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1 Introduction

Originating from distant storms, swell systems radiate across all ocean basins
(Snodgrass et al, 1966; Collard et al, 2009; Ardhuin et al, 2009). Far from their
sources, emerging surface waves have low steepness characteristics, with very
slow amplitude variations. Swell propagation then closely follows principles of
geometrical optics, i.e. the eikonal approximation to the wave equation, with
a constant wave period along geodesics, when following a wave packet at its
group velocity. The phase averaged evolution of quasi-linear wave fields is then
dominated by interactions with underlying current and/or topography changes
(Phillips, 1977). Comparable to the propagation of light in a slowly varying
medium, over many wavelengths, cumulative effects can lead to refraction, i.e.
change of the direction of propagation of a given wave packet, so that it departs
from its initial ray-propagation direction. This opens the possibility of using
surface swell systems as probes to estimate turbulence along their propagating
path.

For a single progressive swell wave train, a description of the form

h(x, t) = a(x, t)eiϕ(x,t), (1.1)

is locally possible for most wave properties, i.e. the surface elevation, slope,
orbital velocities. If the wave-ray propagation is to be followed, or predicted,
the phase, ϕ(x, t), must vary smoothly along the wave’s path. Mathematically,
ϕ(x, t) is required to be differentiable, to define the relative frequency

ω = −∂tϕ(x, t), (1.2)

and the wave number vector

k = ∇ϕ(x, t). (1.3)

These partial derivatives of ϕ(x, t) being independent of the differentiation order,
the kinematical conservation equation for the density of waves writes

−∇ω = ∂tk, (1.4)
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with the irrotational condition

∇× k = 0, (1.5)

to serve as an initial condition for use with Kelvin’s circulation theorem. The rate
of change of the wave-number is balanced by the convergence of the frequency,
the number of wave crests passing a fixed point.

Let us now consider an ocean moving with velocity v, slowly varying with
respect to time and space. The frequency of wave crests passing a fixed point,
i.e. the apparent frequency, becomes

ω = ω0 + v · k, (1.6)

with ω0 = f(k, H), H the depth, the intrinsic frequency, whose functional de-
pendence on k is known. For gravity waves, this dispersion relationship is

ω0 =
√
g∥k∥ tanh ∥k∥H, (1.7)

and thus

∂tk + ∂kω0∇k + ∂Hω0∇H + l · v∇∥k∥+ ∥k∥∇(l · v) = 0, (1.8)

with l is a unit vector in the direction of k and k = ∥k∥. Consequently, for
a steady wave train, the variation of the wave-number magnitude along the
propagation s is

∂s∥k∥ = −(cg + l · v)−1[∂Hω0∂sH + ∥k∥∂s(l · v)], (1.9)

with cg = ∂kω0, the local group velocity. Using the irrotational condition, the
evolution of the ray direction, θ(s), follows

∂sθ = −(cg + l · v)−1[
1

∥k∥
∂Hω0∂νH + ∂ν(l · v)], (1.10)

where ν is a unit vector normal to the direction of the ray. Accordingly, wave
trajectories will bend with depth variations. For deep water, the dispersion rela-
tionship reduces to ω0 =

√
g∥k∥, and θ(s) solely depends upon the ratio between

the cross-ray current gradient and the local group velocity. More generally, this
result extends to the ray curvature, being to first order controlled by ζ/cg, the
ratio between ζ = ∇ × v, the vertical component of the current vorticity, and
cg = ∂kω0 = ω/2∥k∥, the group velocity. Accordingly, the rays will bend in the
direction of decreasing (increasing) current speed. Moreover, a potential velocity
field will give little refraction. Yet, a potential velocity field will control the vari-
ation of the wave-number magnitude, and thus the group velocity and bending,
along the propagation.

To specify the local linear wave propagation, a precise knowledge of the sur-
face currents, local gradients and/or vorticity, thus appears essential. In a realis-
tic numerical setting, Ardhuin et al (2017) clearly demonstrated that wave energy
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variations would largely be dominated by the effects of ocean currents at scales
of about 10 to 100 km. From altimeter ocean surface wave energy measurements,
Quilfen and Chapron (2019) also showed that mesoscale and sub-mesoscale up-
per ocean circulation can drive a significant part of the wave variability in the
coupled ocean-atmosphere system. Unfortunately, these small-scale currents are
not observed and certainly not resolved in operational models. Today, a precise
spatio-temporal information is thus largely missing. To overcome these observa-
tion difficulties, but to best take into account unresolved small-scale currents, a
stochastic framework can be adopted. Such a stochastic model shall then provide
means to perform fast simulations and test ensembles of wave-propagation pre-
dictions, to best evaluate impacts of underlying near-surface small-scale currents
on the evolution of ocean surface swell systems.

2 Random Swell-Rays

To first order in wave steepness, the group velocity vg is modified by the local
velocity of the currents v,

dx

dt
= vg = ∇kω = ∇kω0(k)︸ ︷︷ ︸

Group velocity
without currents

but changing wave vector

+v, (2.1)

where x is the centroid of a wave group. The ray direction can thus differ from
the direction of the wave vector, except in the case of parallel wave and current
directions. Unlike depth refraction, the crest alignment does not indicate the
wave propagation direction. The coupled wave vector evolution writes

dk

dt
= −∇vTk. (2.2)

Along the propagation ray, velocity gradients induce linear variations. Decelerat-
ing currents will shorten waves, and thus reduce the group velocity. The validity
of this coupled ray approximation largely depends on the condition ∥k∥ξ ≫ 1,
where ξ is a length scale on which the current field is varying, physically cor-
responding to the typical eddy size. This condition is well satisfied for wave
numbers of interest, of order ∥k∥ ∼ 2π/250 rad.m−1, and typical eddy size ξ ∼ 5
km or larger. Scattering of the waves by currents can further be assumed to be
weak, with ∥v∥ of order 0.5 m/s, much smaller than ∥vg∥ of order 10 m/s. Sub-
sequently, each ray will be appreciably deflected, with scattering angle of order
∼ ∥v∥/∥vg∥ after traveling a typical correlation length ∼ ξ along the mean wave
vector direction.

To complete the wave field description, the wave action A(x, t) is considered
to be an adiabatic invariant. Wave action is crucial to anticipate wave transfor-
mations by currents (White and Fornberg, 1998). This action is the integral of
the action spectrum N(x,k, t) over all the wave-vectors k:

A(x, t) =

∫
dk N(x,k, t). (2.3)
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The wave action spectrum N is the action by unit of surface (unit of x) and
by unit of wave-vector surface (unit of k). For linear waves, the wave action
spectrum is simply related to the wave energy spectrum E:

E(x,k, t) = N(x,k, t) ω0(k). (2.4)

By the Liouville theorem, the (x,k) space does not contract nor dilate along
time4. Since the dissipation is neglected, the wave action spectrum N is thus
conserved (Lavrenov, 2013), i.e.

N (x(ti),k(ti), ti) = N (x(tf ),k(tf ), tf ) , (2.5)

along the following (x,k) variable change between initial time ti and the final
time tf : (

x(ti)
k(ti)

)
7→

(
x(tf )
k(tf )

)
. (2.6)

Subsequently, each Fourier mode of a swell wave train can be modified, indepen-
dently of the others. In absence of source terms, the action spectrum conservation
(2.5) then writes:

dN

dt
= ∂tN + vg · ∇xN +

(
−∇xv

Tk
)
· ∇kN = 0. (2.7)

3 The time-decorrelation assumption

Now, the Eulerian current v is decomposed into a large-scale component v and
a small-scale unresolved component v′:

v = v + v′. (3.1)

In a stochastic framework, we can work with the Stratonovich notations
(Oksendal, 1998; Kunita, 1997). Under Stratonovich calculus rules, expressions
become similar to deterministic ones. The Stratonovich dispersion relation is
analogous to the deterministic one (1.6). The method of characteristics is also
valid, (2.1), (2.2), and (2.5), with v′ defined by σ ◦ dBt/dt, where dBt/dt is a
spatio-temporal white noise and σ◦ denotes a spatial filter which encodes spa-
tial correlations and horizontal incompressibility (∇ · σ = 0). For a spatially
stationary and isotropic small-scale velocity, the wave characteristic dynamics
equations (2.1), (2.2) and (2.5) would then also remain the same with Ito no-
tations (i.e. we can replace σ ◦ dBt by σdBt to derive the evolution). With Ito
notations, the action spectrum conservation (2.7) writes

∂tN + vg · ∇xN +
(
−∇xv

Tk
)
· ∇kN =

[
∇x

∇k

]
·
(
D

[
∇x

∇k

]
N

)
, (3.2)

4

[
∇x

∇k

]
·
(

d
dt

[
x
k

])
=

[
∇x

∇k

]
·
([

v
−∇xv

Tk

])
= ∇x · v −∇x · v = 0.
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where vg and v include the random small-scale component v′ = σdBt/dt, and

D =
1

2dt
E

{[
σdBt

−∇x(σdBt)
Tk

] [
σdBt

−∇x(σdBt)
Tk

]T}
. (3.3)

Compared to (2.7), a RHS diffusive term appears, likely acting to increase the
initial directional spread of the incident very directional swell components.

Voronovich (1991) andWhite and Fornberg (1998) discussed the joint random
evolution changes of the coupled (x,k), i.e. the location and the wave vector of
waves, subject to a random current v. Considering the wave train to undergo
slow changes over the typical time to travel through the typical correlation length
of the underlying current, the joint time evolution of (x,k) can be approximated
to be driven by a diffusion Markov process.

3.1 The ray Lagrangian correlation time

To apply (3.2), the covariance of the small-scale unresolved component v′ – in
the wave group frame – is thus to be assessed:

γXr

v′ (t) = E (v′(t′,Xr(t
′)) · v′(t′ + t,Xr(t

′ + t))) = γv′(t,Xr(t
′+t)−Xr(t

′)),
(3.4)

where γv′ is the (Eulerian) spatio-temporal covariance of v′, assuming statistical
homogeneity, and stationarity for v′. Assume a typical isotropic form for this
covariance:

γv′(t,x) = γ

(
|t|
τv′

+
∥x∥
lv′

)
, (3.5)

then,

γXr

v′ (t) = γ

(
|t|
τv′

+
∥Xr(t

′ + t)−Xr(t
′)∥

lv′

)
= γ

((
1

τv′
+

∥vg∥
lv′

)
|t|+O(t2)

)
,(3.6)

for small time increment t. Therefore,
(

1
τv′

+
∥vg∥
lv′

)−1

is the correlation time of

v′(t,Xr(t)). The same derivation is valid for ∇(v′)
T
(t,Xr(t)). Over deep ocean,

the swell wave group velocity is ∥v0
g∥ = ∥∇kω0∥ = 1

2

√
g

∥k∥ , and the along-ray

correlation time of the small-scale velocity can be approximated by lv′/∥v0
g∥.

The ratio ϵ between this along-ray correlation time and the characteristic time
of the wave group properties evolution, will then control the time decorrelation
assumption of v′:

ϵ =
lv′

∥v0
g∥

∥∇vT ∥. (3.7)

Note the Eulerian small-scale velocity v′ is not necessarily time uncorrelated.
Yet, for small enough ϵ, the Lagrangian small-scale velocity along the ray can be
considered time uncorrelated. From the expression of ϵ, such a condition depends
upon:
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– ∥v0
g∥, increasing with the square root of the wave-group wave number. Hence,

ϵ decreases with the square root of the wave-group wave-length.
– lv′ , defined by the separation between large scales v and small scales v′, e.g.

the spatial filtering cutoff of the large-scale velocity v.
– ∥∇vT ∥ – which is different from ∥∇(v′)

T ∥ –, related to the overall kinetic
energy (KE) and its high-wavenumber spectral slope.

3.2 Ray absolute diffusivity

The absolute diffusivity (or Kubo-type formula) usually corresponds, in the so-
called diffusive regime, to the variance per unit of time of a fluid particle La-
grangian path dX

dt = v. It is approximately equal to the velocity variance times
its correlation time. The Eulerian velocity covariance (3.5) will thus induce an
absolute diffusivity

a =

∫ ∞

0

dt γv′(t,X(t′ + t)−X(t′)) ≈ γ(0) τv′ . (3.8)

Here, a wave group is followed along its propagation, and a ray absolute diffu-
sivity slightly differs from the usual absolute diffusivity to become

aXr =

∫ ∞

0

dt γXr

v′ (t) ≈
(

1

τv′
+

∥vg∥
lv′

)−1

γ(0) ≈ lv′

∥v0
g∥

γ(0). (3.9)

In the Fourier space, the current Absolute Diffusivity Spectral Densisty (ADSD)
(Resseguier et al, 2020) associated with the wave dynamics is defined by

AXr (k) =
1/k

∥v0
g(k

Xr )∥
Ek(k), (3.10)

where kXr denotes the wave wave-vector, k the current wave number and Ek

the current kinetic energy spectra. Accordingly, for noise calibration, we assume
AXr self-similar and we choose a divergence-free spatial filter ∇⊥ψσ such that

v′ = σdBt/dt = ∇⊥ψ̆σ ⋆ dBt/dt and ∥σ̂dBt(k)∥2/dt = |k ̂̆
ψσ(k)|2 = AXr

v′ (k).

3.3 A practical estimation

To simplify (3.3), let us consider the solution for an homogeneous and isotropic

small-scale velocity v′ = σdBt/dt = ∇⊥ψ̆σ⋆dBt/dt and Matérn stream function

covariance, (ψ̆σ ∗ ψ̆σ), leading to

D =
1

2dt

E
{
(σdBt)(σdBt)

T
} 0 0

0 0
0 0
0 0

∑2
ij=1 kikj E

{
(∇x(σdBt)i)(∇x(σdBt)j)

T
}
 , (3.11)

=


a0

2 Id
0 0
0 0

0 0
0 0

cκM

2

(
kkT + 3k⊥

(
k⊥

)T
)
 , (3.12)
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where a0 = 1
2dtE∥σdBt∥2 and cκM

= 1
8dtE∥∇x(σdBt)

T ∥2 are constants depend-
ing on both the correlation length and the spectrum slope of the small-scale
velocity. The Ito action spectrum equation (3.2) then reads:

∂tN + vg · ∇xN +
(
−∇xv

Tk
)
· ∇kN

= ∇x ·
(
1
2a0∇xN

)
+∇k ·

(
1
2cκM

[
kkT + 3k⊥

(
k⊥

)T
]
∇kN

)
, (3.13)

= 1
2a0∆xN + 1

2cκM

1

∥k∥
∂∥k∥

(
∥k∥3∂∥k∥N

)
+ 3 1

2cκM
∂2θkN. (3.14)

The ensemble mean then follows :

∂tEN + vg · ∇xEN +
(
−∇xv

Tk
)
· ∇kEN

= 1
2a0∆xEN + 1

2cκM

1

∥k∥
∂∥k∥

(
∥k∥3∂∥k∥EN

)
+ 3 1

2cκM
∂2θkEN, (3.15)

This last RHS diffusion term along the ray-direction θ is then reminiscent to Eq.
3.16 in Bôas and Young (2020) and Eq. 36 in Smit and Janssen (2019) derived
under the same isotropic and homogeneous turbulence assumptions.

4 Numerical simulations

To illustrate our purpose, we consider the Surface Quasi-Geostrophic dynamics
(Pierrehumbert, 1994; Lapeyre, 2017), abbreviated SQG:

(∂t + v · ∇)

(
− b

N

)
= 0 with v = vSQG = −∇⊥(−∆)−1/2

(
− b

N

)
. (4.1)

Note, real-upper-ocean currents may not strictly follow SQG. Still, after a wind
burst, it can be a good approximation at many mid-latitude locations. SQG
corresponds to dynamics with extreme locality, i.e a KE spectrum with a shal-
low slope −5/3. Hence, for fixed KE value, a larger current gradient ∥∇vT ∥
is expected. The validity of the time-decorrelation assumption of section 3 will
then depend upon the scale separation, defining the correlation length of the
unresolved scales.

A reference simulation is obtained at a resolution 512 × 512 for a 1000-km
squared domain, through a pseudo-spectral code (Resseguier et al, 2017, 2020).
Once initialized, the current velocity v is about 0.1 m.s−1.

A swell system enters the southern boundary, propagating to the north. The
carrier incident wave has a wave length λ = 250 m. Its envelope is Gaussian
with an isotropic spatial extension of 30λ. Figure 1 illustrates the branched
regime in this homogeneous SQG turbulence. This regime spreads the positions
(left panel) and wavevectors (right panel) of the incoming waves. From south to
north, spectral diffusion occurs (right panel), in the direction orthogonal (here
kx) to the propagation (here ky). This accelerates – along the propagation –
the zonal wave position spread, to create the branched regime visible in the left
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Fig. 1: Swell interacting with a high-resolution (512 × 512) deterministic SQG
current. The left panel shows ray trajectories computed by forward advection and
superimposed on the current vorticity ω = ∇⊥ · v. The right panel shows bidi-
rectional wave spectra, computed by backward advection, at 8 locations along a
meridional axis (the mean wave propagation direction).
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panel. This acceleration is explained by the ray equation (2.1) dominated by the

intrinsic wave group velocity ∇kω0 = ∥∇kω0∥
∥k∥ k.

To mimic a badly resolved v, the current v is smoothed at a resolution 32×
32. Wave dynamics, using this coarse-scale current, are obtained Figure 2. The
branched regime is strongly weakened, i.e. the spectral small-scale turbulence
diffusion is missing.

A stochastic current is then added to this coarse deterministic one. That
stochastic component is divergence-free and has a self-similar distribution of
energy across spatial scales. Its precise parametrisation is a modification of
the ADSD calibration (Resseguier et al, 2020) (see section 3.2). Figure 3 dis-
plays the wave simulations. This white-in-time model appears to work for a
sufficiently well-resolved large-scale current. Indeed, the decorrelation ratio ϵ =
(lv′/∥v0

g∥)∥∇vT ∥ depends on this resolution through lv′ . Specifically, for this
SQG flow, the large-scale current v needs to be resolved at least on a 32×32
grid, i.e. with a resolution lv′ = 31.3 km. As such, we obtain ϵ = 3.23 × 10−2

(computed with 1/∥∇vT ∥ = 1.38× 105 s and Cg ≃ 10 m.s−1).

5 Conclusion

The presence of velocity variations results in random scattering of swell-wave
rays. Interactions are weak, but cumulative effects can become significant, to
increase the average path length taken by the swell energy to reach an observer.
Nowadays, sufficiently precise measurements can then open the possibility to
use along-ray measurements to probe the near-surface ocean turbulence. Un-
der a Lagrangian time-decorrelation assumption and using geometrical optics, a
practical stochastic framework helps express these scattering effects on the mean
swell-action statistics, directly in terms of the KE spectrum of the unresolved sur-
face current field. Results are presented in both Lagrangian and Eulerian forms,
where the latter augments the initial radiative transport equation with a diffu-
sive term in directional space. Measured delays in swell arrivals, estimated wave
height spectral characteristics and decays, and/or varying directional spread of
the swell field shall then be more quantitatively interpreted to infer regional and
seasonal upper ocean dynamical properties.
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Fig. 2: Swell interacting with a low-resolution (32× 32) deterministic SQG cur-
rent. The left panel shows ray trajectories computed by forward advection and
superimposed on the low-resolution current vorticity ω = ∇⊥ · v. The right
panel shows bidirectional wave spectra, computed by backward advection, at 8
locations along a meridional axis (the mean wave propagation direction).
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Fig. 3: Swell interacting with a low-resolution (32×32) deterministic SQG current
plus (one realization of) the time-uncorrelated stochastic model. Ray trajectories
are computed by forward advection and superimposed on the low-resolution
current vorticity ω = ∇⊥ · v.
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