts freely, properly and transitively on the fibers of pr by right composition, then pr : I r x,• → Ω is a I r x,x -principal bundle, thus the induced map pr :

I r x,• I r x,x → Ω is a C ∞ diffeomorphism.
In particular, pr | Vr is a C ∞ diffeomorphism onto its image in Ω. Therefore by Propositions 5 and 6, the proof of the corollary is complete. In addition, φ sends an open neighborhood of ē in H onto an open neighborhood of e in I r x,x . Recall that (M, σ) is said to be geometrically regular if H is a closed subgroup of Ḡ. In this case, the quotient space Ḡ/ H is a C ∞ manifold. Proposition 7. Under the notations above, if we suppose that (Ω, σ | Ω ) is geometrically regular, then there exists a C ∞ rigid geometric structure σ over Ḡ H, which is invariant under the natural left action of Ḡ and locally isometric to (Ω, σ | Ω ).

Proof. According to the proof of Corollary 4, pr | Vr is a C ∞ diffeomorphism onto its image in Ω. Let π be the projection of Ḡ onto Ḡ H and O be a small open neighborhood of ē in Ḡ. We define φ : π(O) → pr(V r ) such that for any g ∈ O, φ(g H) = φ(g)I r x,x . It is easy to see that φ is a well-defined C ∞ local diffeomorphism. Therefore, θ = ( pr • φ) -1 is a C ∞ local diffeomorpism from Ω to Ḡ H sending x to ē H. We define σ = θ * σ, which is a local C ∞ rigid geometric structure defined on an open neighborhood of ē H in Ḡ H. Since, as we have seen above, φ is a local homomorphism, then for any a near ē, the left multiplication by a sends the germ of σ at ē H to that of σ at a H. In particular, we deduce that each element of H preserves the germ of σ at ē H.

Let Ū be a small enough open neighborhood of ē H such that for any y ∈ Ū there exists a ∈ Ḡ such that the left multiplication by a sends the germ of σ at ē H to that of σ at y. Now for any b H ∈ Ḡ H, we define σ such that its germ at b H is b * (σ | Ū ). We need to see that σ is well-defined: if y, z ∈ Ū and b, c ∈ Ḡ such that b(y) = c(z), then by the definition of Ū , there exist α, β ∈ Ḡ such that they send the germ of σ at ē H to the germs of σ at y and z. Thus

β -1 • c -1 • b • α ∈ H.
Since each element of H preserves the germ of σ at ē H, then b * σ and c * σ have the same germ at b(y). Therefore, σ is well-defined on Ḡ H. By its definition, σ is clearly Ḡ-invariant and locally isometric to (Ω, σ | Ω ).

Infinitesimal Killing fields

The understanding of the Lie algebraic structure of g is essential to understand Ḡ; that is why we are interested in the spaces of Killing jets, which are the infinitesimal versions of g. Throughout this section, we denote by (M, σ) a C ∞ rigid geometric manifold of order k and type Z, whose pseudogroup I loc (M ) admits a dense orbit, say Ω. Therefore by Theorem 3. [START_REF] Candel | Parallelisms, prolongations of Lie algebras and rigid geometric structures[END_REF], Ω is open-dense. Let x ∈ Ω and Y be a local C ∞ vector field defined at x. For any i ≥ 0, the (k + i)-th order jet j k+i

x Y is said to be a (k + i)-th order Killing jet at x, if for some frame α

∈ F k+i x M , D α σ i (X (k+i) (α)) = 0.
Recall that σ i : F k+i M → J i n Z denotes the i-th order prolongation of σ (see Section 2). In the following, we denote (k + i) by r. Proposition 8. Under the notations above, if x ∈ Ω and r ≥ d(Ω) + 2, then for any element j r

x Y ∈ g r x , there exists a unique C ∞ local Killing field X ∈ g defined on some open neighborhood of x such that j r

x Y = j r x X. Proof. By Corollary 4, there exists a C ∞ local Killing field X 1 such that

X 1 (x) = Y (x). Let Y 1 = Y -X 1 ; then Y 1 (x) = 0 and j r x Y 1 ∈ g r x , thus the local flow φ Y 1
t fixes x. Moreover, for any α ∈ F r x M and any t small, the derivative

d dt σ i ((ϕ Z t ) * (α)) is just D (ϕ Z t ) * (α) σ i (Z (k+i) ((ϕ Z t ) * (α))), which is zero since (ϕ Z t ) * (α) ∈ F r x M and j r x Z ∈ g r x .
We deduce that for any t small, j r x ϕ Z t ∈ I r x,x . Now denote j r

x (φ Y 1 t ) by γ(t), which is a local curve in V r ⊂ I r (Ω) passing through j r x (Id) at t = 0. Therefore according to the proof of Proposition 5, there exists a C ∞ local homomorphism ζ(t) from an open neighborhood of 0 in R into V r , such that ζ (0) = γ (0). Thus by Theorem 3.3, for any t small, ζ(t) can be uniquely extended to a C ∞ local isometry, which depends smoothly on t and defines a local flow. This local flow of local isometries induces a C ∞ local Killing field denoted by X 2 . Since ζ (0) = γ (0), then we have j r

x Y 1 = j r x X 2 . Therefore, j r x Y = j r x (X 2 + X 1 ). By Proposition 4, C ∞ local Killing fields are uniquely determined by their r-th order jets, and we deduce that X 2 + X 1 is unique.

Corollary 5. Under the notation above, for any r ≥ r ≥ d(Ω) + 2, the natural projections π r : g → g r

x and π r r : g r x → g r x are bijective. Now for any r ≥ d(M ) + 3, we can define an operation over g r x such that for any j r

x Y 1 , j r x Y 2 ∈ g r x , [j r x Y 1 , j r x Y 2 ] = (π r r-1 ) -1 (j r-1 x [Y 1 , Y 2 ]).
Such an operation is well-defined. Firstly, it is clear that the (r -1)-th order jet of [Y 1 , Y 2 ] is uniquely determined by the r-jets of Y 1 and Y 2 . Moreover, by Proposition 8, there exist C ∞ local Killing fields X 1 and

X 2 such that j r x Y i = j r x X i for i ∈ {1, 2}. Therefore j r-1 x [Y 1 , Y 2 ] = j r-1 x [X 1 , X 2 ], which implies that j r-1 x [Y 1 , Y 2 ] ∈ g r-1
x . Since by the corollary above, for any r ≥ d(M ) + 3, π r r-1 is bijective. Thus [j r x Y 1 , j r x Y 2 ] is well-defined and contained in g r

x . Such an operation is in fact a Lie algebra bracket, which is a corollary of the following: Proposition 9. For any r ≥ d(Ω) + 3, the natural projection π r : g → g r x is a Lie algebraic isomorphism.

Proof. For any X ∈ g, π r (X) = j r x X ∈ g r x , which is linear. Moreover, by the corollary above, π r is bijective. If we take X 1 , X 2 ∈ g, then obviously j

r x ([X 1 , X 2 ]) = (π r r-1 ) -1 (j r-1 x [X 1 , X 2 ]), i.e. π r [X 1 , X 2 ] = [π r (X 1 ), π r (X 2 )].
6 Criteria for the geometrical regularity

Recall that according to Corollary 2, for any r ≥ d(Ω) + 2, I loc x,x is naturally a real algebraic group isomorphic to I r x,x . The right-invariant Lie algebra of I loc

x,x can be naturally identified with h by Proposition 6. A Lie subalgebra of h is said to be real algebraic if it is the Lie algebra of the identity component of a real algebraic subgroup of I loc x,x . Now our general criterion for the geometrical regularity can be formulated as follows:

Proposition 10. Under the notations above, let g c be the center of g. If there exists a Lie ideal g of g and a Lie subalgebra h 1 of h such that the following conditions are verified:

(1) g = g h 1 , (2) g ∩ g c = {0}, (3) g ∩ h is real algebraic, then (Ω, σ | Ω ) is geometrically regular.
Proof. Let I be the real algebraic subgroup of I loc x,x integrating g ∩ h. We define ρ :

I loc x,x → Aut(g) such that ρ(h)(Y ) = Dh(Y ). Since I loc x,x is identified with I r
x,x , and by Proposition 9, g is identified to g r x , then it is easily verified via some linear algebra that ρ is an algebraic homomorphism of real algebraic groups. Therefore, ρ(I) is a closed subgroup of Aut(g) (see [START_REF] Onishchik | Lie groups and algebraic groups[END_REF]).

Let Ḡ and H be the connected Lie subgroups of Ḡ integrating respectively g and g ∩h. Denote by Ad the restriction of the adjoint representaion of Ḡ to Ḡ , Ad : Ḡ → Aut(g). It is clear that ρ(I) and Ad( H ) have the same Lie algebra in Aut(g). Moreover, since g ∩ g c = {0}, then H = (Ad -1 ((ρ(I)) 0 )) 0 , where ρ(I) 0 denotes the identity component of ρ(I). We deduce that H is closed in Ḡ .

Let H1 be the connected Lie subgroup of Ḡ integrating h 1 . Since Ḡ is simply connected and g = g h 1 , then by the uniqueness of the universal covering Lie group, we conclude that Ḡ and H1 are also simply connected. In addition, Ḡ is Lie group isomorphic to Ḡ H1 . In particular, we see that Ḡ and H1 are both closed in Ḡ. However, since h = h h 1 , then we conclude that H = H H1 . Therefore, H is closed in Ḡ.

In the case that the center of g is trivial, we can simply take g = g and h 1 = {0}. Thus we obtain the following useful corollary: x,x such that D x φ is hyperbolic. Let φ h be the hyperbolic part in the real Jordan decomposition of φ (see [START_REF] Witte-Morris | Ratner's theorems on unipotent flows[END_REF]). Since I loc x,x is a real algebraic group, then φ h is contained in I loc x,x , so its logarithm denoted by X h is well-defined and contained in h. Recall that the 1-jet j 1

x X h acts naturally on T x M such that for any w ∈ T x M , (j 1

x X h )(W ) = j 0 x ([X h , W ]), where W denotes an arbitrary C ∞ vector field extension of W . Now if Y is an element in the center of g, then we have 0 = j 0

x [X h , Y ] = (j 1 x X h )(Y (x)). Since D x φ has no eigenvalue of modulus one, then zero is not the eigenvalue of j 1

x X h , which implies that Y (x) = 0. By Corollary 4, the local flows of local Killing fields act transitively over some open neighborhood of x. Since Y is in the center of g then it is preserved by such local flows, which implies that Y = 0.

It is well-known that the conformal structure (S n , c n ) with n ≥ 3 is locally isometric to R n endowed with the conformal structure defined by the flat Euclidean metric. Thus for any real number a > 1, the dilation of scale a and centered at the origin gives a local hyperbolic isotropy of (S n , c n ). Therefore, (S n , c n ) is geometrically regular for any n ≥ 3.

Similarly, Proposition 11 implies the geometrical regularity of certain pseudoRiemannian conformal spaces: for any integers p, q ≥ 1, let S p ×S q be the product of spheres, endowed with the conformal structure c p,q associated with the pseudoRiemannian metric -g p ⊕g q , where g m denotes the canonical Riemannian metric over S m of constant sectionnal curvature +1. Such a rigid geometric manifold is usually called the Einstein's universe of signature (p, q). Since the product of dilations of scale strictly greater than 1 is a local hyperbolic isotropy, then by Proposition 11, (S p × S q , c p,q ) is geometrically regular. Thus our Theorem 1.6 implies that for any p, q ≥ 2, (S p × S q , c p,q ) is completely homogeneous.

Weak completeness

Let M be a C ∞ manifold of dimension n. Recall that for any k ≥ 1, its k-th order frame bundle F k M is a G k (n, R)-principal bundle with respect to the composition of k-jets and the natural projection π :

F k M → M . For any element j k 0 φ ∈ G k (n, R), we denote by R j k 0 φ the right action of j k 0 φ over F k M . A connection of F k M is a C ∞ n-dimensional sub-vector bundle Q of T (F k M ) such that Dπ | Q is bijective
everywhere and Q is invariant under DR α for any α ∈ G k (n, R) (see [START_REF] Kobayashi | Foundations of Differential Geometry[END_REF]). It is well-known that such a connection is a rigid geometric structure of order (k + 1).

Let π 1 : F k M → F 1 M be the natural projection defined as

π 1 (j k 0 f ) = j 1 0 f.
Then for any vector u ∈ R n , the standard horizontal vector field B(u) is defined as the unique C ∞ horizontal vector field over

F k M such that for any α ∈ F k M , Dπ(B(u) α ) = (π 1 (α))(u).
Classically, the connection Q is said to be complete if all its standard horizontal vector fields are complete, i.e., all their orbits are defined over R.

Recall that the projections of these orbits into M are called the geodesics of the connection. Let g be a C ∞ Riemannian metric on M ; it is well-known that if g is complete, i.e., its Levi-Civita connection is complete, then (M, g) must be weakly complete. This fact can be generalized to connections.

Proposition 12. For any

k ≥ 1, let Q be a C ∞ connection of F k M . If Q is complete, then it is weakly complete. Proof. Firstly, Q naturally induces a C ∞ connection of F 1 M as follows: for any j k 0 φ ∈ G k (n, R), we have π 1 • R j k 0 φ = R j 1 0 φ • π 1 . So if π 1 (α) = π 1 (β), then there exists a certain j k 0 φ ∈ G k (n, R) such that j 1 0 φ = j 1 0 Id and β = α • j k 0 φ. So we get D β π 1 • D α R j k 0 φ = D α π 1 .
Moreover, since Q is invariant under the right action of G k (n, R), then Dπ 1 (Q) is welldefined and transversal everywhere to the fibers of F 1 M . In addition, it is clear that Dπ 1 (Q) is invariant under the right action of the general linear group

G 1 (n, R). Therefore Dπ 1 (Q) is a well-defined C ∞ connection of F 1 M , denoted by Q 1 .
Since Q is supposed to be complete and Dπ 1 sends the standard horizontal vector fields of Q to those of Q 1 , then the induced connection Q 1 is equally complete. Now let (N, Q N ) be a C ∞ connected manifold endowed with a C ∞ connection. We suppose that a C ∞ locally isometric map ψ

: ( M , Q) → (N, Q N ) exists. It is evident that ψ : ( M , Q 1 ) → (N, Q N 1
) is also locally isometric. Therefore, ψ sends the geodesics defined by Q 1 onto the geodesics defined by Q N 1 . Since the connection Q 1 is complete, then Q 1 is also complete, i.e. all the geodesics of Q 1 can be defined over R. Thus the classical exponential map of Q 1 denoted by exp Q 1 is defined over T M . Let exp Q N 1 be the exponential map of the connection Q N 1 . Since the manifold N is supposed to be connected, any two points of N can be related by a piecewise smooth curve consisting of pieces of Q N 1geodesics. Moreover, since Q 1 is complete, then we can lift such a curve to a piecewise Q 1 -geodesic. So ψ is surjective.

For any a ∈ N , we take a small open neighborhood U of a, which verifies the following: for any b ∈ U , there exists an open subset

V b ⊂ T b N such that exp Q N 1 b : V b → N is a C ∞ diffeomorphism with U ⊂ exp Q N 1 b (V b ). The set ψ -1 (U ) is decomposed as the disjoint union of its connected components ψ -1 (U ) = ∪ U i . By lifting piecewise Q N 1 -geodesics, it is clear that ψ(U i ) = U for each connected component U i . So in order to prove that ψ | U i : U i → U is a C ∞ diffeomorphism,

we need only to verify its injectivity as follows:

Let y, z ∈ U i such that ψ(y) = ψ(z). Take a C ∞ curve γ : [0, 1] → U i such that γ(0) = y, γ(1) = z.

We define γ = ψ•γ and ȳ = γ(0). Since U is small enough and the connection Q 1 is complete, then the following curve γ is well-defined and smooth: for any t ∈ [0, 1],

γ(t) = exp Q 1 y {(D y ψ) -1 [(exp Q N 1 ȳ ) -1 (γ(t))]}. Let Λ = {t ∈ [0, 1] | γ(t) = γ(t)}, which is closed in [0, 1]
and not empty because γ(0) = γ(0) = y. Since ψ is supposed to be locally isometric, then

ψ • γ = γ = ψ • γ.
We In addition, U φ 1 ∩ U φ 2 = ∅ if φ 1 = φ 2 . Since U is connected, then there exists a unique global isometry φ of σ such that φ | U = f. Propositions 7 and 13 imply the following: Proposition 13. Under the notations above, by taking the C ∞ local isometries from (Ω, σ | Ω ) into ( Ḡ H, σ) as charts, we get over Ω a (I(σ), Ḡ H)structure.

The proof of Theorem 1.4. We suppose that (M, σ) verifies the conditions of Theorem 1.4. Then by Proposition 13, there exists a C ∞ developping map D : M → Ḡ/ H which is locally isometric. Since (M, σ) is supposed to be weakly complete, then this local isometry D is in fact a surjective covering map, thus a C ∞ diffeomorphism since Ḡ/ H is obviously simply connected. So D is a C ∞ global isometry sending (M, σ) onto ( Ḡ/ H, σ). Therefore, Lemma 8.1 implies that (M, σ) is completely homogeneous. Now let us prove that a quotient of Ḡ is isomorphic to the identity component of I(M, σ). Recall that the right-invariant Lie algebra of I(M, σ) is naturally identified with the Lie algebra of complete C ∞ global Killing fields over M . Let Y ∈ h be a C ∞ local Killing field and ϕ Y t be the local flow of Y defined for any t such that | t |≤ . Because of the complete homogeneity of (M, σ) and Theorem 3.3, for any t small, ϕ Y t can be uniquely and smoothly extended to a C ∞ global isometry. This local family of global isometries induces a complete global Killing field which extends Y . Therefore, Ḡ and I(M, σ) have the same Lie algebra. Moreover, since (M, σ) is C ∞ isometric to ( Ḡ/ H, σ), then the image of Ḡ in the group of global C ∞ diffeomorphisms of Ḡ/ H is isomorphic to the identity component of I(M, σ). Since obviously, Γ = ∩ a∈ Ḡa Ha -1 is the subgroup of the elements of Ḡ acting trivially on Ḡ H, we deduce that it is a discrete normal subgroup of Ḡ, and Ḡ Γ is isomorphic to the identity component of I(M, σ). The proof of Theorem 1.4 is complete. 

  any C ∞ local isometry ϕ defined on a connected open subset U of M , there exists a unique C ∞ global isometry Φ ∈ I(M, σ) such that ϕ = Φ | U .
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 2 3 is C ∞ . Therefore, for any r ≥ d(a) + 2, any element of I r (U r ) can be uniquely integrated to a C ∞ local isometry, thus U r ⊆ I loc (a). Inversely, we have I loc (a) ⊆ U r by the proof of Lemma 3.4. We deduce that U r = I loc (a), so I loc (a) is open-dense in M by Lemma 3.4. Since two open-dense orbits must intersect, then I loc (a) is the unique open-dense orbit of I loc (M ). The concrete version of the open-dense theorem is proved. Under the notations above, for any x ∈ Ω and any r ≥ d(Ω) + 2, I loc

  Let ē be the neutral element of Ḡ, thus there exists a local diffeomorphism φ sending an open neighborhood of ē in Ḡ onto an open neighborhood of e in V r such that exp • ρ -1 = φ • exp g , where exp g denotes the exponential map of Ḡ. Because of the Campbell-Baker-Hausdorff formula, we have for any a and b near ē in Ḡ, φ(a) • φ(b) = φ(a • b).
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 6 If the center of g is trivial, then (Ω, σ | Ω ) is geometrically regular. The following practical criterion relates the existence of local hyperbolic isotropies (see Introduction) to the geometrical regularity: Proposition 11. If (Ω, σ | Ω ) admits a C ∞ local hyperbolic isotropy, then the center of g is trivial. Therefore (Ω, σ | Ω ) is geometrically regular. Proof. By assumption, there exists a C ∞ local isometry φ ∈ I loc

Proof.

  For any Y ∈ g we denote by Y R the right-invariant vector field on Ḡ corresponding to Y . Denote by Ȳ R its quotient field on Ḡ H. Then, by the definition of θ in Proposition 7, we have θ * (Y ) = Ȳ R as germs of fields at ē H. By Corollary 4, g | x = {Z(x) | Z ∈ g} = T x M. So we have (θ * (g)) | ē H = T ē H ( Ḡ H). Moreover, θ * (g) is the Lie algebra of germs at ē H of C ∞ local Killing fileds of σ.Take h ∈ I loc ē H,ē H (σ). Then we get a Lie algebra isomorphism h * : θ * (g) → θ * (g) such that h * (W ) = Dh(W ). Thus there exists a Lie algebra isomorphism A of g such that θ *• A = h * • θ * . We have A(h) = h.Denote by ψ the Lie group automorphism of Ḡ integrating A. Then we have ψ( H) = H. Let π be the projection of Ḡ onto Ḡ H; then there exists a uniqueC ∞ diffeomorphism ψ of Ḡ H such that π • ψ = ψ • π.Recall that for anyY ∈ g, θ * (Y ) = Ȳ R = π * (Y R) as germs of fields at ē H. Then we have the following equalities of germs at ē Hψ * (θ * (Y )) = ψ * (π * (Y R )) = π * • ψ * (Y R ) = π * ((D ēψ(Y )) R ) = π * (A(Y ) R ) = θ * (A(Y )) = h * (θ * (Y )).Since g is of finite dimension, we can find a small open neighborhood U of x such that for any Y ∈ g, Y can be defined on U and ψ(θ* (Y )) = h * (θ * (Y )) on U . Since (θ * (g)) | ē H = T ē H ( Ḡ H) and θ * (Y ) = Ȳ R , then we can wisely choose U so that for all y ∈ U there exists Z ∈ g such thatφ θ * Z [0,1] (ē H) ⊆ θ(U ), φ θ * Z 1 (ē H) = θ(y),where φ θ * Z t denotes the flow of θ * Z. Since ψ and h fix both ē H, then ψ(θ(y)) = h(θ(y)). So we get ψ = h as germs of diffeomorphisms at ē H. Since σ is Ḡ-invariant and ψ is induced by an automorphism of Ḡ, then ψ is in fact a C ∞ global isometry of σ. Since Ḡ acts transitively by left-multiplication on Ḡ H, then for each local C ∞ isometry h of σ sending y to z, there exists a global C ∞ isometry ψ of σ such that h = ψ as germs at y of diffeomorphisms.Suppose that f is a local isometry defined on a connected open subset U of M . For each global σ-isometry φ, we define U φ = {z ∈ U | φ = f as germs at z}. Then we have U = ∪ φ∈I(ḡ) U φ .

Corollary 7 .

 7 Let (M, σ) be a C ∞ connected and simply connected locally homogeneous rigid geometric manifold. If (M, σ) is weakly complete and geometrically regular, then any C ∞ local Killing field of (M, σ) defined on a connected open subset can be uniquely extended to a C ∞ complete global Killing field.

Acknowledgments. The author sincerely thanks the referee for the numerous and valuable suggestions. The author also thanks Becky Scott and Daniel Ehmann for their support in English.