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Abstract
Comparison of data representations is a complex
multi-aspect problem that has no complete solu-
tion yet. We propose a method for comparing
two data representations. We introduce the Rep-
resentation Topology Divergence (RTD) which
measures the dissimilarity in multi-scale topology
between two point clouds of equal size with a one-
to-one correspondence between points. The data
point clouds are allowed to lie in different ambient
spaces. The RTD is one of the few practical meth-
ods based on Topological Data Analysis (TDA)
applicable to real machine learning datasets. Ex-
periments show the proposed RTD agrees with the
intuitive assessment of data representation simi-
larity and is sensitive to its topological structure.
We apply RTD to gain insights into neural net-
work representations in computer vision and NLP
domains for various problems: training dynamics
analysis, data distribution shift, transfer learning,
ensemble learning.

1. Introduction
Representations of objects are the essential component
learnt by deep neural networks. In opposite to the distance in
the original space, the similarity of representations is proved
to be semantically meaningful. Despite the significant prac-
tical success of deep neural networks, many aspects of their
behavior are poorly understood. Only a few methods study
neural representations without relying on their quality on
a specific downstream task. In this work, we focus on the
comparison of representations from neural networks.

Comparison of representations is an ill-posed problem with-
out a “ground truth” answer. Early studies were based on
variants of Canonical Correlation Analysis (CCA): SVCCA,
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(Raghu et al., 2017), PWCCA (Morcos et al., 2018). How-
ever, CCA-like measures define similarity too loosely since
they are invariant under any invertible linear transformation.
The Centered Kernel Alignment (CKA), (Kornblith et al.,
2019) is the statistical test to measure the independence
of two sets of variables. (Kornblith et al., 2019) proved
CKA to be more consistent with the intuitive similarity of
representations. Particularly, neural networks learn similar
representations from different seeds as evaluated by CKA.
Another line of work is concerned with the alignment be-
tween groups of neurons (Li et al., 2015), (Wang et al.,
2018). The similarity of representations is also a topic of
study in neuroscience (Edelman, 1998; Kriegeskorte et al.,
2008; Connolly et al., 2012).

Representational similarity metrics like CKA and CCA were
used to gain insights on representations obtained in meta-
learning (Raghu et al., 2020), to compare representations
from different layers of language models (Voita et al., 2019),
and to study the effect of fine-tuning (Wu et al., 2020).
Finally, (Nguyen et al., 2021) used CKA to study the phe-
nomenon of a “block structure” emerging in wide and deep
networks in computer vision and compare their representa-
tions.

In this paper, we take a topological perspective on the
comparison of neural network representations. We pro-
pose the Representation Topology Divergence (RTD) score,
which measures dissimilarity between two point clouds
of equal size with a one-to-one correspondence between
points. Point clouds are allowed to lie in different ambient
spaces. Existing geometrical and topological methods are
dedicated to other problems: they are either too general
and do not incorporate the one-to-one correspondence re-
quirement (Khrulkov & Oseledets, 2018), (Tsitsulin et al.,
2020), or they restrict point clouds to lie in the same ambi-
ent space (Kynkäänniemi et al., 2019), (Barannikov et al.,
2021). Most of these methods are applied to the evaluation
of GANs. Recently, (Moor et al., 2020) proposed a loss
term to compare the topology of data in original and latent
spaces and applied the term as a part of the Topological
Autoencoder.

In this work, we make the following contributions:
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Figure 1: Comparison of representations after the ith epoch and the final one done by RTD, 1−CKA, and disagreement of
predictions. All the measures are normalized by division to their maximal values. Strikingly, RTD highly correlates with the
disagreement of models’ predictions.

1. We propose a topologically-inspired approach for com-
parison of neural network representations;

2. We introduce the R-Cross-Barcode(P, P̃ ), a tool based
on Topological Data Analysis (TDA), which measures
the differences in the multi-scale topology of two point
clouds P, P̃ with a one-to-one correspondence between
points;

3. Based on the R-Cross-Barcode(P, P̃ ), we define the
Representation Topology Divergence (RTD), the quan-
tity measuring the multi-scale topological dissimilarity
between two representations;

4. Our computational experiments show that RTD agrees
with an intuitive notion of neural network representa-
tions similarity. In contrast to most existing approaches,
RTD is sensitive to differences in topological structures
(clusters, voids, cavities, tunnels, etc.) of the represen-
tations and enjoys a very good correlation with dis-
agreement of models predictions. We apply RTD to
compare representations in computer vision and NLP
domains and various problems: training dynamics anal-
ysis, data distribution shift, transfer learning, ensemble
learning, and disentanglement. Experiments show that
RTD outperforms CKA, IMD, and SVCCA.

The source code is publicly available:
https://github.com/IlyaTrofimov/RTD.

2. Comparing Neural Network
Representations

Our starting point is the geometric perspective on represen-
tation learning through the lens of the manifold hypothesis
(Goodfellow et al., 2016), according to which real-world
data presented in a high-dimensional space are expected
to concentrate in the vicinity of a manifold of much lower
dimension. The low-dimensional manifold MP underlying

the given data representation P can be accessed in general
only through discrete sets of samples. The standard ap-
proach to recover the manifold MP is to take a sample P
and to approximate MP by a set of simplexes with vertices
from P . Commonly, to select the simplexes approximat-
ing MP one has to fix a threshold α > 0 and consider the
simplexes with edge lengths not exceeding α (Niyogi et al.,
2008; Belkin & Niyogi, 2001). It is difficult to guess the cor-
rect value of the threshold, and hence a reasonable approach
is to study all thresholds at once.

Given two representations, we consider two corresponding
graphs with distance-like weights and compare the differ-
ence in the multiscale topology of the two graphs.

Let P, P̃ be two representations giving two embeddings
of the same data V . The two embeddings P, P̃ belong in
general to different ambient spaces and have the natural one-
to-one correspondence between points in P and P̃ . Given a
sample of data V ⊆ V , the two representations P = P(V ),
P̃ = P̃(V ) define two weighted graphs Gw, Gw̃ with the
same vertex set V . The weights wAB , w̃AB of an edge
AB are given by the distances wAB = dist(P (A), P (B)),
w̃AB = dist(P̃ (A), P̃ (B)).

The simplicial approximation to the manifold MP at thresh-
old α consists of simplexes whose edges in Gw have weights
not exceeding α. Let Gw≤α denote the graph with the vertex
set V and the edges with weights not exceeding α. To com-
pare the simplicial approximations to the manifoldsMP and
MP̃ described by the graphs Gw≤α and Gw̃≤α, we compare
each of the two simplicial approximations with the union of
simplices formed by edges present in at least one of the two
graphs. The graph Gmin(w,w̃)≤α contains an edge between
vertices A and B iff the distance between the points A and
B is smaller than α in at least one of the representations P ,
P̃ . The set of edges of the graph Gmin(w,w̃)≤α is the union
of sets of edges of Gw≤α and Gw̃≤α. The similarity of
manifolds MP and MP̃ can be measured by the degrees of

https://github.com/IlyaTrofimov/RTD
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similarities of the graph Gmin(w,w̃)≤α with the graph Gw≤α
and the graph Gw̃≤α.

Figure 2: Graphs Gw≤α, Gw̃≤α and Gmin(w,w̃)≤α with
edges not in Gw≤α colored in green.

2.1. Topological features for a pair of weighted graphs

One way to measure the discrepancy between the graphs
Gw≤α and Gmin(w,w̃)≤α is to count the graph Gw≤α
connected components merged together in the graph
Gmin(w,w̃)≤α. We show an example of this situation in Fig-
ure 2 right, see also Figure 10, where three graphs Gw≤α,
Gw̃≤α and Gmin(w,w̃)≤α are shown, with edges of the graph
Gmin(w,w̃)≤α not in Gw≤α colored in green. Each merging
is represented by a class of green paths in Gmin(w,w̃)≤α join-
ing two blue clusters. The significance of the discrepancy
constituted by the green path is measured by the differ-
ence αd − αb in the smallest thresholds αb, αd at which
the two clusters are merged in Gmin(w,w̃)≤αb and Gw≤αd .
Homology is the tool that permits counting such topological
features, because of the space limit we gather the defini-
tions and necessary properties of homology in Appendix
A, see also (Hatcher, 2005). The number of these simplest
topological features is the dimension of the kernel of linear
map H0(Gw≤α) → H0(Gmin(w,w̃)≤α), as basis elements
of the vector space H0 correspond to the graph connected
components. It may also happen that a non-trivial merg-
ing happens between two distant parts of the same Gw≤α
cluster or between two Gw≤α clusters already connected
via a chain of merging, as on Figure 9. The number of
these features is the dimension of the cokernel of the map
H1(Gw≤α) → H1(Gmin(w,w̃)≤α). Hence the number of
non-trivial mergings is the sum of the two numbers. We
are interested in these numbers for all possible thresholds α.
When the threshold α is increased then more green and blue
edges appear, and also certain green edges become blue.
Using an auxiliary graph and the barcodes algorithm, we
calculate the numbers of such topological features for all
values of α at once.

2.2. R-Cross-Barcode

Recall that the Vietoris-Rips complex of a graph G
equipped with edge weights’ matrix m is the collection
of k−simplexes, k ≥ 0, which are (k+ 1)−element subsets
of the set of vertices of G, with the filtration threshold of a
simplex defined by the maximal weight on the edges:

Rα(Gm) =
{
{Ai0 , . . . , Aik}, Ai ∈ Vert(G)|mAiAj ≤ α

}
Our simplicial approximation to the manifold MP at thresh-
old α is the union of all simplexes from the simplicial com-
plex Rα(Gw), and similarly the approximation to MP̃ is the
union of all simplexes from Rα(Gw̃).

The dissimilarity between the filtered simplicial complexes
Rα(Gw) and Rα(Gw̃) can be quantified using the homo-
logical methods. The relevant tools here are homology,
barcodes and homology exact sequences. We describe our
construction below and, because of space limitations, we
sketch further explanation of the construction in Appendix,
Section A.2.

Concretely, to compare the multi-scale topology of the two
weighted graphs Gw and Gw̃ we introduce the weighted
graph Ĝw,w̃ with doubled set of vertices and with the edge
weights defined as follows. For convenience, fix a number-
ing of vertices Vert(G) = {A1, . . . , AN}. For each vertex
A ∈ Vert(G) we add the extra vertex A′ together with A
to Ĝ, plus the unique additional vertex O, and define the
distance-like edge weights in Ĝw,w̃ as:

dA′iA′j = min(wAiAj
, w̃AiAj

), dAiA′j
= dAiAj

= wAiAj
,

dAiA′i
= dOAi

= 0, dAjA′i
= dOA′i = +∞ (1)

where i < j and O ∈ Vert(Ĝw,w̃) is the additional vertex.
In practice, for the calculation of RTD described below,
the distance matrix can be taken in a slightly simpler form

m =

(
0 (w+)ᵀ

w+ min(w, w̃)

)
, where w and w̃ are the edge

weight matrices of Gw and Gw̃, andw+, respectively (w+)ᵀ,
is the matrix w with upper-(respectively, lower-)triangular
part replaced by +∞.

Next, we construct the Vietoris-Rips filtered simplicial
complex of the graph Ĝw,w̃ and take its barcode. The
doubling of vertices in Ĝw,w̃ creates triangles OAiAj ,
AiAjA

′
j , AiA

′
iA
′
j at the threshold α = wAiAj

. These
triangles ”kill” the edge A′iA

′
j becoming blue at this thresh-

old. Intuitively, the i−th barcode of Rα(Ĝw,w̃) records
the i-dimensional topological features that are born in
Gmin(w,w̃)≤α but are not yet born near the same place in
Gw≤α and the (i − 1)−dimensional topological features
that are dead in Gmin(w,w̃)≤α but are not yet dead at the
same place in Gw≤α, see Theorem 2.1 below.

Definition. The R-Cross-Barcodei(P, P̃ ) is the set of inter-
vals recording the “births” and “deaths” of i-dimensional
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Algorithm 1 R-Cross-Barcodei(P, P̃ )

Input: w, w̃ : matrices of pairwise distances within point
clouds P , P̃

Require: vr(m): function computing filtered complex from
pairwise distances matrix m

Require: B(C, i): function computing persistence intervals
of filtered complex C in dimension i
w, w̃ ← w, w̃ divided by their 0.9 quantiles

m←

 w (w+)ᵀ 0
w+ min(w, w̃) +∞
0 +∞ 0


R-Cross-Barcodei ← B(vr(m), i)

Return: intervals list R-Cross-Barcodei(P, P̃ ) represent-
ing ”births” and ”deaths” of topological discrepancies
between P and P̃ .

Algorithm 2 RTD(P, P̃), see section 2.4 for details, sug-
gested default values: b = 500, n = 10

Input: P ∈ R|V|×D, P̃ ∈ R|V|×D̃ : data representations
for j = 1 to n do
Vj ← random choice (V, b)
Pj , P̃j ←P(Vj), P̃(Vj)

Bj ← R-Cross-Barcode1(Pj , P̃j) intervals’ list calcu-
lated by Algorithm 1
rtdj ← sum of lengths of all intervals in Bj

end for
RTD1(P, P̃)← mean(rtd)

Return: number RTD1(P, P̃) representing discrepancy be-
tween the representations P, P̃

topological features in the filtered simplicial complex
Rα(Ĝw,w̃).

The R-Cross-Barcode∗(P, P̃ ) (for Representations’ Cross-
Barcode) records the differences in the multiscale topology
of the two embeddings. The topological features with longer
lifespans indicate in general the essential features.

Theorem 2.1. Basic properties of R-Cross-
Barcode∗(P, P̃ ):

• if P (A) = P̃ (A) for any object A ∈ V , then R-Cross-
Barcode∗(P, P̃ ) = ∅;

• if all distances within P̃ (V ) are zero i.e. all objects are
represented by the same point in P̃ , then for all k ≥ 0: R-
Cross-Barcodek+1(P, P̃ ) = Barcodek(P ) the standard
barcode of the point cloud P ;

• for any value of threshold α, the following sequence of
natural linear maps of homology groups

r3i+3−−−→ Hi(Rα(Gw))
r3i+2−−−→ Hi(Rα(Gmin(w,w̃)))

r3i+1−−−→
r3i+1−−−→ Hi(Rα(Ĝw,w̃))

r3i−−→ Hi−1(Rα(Gw))
r3i−1−−−→

r3i−1−−−→ . . .
r1−→ H0(Rα(Gmin(w,w̃)))

r0−→ 0 (2)

is exact, i.e. for any j the kernel of the map rj is the image
of the map rj+1.

The proof of the first two properties is immediate and the
third property follows from the properties of distinguished
triangles of complexes, see Appendix A for more details.
The exactness of the sequence (2) for j = 1, 2, 3 implies
that the calculation of the topological features from Section
2.1 for all α is reduced to the calculation of H1(Rα(Ĝw,w̃))
for all α, i.e. to the calculation of R-Cross-Barcode1(P, P̃ ).

2.3. Representation Topology Divergence.

The R-Cross-Barcode∗(P, P̃ ) is by itself, to our opinion, a
precise and intuitive tool for understanding discrepancies

between two representations. There are several numerical
characteristics measuring the non-emptyness of R-Cross-
Barcode. Based on experiments and on relation of sum of
bars’ lengths with Earth Moving Distance (Barannikov et al.,
2021), we define the sum of lengths of the bars in R-Cross-
Barcodei(P, P̃ ), denoted RTDi(P, P̃ ), as the scalar char-
acterizing the degree of topological discrepancy between
the representations P, P̃ . We use most often the average
of RTD1(P, P̃ ) and RTD1(P̃ , P ), denoted RTD score, in
our computations below.

Proposition 2.2. If RTDi(P, P̃ ) = RTDi(P̃ , P ) = 0 for
all i ≥ 1, then the barcodes of the weighted graphs Gw
and Gw̃ are the same in any degree. Moreover, in this case
the topological features are located in the same places:
the inclusions Rα(Gw) ⊆ Rα(Gmin(w,w̃)), Rα(Gw̃) ⊆
Rα(Gmin(w,w̃)) induce homology isomorphisms for any
threshold α.

2.4. Algorithm

First we compute the R-Cross-Barcode1(P, P̃ ) on two rep-
resentations P, P̃ of a sample V . For this we calculate the
matrices of pairwise distances w, w̃ within the point clouds
P , P̃ . We assume that the metrics in the ambient spaces of
representations are normalized so that the two point clouds
are of comparable size, namely their 0.9 quantile of pair-
wise distances coincide. This ensures that our score has
scaling invariance, the reasonable property of a good repre-
sentation similarity measure, as argued in e.g. (Kornblith
et al., 2019). Next, the algorithm builds the Vietoris-Rips
complex from the matrix m defined in Equation 1. Then the
1−dimensional barcode, see (Barannikov, 2021; Chazal &
Michel, 2017), of the built filtered simplicial complex is cal-
culated. The last two steps can be done using scripts that are
optimized for GPU acceleration (Zhang et al., 2020). Then
we sum the lengths of bars in R-Cross-Barcode1(P, P̃ ). To
get the symmetric measure we usually take the half-sum
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(a) Point clouds used in “clusters” experiment.

(b) Representations’ comparison measures. Ideally, the measure should change monotonically with the increase of topological discrepancy.

(c) R-Cross-Barcode(P, P̃ ) for the “clusters” experiments. P̃ - is the point cloud having one cluster, P - 2, 3, 4, 5, 6, 10, 12 clusters.

Figure 3: RTD perfectly detects cluster structures, while rival measures fail. One cluster is compared with 2-12 clusters.

with the similar sum of bars in R-Cross-Barcode1(P̃ , P ).
The computation is repeated a sufficient number of times
to obtain the mean of the chosen characteristics. We have
observed experimentally that about 10 times is usually suffi-
cient for common datasets. The main steps of the computa-
tion are summarized in Algorithms 1 and 2.

Complexity. Algorithm 1 starts with computation of the
two matrices of pairwise distances w, w̃ for a pair of repre-
sentations of a sample V : P ∈ Rb×D, P̃ ∈ Rb×D̃ involving
O(|V |2(D + D̃)) operations. Next, persistent intervals of
the filtered complex must be computed. Given the distance
matrix m, the complexity of their computation does not
depend on the dimensions D, D̃ of the data representations.
Generally, the barcode computation is at worst cubic in the
number of simplexes involved. In practice, the computation
is quite fast since the boundary matrix is typically sparse
for real datasets. For R-Cross-Barcodes’ calculation, we
used GPU-optimized software. Thus, the computation of
R-Cross-Barcode takes a similar time as in the previous
step even on datasets of high dimensionality. Since only the
dissimilarities in representation topology are calculated, the
results are quite robust and a rather low number of iterations
is needed to obtain accurate results.

3. Experiments
In the experimental section, we study the ability of the
proposed R-Cross-Barcodes and RTD to detect changes in
topological structures with the use of synthetic point clouds;

we demonstrate the superiority of RTD over CKA, SVCCA,
IMD (Section 3.1). RTD meaningfully compares represen-
tations from UMAP with different parameters (Section 3.2).
By comparing representations from various architectures
(Section 3.3), layers, epochs, ensembles and after data distri-
bution shift (Section 3.4) we show that RTD is in line with
natural notion of representational similarity. A high corre-
lation between RTD and disagreement of neural network
predictions is an interesting empirical finding.

3.1. Experiments with synthetic point clouds

We start with small-scale experiments with synthetic point
clouds: “clusters” and “rings”. For the “clusters” exper-
iment (Figure 3, top), the initial point cloud consists of
300 points randomly sampled from the 2-dimensional nor-
mal distribution having mean (0, 0). Next, we split it into
2,3. . . 12 parts (clusters) and move them to the circle of ra-
dius 10. Then, we compare the initial point cloud (having
one cluster) with the split ones.

We compared these point clouds by calculating: RTD, CKA
(Kornblith et al., 2019), IMD (Tsitsulin et al., 2020) and
SVCCA (Raghu et al., 2017). We calculated linear CKA
since (Kornblith et al., 2019) concluded that it provides
the same performance as the RBF kernel, but does not re-
quire selecting a kernel width. For SVCCA, we calculated
average correlation ρ̄ for the truncation threshold 0.99, as
recommended in (Raghu et al., 2017). The IMD score (Tsit-
sulin et al., 2020) was very noisy and we averaged it over
100 runs.
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(a) 2D representations of MNIST with n neighbors = 10, 50, 200
(b) 1-CKA (c) RTD

Figure 4: Comparing representations of MNIST by UMAP with varying n neighbors.

Figure 3b presents the results: RTD perfectly tracks the
change of the topological complexity while the alternative
measures mostly fail. The Kendall-tau rank correlations
of the measures with a number of clusters are: RTD: 1.0,
CKA: 0.23, IMD: 0.43, SVCCA: 0.14. We also note that
RTD does not have any tunable parameters as SVCCA and
does not require averaging over as many runs as IMD. Fig-
ure 3c shows the H1 R-Cross-Barcodes calculated while
comparing clusters. In accordance with the definition of
RTD, H0 barcodes are absent. The sum of the lengths of the
segments increases with increasing differences in topology.
Running times and all of the R-Cross-Barcodes are shown in
Appendix C. Additional representation similarity measures
were evaluated in Appendix I.

In the “rings” experiment, we compared synthetic point
clouds consisting of a variable number of rings, see Figure
12a in Appendix D. Initially, there are 500 points uniformly
distributed over the unit circle. Then, the points are moved
onto circles with radii varying from 0.5 to 1.5. Finally, we
compare the point cloud having 5 rings with other ones.
Figure 12b in Appendix D present the results. RTD almost
ideally reflects the change of the topological complexity
while the alternative measures mostly fail. The Kendall-tau
rank correlations of the measures with a number of rings
are: RTD: 0.8, CKA: -0.2, IMD: 0.8, SVCCA: -0.2.

In the next sections, we compare RTD only with CKA,
since it is the most popular method for comparing neural
representations (Kornblith et al., 2019; Nguyen et al., 2021).

3.2. Comparing representations from UMAP

UMAP (McInnes et al., 2018) is the state-of-the-art method
for visualizing high-dimensional datasets by obtaining their
2D/3D representations. We apply UMAP to the MNIST
dataset to get 2D representations. We vary the number
of neighbors in UMAP in the range (10, 20, 50, 100, 200),
see Figure 4a (all of the figures are in Appendix H). This
parameter affects the cluster structure: for low values, the
algorithm focuses on the local structure and clusters are
crisp; for high values, the algorithm pays more attention
to the global structure, and clusters were found to often

overlap. Then, we perform the pairwise comparison of
all the variants of 2D representations by RTD and CKA,
see Figure 4. RTD reveals a nice monotonic pattern w.r.t. a
number of neighbors, while values of CKA are quite chaotic.

3.3. Experiments with NAS-Bench-NLP

Figure 5: Multi-dimensional scaling of 90 architectures
selected randomly from NAS-Bench-NLP. Color depicts
log. perplexity.

Recently, neural architecture search has attracted a lot of
attention in the machine learning community (Liu et al.,
2019; Dong & Yang, 2019; Chen et al., 2021). NAS-Bench-
NLP (Klyuchnikov et al., 2020) is a benchmark for neural
architecture search which is a collection of 14,322 recurrent
architectures; all of the architectures were trained on the
PTB dataset. We took 90 randomly selected architectures
and compared word embeddings by RTD: each architec-
ture contains 400-dimensional embeddings of 10,000 words.
Then, we evaluated all the pairwise similarities between
embeddings1 from the architectures and visualized them via
multi-dimensional scaling, see Fig. 5, where color depicts a
log. perplexity. According to common sense, architectures
having similar embeddings have a similar log. perplexity.
Also, we checked that RTD is approximately a metric for
this particular case since it satisfies the triangle inequality
for 97% of triplets of architectures from NAS-Bench-NLP.

1to speedup computation, we averaged the metrics for 10 ran-
dom batches of 100 word embeddings. The average relative std.
dev. of RTD was 8%.
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Table 1: The correlation of metrics with Disagreement in
the training dynamics experiment

RTD 1−CKA
VGG-11 0.976 ± 0.003 0.818 ± 0.010
ResNet-20 0.971 ± 0.001 0.924 ± 0.008

3.4. Experiments with convolutional neural networks

To demonstrate the abilities of RTD to work with image
representations, we train ResNet-20 (He et al., 2016) and
VGG-11 (Simonyan & Zisserman, 2014) networks on CI-
FAR (Krizhevsky et al., 2009) datasets. In experiments,
we compare RTD with CKA and disagreement of predic-
tions. For a more intuitive comparison, we consider 1−CKA
instead of CKA. As a measure of the difference in predic-
tions, we use Disagreement (Kuncheva & Whitaker, 2003;
Wen et al., 2020), the fraction of mismatched predictions
calculated as 1

N

∑N
n=1 [fθ1(xn) 6= fθ2(xn)] , where fθ(x)

denotes the class label predicted by the network for input x.
As discussed in (Fort et al., 2019), the lower the accuracy
of predictions, the higher its potential mismatch due to the
possibility of the wrong answers being random, and then
we normalize the Disagreement by (1− a), where a is the
mean accuracy of the predictions. To calculate the final
metrics, we averaged the values for five random batches of
500 representations from the test dataset.

3.4.1. TRAINING DYNAMICS

In the first experiment, we analyze the training dynamics of
neural networks. On each epoch, we collect the outputs of
the convolutional part that extract the representations. To
compare dynamics properly, we scaled the metrics by their
maximum value. Fig. 1 shows the dynamics of the differ-
ences with the final representations. The results coincide
with the intuition: the representations on each epoch become
more similar to the final one. Moreover, RTD demonstrates
the same behavior as disagreement of predictions. RTD
better correlates with the Disagreement, see Table 1.

3.4.2. LAYERS

In the next experiment, we compare the outputs of layer
blocks within the trained network. For VGG-11, the
block has the form Conv→BN→Activation→(Pooling),
and for ResNet-20, we take the output of the first
Conv→BN→Activation block, and then the outputs of each
residual block. In Figure 6, we see that both RTD and
1−CKA show similar results, including the slight difference
between adjacent layers. We see that both metrics reveal
the significant changes in the outputs of the ResNet-20 last
block. In Figure 18, we performed similar experiment with
ResNet-50 and ConvNeXt-tiny (Liu et al., 2022) architec-
tures pre-trained on ImageNet-1k dataset (Deng et al., 2009).

Figure 6: The representation differences between the layer
blocks within trained networks. The columns correspond to
the architecture, and the rows, to the metric.
Table 2: Analysis of ResNet-20 representations under differ-
ent data distribution shifts. The correlation of metrics with
Disagreement.

RTD 1−CKA
Noise 0.966 ± 0.001 0.927 ± 0.006
Gaussian blur 0.982 ± 0.004 0.913 ± 0.011
Grayscale 0.990 ± 0.004 0.928 ± 0.040
Hue 0.978 ± 0.008 0.927 ± 0.017

3.4.3. DATA DISTRIBUTION SHIFT

Here, we apply the data distribution shift to test the RTD. As
a shift, we consider different image transformations: nois-
ing, blurring, grayscaling, and hue changing. For each trans-
formation, we analyze the metric dynamics as the strength
of a transformation increases. Figure 7 confirms our san-
ity check of the monotony of RTD and other metrics with
respect to data distribution shift. Moreover, Table 2 shows
that RTD has a higher correlation with disagreement of
predictions.

3.4.4. ENSEMBLES

It is known that an ensemble of neural networks performs
better than a single network and can estimate the uncertainty
of the predictions. It is shown in (Lee et al., 2015; Opitz
et al., 1996) that the diverse ensembles work better. Thus,
measuring ensembles’ diversity is important. The disagree-
ment is a good example of such a measure. To show that
RTD can measure the diversity as well as disagreement, we
learn two types of ensembles: the classical ensemble, when
we learn the networks from different random initializations,
and the Fast Geometric Ensemble (FGE) (Garipov et al.,
2018), which is known to have lower diversity. We learn
four models for each type of ensemble and average the met-
rics among all pairs. The results in Table 3 confirm that
RTD is capable of measuring the diversity on the same scale
as the disagreement of predictions.
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(a) Noise (b) Gaussian blur (c) Grayscale (d) Hue

Figure 7: Analysis of ResNet-20 representations under different data distribution shifts. The dynamics of scaled metrics
with the monotonic transformations of images.

Table 3: The averaged metric among all pairs of ensemble
members with a ResNet-20 architecture, and the relative
difference between the types of ensemble.

Class. Ensemble FGE Diff. %
RTD 15.27 ± 0.12 10.45 ± 0.32 31.6
1−CKA 0.094 ± 0.02 0.033 ± 0.003 64.9
Disagreement 0.915 ± 0.05 0.607 ± 0.03 33.6

Table 4: The correlation of metrics with Disagreement in
the transfer learning experiment

RTD 1−CKA
CIFAR-100 0.98 ± 0.01 0.93 ± 0.02
CIFAR-10 0.91 ± 0.01 0.89 ± 0.02

3.4.5. TRANSFER LEARNING

Another possible application is the measure of changes in
representations after transferring the pre-trained model to
a new task. In this experiment, we conduct the transfer
learning from CIFAR-100 to the CIFAR-10 dataset. We
make full fine-tuning with the small learning rate for the
convolutional part. In Fig. 8, we demonstrate the dynamics
for both dataset representations. The results again coincide
with the intuition about the difference during the learning
steps, and here RTD has also a high correlation with Dis-
agreement, see Table 4. Also, we note that RTD can be
applied to the continual learning task, where catastrophic
forgetting appears, and thus it is crucial to track the changes
in network representations.

3.5. Additional experiments

We describe how RTD can be used to evaluate a disentan-
glement of generative models in Appendix G. Comparisons
of BigGAN’s internal representations by RTD agree with
those of images by FID, see Appendix E.

4. Conclusions
In this paper, we have proposed a topologically-inspired
approach to compare neural network representations. The
most widely used methods for this problem are statistical:
Canonical Correlation Analysis (CCA) and Centered Kernel
Alignment (CKA). But the problem itself is a geometric one:
the comparison of two neural representations of the same
objects is de-facto the comparison of two points clouds from
different spaces. The natural way is to compare their geo-
metrical and topological features with due account of their
localization — that is exactly what was done by the R-Cross-
Barcode and RTD. We demonstrated that RTD coincides
with the natural assessment of representations similarity.
We used the RTD to gain insights into neural network repre-
sentations in computer vision and NLP domains for various
problems: training dynamics analysis, data distribution shift,
transfer learning, ensemble learning, and disentanglement
assessment.

RTD correlates strikingly well with the disagreement of
models’ predictions; this is an intriguing topic for further
research. Finally, R-Cross-Barcode and RTD are general
tools that are not limited only to the comparison of represen-
tations. They could be applied to other problems involving
comparison of two point clouds with one-to-one correspon-
dence, for example, in 3D computer vision.
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A. Background on Simplicial Complexes. Barcodes
The simplicial complex is a combinatorial object that can be thought of as a higher-dimensional generalization of a graph.

A simplex is defined via the set of its vertices. Given a finite set V , a k−simplex is a finite (k + 1)−element subset in
V . Simplicial complex S is a collection of k−simplexes, k ≥ 0, which satisfies the natural condition that for each σ ∈ S,
σ′ ⊂ σ implies σ′ ∈ S. A simplicial complex consisting only of 0− and 1−simplexes is a graph.

Denote via Ck(S) the vector space over the field Z/2Z = {0, 1} whose basis elements are k−simplexes from S. The
boundary linear operator ∂k : Ck(S)→ Ck−1(S) is defined on σ = {A0, . . . , Ak} as

∂kσ =

k∑
j=0

{A0, . . . , Aj−1, Aj+1, . . . , Ak}.

The kth homology group Hk(S) is the factor vector space ker ∂k/ im ∂k+1. The elements c ∈ ker ∂k are called cycles. The
elements of Hk(S) represent various k−dimensional topological features in S. A basis in Hk(S) corresponds to a set of
basic topological features.

For example, the vector space H0 has the basis whose elements are in one-to-one correspondence with equivalence classes
of vertices, connected by paths of 1−simplices (edges), i.e. with connected components of S. The basis elements of the
vector space H1 correspond to basic equivalence classes of nontrivial closed paths of 1−simplices. Two closed paths, also
named 1−cycles, are equivalent if they are connected by a chain of modifications by boundaries of triangles (2−simplices).

A map S1 → S2, e.g. Gw≤α → Gmin(w,w̃)≤α see section 2.1, defines the maps Hk(S1) → Hk(S2). The kernel of the
linear map H0(S1)→ H0(S2) is spanned by the pairs of S1 clusters merged together in S2. The cokernel of the linear map
H1(S1)→ H1(S2) consists of 1−cycles in S2 which are not from S1, i.e. it consists of equivalence classes of closed paths
in S2, which cannot be modified by boundaries of triangles into images of 1−cycles from S1.

In applications, the simplicial complexes are often built via consequential adding of simplexes one after another in increasing
order of some numerical characteristics. Mathematically this corresponds to a filtration on the simplicial complex. It is
defined as a family of simplicial complexes Sα, indexed by a finite set of real numbers, with nested collections of simplexes:
for α1 < α2 all simplexes of Sα1 are also in Sα2 . An example of a filtered simplicial complex is the Vietoris-Rips simplicial
complex from Section 2.2.

The inclusions Sα ⊆ Sβ induce the maps on homologyHk(Sα)→ Hk(Sβ). The evolution of cycles across the nested family
of simplicial complexes Sαi

is described by the principal persistent homology theorem (Barannikov, 1994; Zomorodian,
2001; Le Peutrec et al., 2013), according to which for each dimension there exists a choice of a set of basic topological
features across all nested simplicial complexes Sα so that each basic feature c appears in Hk(Sα) at specific time α = bc
and disappears at specific time α = dc. The barcode of the filtered complex is the record of the appearance, or “birth” time,
and the disappearance, or “death” time, of all these basic topological features.

A.1. Exact sequence and topological features

A sequence of vector spaces and linear maps

A5
r4−→ A4

r3−→ A3
r2−→ A2

r1−→ A1 (3)

is exact at Aj if the kernel of the linear map rj−1 coincides with the image of the previous map rj .

Proposition A.1. If the sequence (3) is exact at A2, A3, A4 then A3 ' Ker(r1)⊕ Coker(r4).

Proof. SinceA/Ker(r) ' Image(r) for any linear map r : A→ A′, thereforeA3 ' Image(r2)⊕Ker(r2). If the sequence
is exact at A2, then Image(r2) ' Ker(r1). Exactness at A3, A4 gives Ker(r2) ' Image(r3), Ker(r3) ' Image(r4). Then
Image(r3) ' A4/Ker(r3) imply that Ker(r2) ' A4/ Image(r4), which equals Coker(r4), the cokernel of the linear map
r4. Hence A3 ' Ker(r1)⊕ Coker(r4).

Therefore the exact sequence from Theorem 2.1 implies that the calculation of the topological features from Section 2.1 for
all α is reduced to the calculation of H1(Rα(Ĝw,w̃)) for all α, i.e. to the calculation of R-Cross-Barcode1(P, P̃ ).
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A.2. Construction of R-Cross-Barcode

Here we gather some intuition behind the construction of the graph Ĝw,w̃ and the R-Cross-Barcode.

The Vietoris-Rips complex Rα(Gmin(w,w̃)) is the union of simplexes whose edges connect data points with distance less
than α in at least one of representations P, P̃ . An inclusion of simple simplicial complexes S ⊂ R is an equivalence in
homotopy category, if and only if the induced map on homology is an isomorphism (Whitehead, 1968). The maps on
homology induced by the inclusions of filtered simplicial complexes

Rα(Gw) ⊆ Rα(Gmin(w,w̃)), Rα(Gw̃) ⊆ Rα(Gmin(w,w̃)) (4)

should therefore be as close as possible to isomorphisms, in order that the approximations at threshold α to the manifolds
MP and MP̃ have essentially the same geometric features located at the same places. It follows from the exact sequence
from Theorem 2.1 that the R-Cross-Barcode∗(P, P̃ ) is exactly the list of topological features describing the failure of the
maps induced on homology by inclusions (4) to be isomorphisms.

Introduce the weighted graph Ĝw with doubled set of vertices and with the edge weights defined as follows. We fix the
numbering of vertices Vert(G) = {A1, . . . , AN}. Let us add the extra vertex A′ together with A to Ĝw for each vertex
A ∈ Vert(G), plus the two additional vertexes O,O′, and define the distance-like edge weights in Ĝw as:

dAiAj
= dAiA′j

= wAiAj
,

dA′iA′j = dAiA′i
= dO′A′i = dOAi

= 0, dA′jAi
= dO′Ai

= dOA′i = dOO′ = +∞ (5)

where i < j and O,O′ ∈ Vert(Ĝw) are the two additional vertexes.

The suspension C[−1] of chain complex C denotes the same chain complex with degree shifted by 1, C[−1]n = Cn−1,
so that the the nth chains of Rα(Gw)[−1] are linear combinations of (n− 1)−dimensional simplexes from Rα(Gw). We
denote via Ai1 . . . Ain [−1] the element from Cn(Rα(Gw)[−1]) corresponding to the simplex Ai1 . . . Ain .

A chain map f between two chain complexes (C, dC) and (B, dB) is a sequence of linear maps fn : Cn → Bn that
commutes with the boundary operators: dB,n ◦ fn = fn−1 ◦ dC,n. The cone of a chain map f is the chain complex

Cone(f) = C[−1] ⊕ B with differential dCone(f) =

(
dC[−1] 0
f [−1] dB

)
. A homotopy equivalence is a pair of chain maps

f : C → B, g : B → C, and a pair of maps hC,n : Cn → Cn+1, hB,n : Bn → Bn+1, such that g ◦ f = Id +[hC , dC ] and
f ◦ g = Id +[hB , dB ]. We assume that the Vietoris-Rips complexes are augmented with C−1 = Z/2Z and ∂0{Ai} = 1.

The proof of the exact homology sequence from Theorem 2.1 follows from the following two propositions.
Proposition A.2. There are homotopy equivalences of chain complexes:

Rα(Gw)[−1] ∼ Rα(Ĝw) (6)

Cone
(
Rα(Gw)→ Rα(Gmin(w,w̃))

)
∼ Rα(Ĝw,w̃). (7)

Proof. The simplexes of the chain complex Rα(Ĝw) are of four types: Ai1 . . . AikA
′
ik
. . . A′in , Ai1 . . . AikA

′
ik+1

. . . A′in ,
OAi1 . . . Ain and O′A′i1 . . . A

′
in

where Aik ∈ Vert(G), i0 < . . . < ik < ik+1 < . . . < in, with edge weights satisfying
wAirAis

< α for r ≤ k. Define the map φ : Rα(Gw)[−1]→ Rα(Ĝw)

φ : Ai1 . . . Ain [−1] 7→ OAi1 . . . Ain +O′A′i1 . . . A
′
in +

n∑
k=1

Ai1 . . . AikA
′
ik
. . . A′in (8)

The map φ together with the map φ̃ : Rα(Ĝw)→ Rα(Gw)[−1]

φ̃ : OAi1 . . . Ain 7→ Ai1 . . . Ain [−1], φ̃(∆) = 0 for any other simplex ∆, (9)

gives a homotopy equivalence, φ̃ ◦ φ = Id, φ ◦ φ̃ = Id +[h, ∂], where the homotopy h is given by

h : Ai1 . . . AikA
′
ik+1

. . . A′in 7→
k∑
l=1

Ai1 . . . AilA
′
il
. . . A′in +O′A′i1 . . . A

′
in (10)

h : A′i1 . . . A
′
in 7→ O′A′i1 . . . A

′
in , h(∆) = 0 for any other simplex ∆.
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Simplexes of the chain complex Rα(Ĝw,w̃) are of three types. The first type: Ai1 . . . AikA
′
ik
. . . A′in with edge

weights satisfying wAirAis
< α for r ≤ k and min(wAirAis

, w̃AirAis
) < α for r, s > k; the second type:

Ai1 . . . Aik−1
A′ik . . . A

′
in

with edge weights satisfying wAirAis
< α for r < k, and min(wAirAis

, w̃AirAis
) < α for

r, s ≥ k; and the third type: OAi1 . . . Ain with edge weights satisfying wAirAis
< α for all r, s. Define the map

ψ : Cone
(
Rα(Gw)→ Rα(Gmin(w,w̃))

)
→ Rα(Ĝw,w̃)

ψ : Ai1 . . . Ain [−1] 7→ OAi1 . . . Ain +

n∑
k=1

Ai1 . . . AikA
′
ik
. . . A′in (11)

for Ai1 . . . Ain [−1] ∈ Rα(Gw)[−1],

ψ : Ai1 . . . Ain 7→ A′i1 . . . A
′
in (12)

forAi1 . . . Ain ∈ Rα(Gmin(w,w̃)). The map ψ together with the map ψ̃ : Rα(Ĝw,w̃)→ Cone
(
Rα(Gw)→ Rα(Gmin(w,w̃))

)
ψ̃ : OAi1 . . . Ain 7→ Ai1 . . . Ain [−1], Ai1 . . . Ain [−1] ∈ Rα(Gw)[−1],

A′i1 . . . A
′
in 7→ Ai1 . . . Ain , Ai1 . . . Ain ∈ Rα(Gmin(w,w̃)), (13)

ψ̃(∆) = 0 for any other simplex ∆,

gives a homotopy equivalence, ψ̃ ◦ ψ = Id, ψ ◦ ψ̃ = Id +[H, ∂], where the homotopy H is given by

H : Ai1 . . . AikA
′
ik+1

. . . A′in 7→
k∑
l=1

Ai1 . . . AilA
′
il
. . . A′in , 1 ≤ k ≤ n (14)

H(∆) = 0 for any other simplex ∆.

The long exact sequences such as (2) arise from distinguished triangles in the homotopy category of chain complexes. A

distinguished triangle is a diagram isomorphic in this category to a diagram A
f−→B → Cone(f)→ A[−1].

Proposition A.3. The embeddings of graphs Gw≤α ⊆ Gmin(w,w̃)≤α ⊂ Ĝw,w̃≤α give distinguished triangles, see (Gelfand
& Manin, 2002), in the homotopy category of chain complexes:

Rα(Gw)→ Rα(Gmin(w,w̃))→ Rα(Ĝw,w̃)→ Rα(Gw)[−1]. (15)

Proof. Taken together the homotopy equivalences (8)-(14) define an isomorphism of (15) with the distinguished triangle

Rα(Gw)→ Rα(Gmin(w,w̃))→ Cone
(
Rα(Gw)→ Rα(Gmin(w,w̃))

)
→ Rα(Gw)[−1]. (16)

Comparison with Cross-Barcode and Geometry Score. The Cross-Barcode from (Barannikov et al., 2021) compares two
data manifolds lying in the same ambient space. It does not use the information that can be provided by a one-to-one
correspondence between points of the two data clouds. To compare the locations of topological features the Cross-Barcode
from loc.cit. uses instead the proximity information inferred from the pairwise distances between points from different
clouds lying in the same ambient space. Geometry score from (Khrulkov & Oseledets, 2018) is based on a comparison of
standard barcodes for each cloud and is insensitive to the location of topological features, for example, it does not detect any
difference when similar topological features are located geometrically in distant places of the two clouds.
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Figure 9: Merging between clusters already connected via a chain of mergings.

Figure 10: Merging of three clusters into two clusters. Graphs Gw≤α, Gw̃≤α and Gmin(w,w̃)≤α are shown. Edges of
Gmin(w,w̃)≤α not in Gw≤α are colored in green. In this example there are exactly four different weights (13), (14), (23), (24)
in the graphs Gw≤α and Gmin(w,w̃)≤α. The unique topological feature in R-Cross-Barcode1(P, P̃ ) in this case is born at the
threshold w̃24 when the difference in the cluster structures of the two graphs arises, as the points 2 and 4 are in the same
cluster at this threshold in Gmin(w,w̃) and not in Gw. This feature dies at the threshold w23 since the clusters containing 2
and 4 are merged at this threshold in Gw.

B. Discussion of CKA
Given two series of equal size xi ∈ Rnx , yi ∈ Rny , i = 1 . . . n the CKA (Kornblith et al., 2019) is defined as

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)

where HSIC(K,L) is a Hilbert-Schmidt Independence Criterion (Gretton et al., 2005), Ki,j = k(xi, xj), Li,j = l(yi, yj),
L = E − n−1 where k(·, ·), l(·, ·) are kernels. HSIC itself an empirical estimate of the Hilbert-Schmidt norm of the
cross-covariance operator. HSIC is equivalent to maximum mean discrepancy between the joint distribution P (X,Y ) and
the product of the marginal distributions P (X)P (Y ); HSIC = 0 implies independence of X and Y if the associated kernel
is universal.

However, CKA is sometimes applied to measure similarity between representations from different layers of a neural
network. In this case Y = f(X). X and Y are tightly dependent and the joint distribution can always be factorized as
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P (X,Y ) = P (Y |X)P (X). Thus, the application of CKA to the comparison of representation from different layers is
questionable.

C. Details on experiments with synthetic point clouds

Figure 11: R-Cross-Barcodes for the “clusters” experiments. Top: R-Cross-Barcode(P̃ , P ), Bottom: R-Cross-
Barcode(P, P̃ ); P̃ is the point cloud having one cluster; P - 2, 3, 4, 5, 6, 10, 12 clusters.

Runtime comparison. Here we present the total wall time of the experiments with synthetic point clouds:

“Clusters experiment”: RTD: 19.7 s, CKA: 0.07 s, IMD: 83 s, SVCCA: 0.03 s.
“Rings experiment”: RTD: 144 s, CKA: 0.7 s, IMD: 91 s, SVCCA: 0.6 s.

D. Details on the “rings” experiment

(a) Point clouds used in “rings” experiment.

(b) Representations’ comparison measures. Ideally, the measure should change monotonically with the increase of topological discrepancy.

Figure 12: RTD perfectly detects changes in topology, while rival measures fail. Five rings are compared with 5,4,3,2,1
rings.

E. Experiment with BigGAN
In this experiment, we applied RTD and CKA for comparison of internal representations in BigGAN (Brock et al., 2018) 2.

Initially, we generated a set of k = 100 random latent codes Z0 = {z0,j}kj=1 and derived sets Z1, . . . , Zn by adding to Z0 a
Gaussian noise of increasing strength zi,j = z0,j + εi,j , where εi,j ∼ N(0, σi). The noise standard deviation σi grows from
0.001 to 0.25 by a logarithmic scale and the difference between Z0 and Zi tends to increase when i increases.

2we used the pretrained model from
https://github.com/lukemelas/pytorch-pretrained-gans

https://github.com/lukemelas/pytorch-pretrained-gans
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Figure 13: R-Cross-Barcodes for the “rings” experiments. Top: R-Cross-Barcode(P, P̃ ), Bottom: R-Cross-Barcode(P̃ , P ).
P - is the point cloud having 5 rings, P̃ - 4, 3, 2, 1 rings.

Figure 14: Comparison of normalized RTD, CKA (computed for sets of internal representations) vs. FID (computed for sets
of images).

Then, we pass sets of latent codes Z0, . . . , Zn together with vector encoding of the “husky” class through the BigGAN and
save internal representations Ri for one of the top layers (results were quite similar for other layers). Also, we get sets of
images I0, . . . , Ik. To compare these sets we used the state-of-the-art measure FID (Heusel et al., 2017) which is often
applied for GAN evaluation.

It is natural to assume that the difference between sets of internal representations R0 and Ri should have a good correlation
with the difference between sets of images I0 and Ii. To check this hypothesis, we calculated RTD(R0, Ri), CKA(R0, Ri)
and compared them with FID(I0, Ii), for i = 1, . . . , n. Figure 14 shows the results. We conclude that RTD enjoys higher
correlation with FID: 0.97, while the correlation of CKA and FID is lower: 0.79.

F. Details on experiments with convolutional networks

Metrics to correlate Noise Gaussian Blur Grayscale Hue
Disagreement RTD 0.966 ± 0.001 0.982 ± 0.004 0.990 ± 0.004 0.978 ± 0.008

1−CKA 0.927 ± 0.006 0.913 ± 0.011 0.928 ± 0.040 0.927 ± 0.017
Error rate RTD 0.982 ± 0.002 0.963 ± 0.007 0.856 ± 0.052 0.935 ± 0.030

1−CKA 0.966 ± 0.007 0.999 ± 0.001 0.958 ± 0.018 0.944 ± 0.033

Table 5: Analysis of ResNet-20 representations under different data distribution shifts. The correlation of RTD and 1−CKA
with Disagreement and Error rate.
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(a) Zoom (b) Contrast (c) Brightness (d) Rotation

Figure 15: Analysis of ResNet-20 representations under different data distribution shifts. The dynamics of scaled metrics
with the monotonic application of various types of image transformations.

Metrics to correlate Zoom Brightness Contrast Rotation
Disagreement RTD 0.950 ± 0.006 0.975 ± 0.002 0.936 ± 0.010 0.955 ± 0.015

1−CKA 0.886 ± 0.010 0.854 ± 0.024 0.851 ± 0.021 0.857 ± 0.020
Error rate RTD 0.946 ± 0.006 0.921 ± 0.011 0.937 ± 0.005 0.940 ± 0.009

1−CKA 0.994 ± 0.002 0.997 ± 0.001 0.998 ± 0.001 0.981 ± 0.005

Table 6: Analysis of ResNet-20 representations under different data distribution shifts. The correlation of RTD and 1−CKA
with Disagreement and Error rate.

G. Experiments with disentanglement
Learning disentangled representations is a fundamental problem for improving the generalization, robustness, and inter-
pretability of generative models. (Zhou et al., 2020) proposed to evaluate the disentanglement of generative models by
comparing the topology of data manifold slices. Let Z be a latent space, X - a space of objects, g : Z → X - a generator.
(Zhou et al., 2020) compares slices Xv = g(Z |zi=v) for different values of v. If the direction zi corresponds to an
interpretable factor, then Xv must be topologically similar for different v.

We use the following experimental design. Zv,n = {z ∈ Z | (z, n) = v} - a slice in a latent space orthogonal to a unit
vector n. We take a finite random sample Z1 ⊂ Zv,n and a shifted sample Z2 = {zi + δn}|Z1|

i=1 for small δ. By definition,
Z1 and Z2 have natural point-wise mapping and we can estimate homological similarity of g(Z1) and g(Z2) by RTD.

In this experiment, we use dSprites3 for the evaluation of disentanglement. dSprites is a dataset of procedurally
generated 2D shapes from 5 ground truth independent latent factors: shape, scale, rotation, x-position, and y-position of
a sprite. Thus, the latent space is disentangled and fully factorized. Particularly, we compare the slices orthogonal to
axis-aligned vectors and orthogonal to random vectors, see Table 10. Except for the first axis, the topological dissimilarity
estimated by RTD is significantly less than for a random direction. The first axis corresponds to a categorical factor - shape
for which the aforementioned approach is arguably not applicable. The dSprites dataset is quite simple and RTD was
calculated for point clouds in the pixel space. However, the same technique can be straightforwardly applied to evaluate the
disentanglement of image representations for more complex datasets.

RTD 1−CKA
Disagreement 0.98 ± 0.01 0.93 ± 0.02
Error rate 0.9 ± 0.03 0.99 ± 0.01

(a) CIFAR-100

RTD 1−CKA
Disagreement 0.91 ± 0.01 0.89 ± 0.02
Error rate 0.60 ± 0.02 0.73 ± 0.01

(b) CIFAR-10

Table 7: The correlation of metric dynamics when transferring the ResNet-20 network from CIFAR-100 to CIFAR-10
dataset.
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VGG-11 ResNet-20
Number of epochs 100
Optimizer SGD, momentum=0.9
Learning rate (initial) 0.1

Scheduler
<50%: 0.1

50-90%: 0.1-0.001 (linear)
>90%: 0.001

Batch size 128

Table 8: Details on learning the neural networks from random initialization on CIFAR datasets.

Encoder part Classifier part
Number of epochs 50
Optimizer SGD, momentum=0.9
Learning rate (initial) 0.001 0.1

Scheduler None
<50%: 0.1

50-90%: 0.1-0.001 (linear)
>90%: 0.001

Batch size 128

Table 9: Details on fine-tuning the ResNet-20 from CIFAR-100 to CIFAR-10 dataset.

H. Details on dimensionality reduction of MNIST with UMAP
Visual inspection of Figure 17 reveals apparent incoherences of CKA. Denote by U(n) representations obtained by UMAP
with the number of neighbors n. According to CKA (Figure 4b), U(10) is closer to U(200) than to U(20); also U(200) is
closer to U(10) than to U(100).

I. Additional experiments
For the “clusters” experiments, we did additional comparisons of point clouds with alternative similarity measures. Firstly,
we calculated CKA with the RBF kernel for 3 bandwidths equal to 0.2, 0.4, 0.8 of median pairwise distances (as proposed in
(Kornblith et al., 2019)). The performance as measured by Kendall-tau correlation with the true ordering was 0.23, 0.04,
0.14 - not better than for CKA with the linear kernel. Secondly, we applied the topological loss term from (Moor et al.,
2020). The performance as measured by Kendall-tau correlation with the true ordering was poor: -0.52.

J. Internal similarity of Neural Network layers
Here we compare the outputs of layer blocks within the trained network. We consider ResNet-50 and ConvNeXt-tiny (Liu
et al., 2022) architectures pre-trained on ImageNet-1k dataset (Deng et al., 2009). We calculate RTD, CKA and SVCCA
within outputs after each Bottleneck Residual Block or ConvNeXt’s block respectively. In Fig. 18, we plot similarity

3https://github.com/deepmind/dsprites-dataset

Table 10: Evaluation of the disentanglement for various directions in the latent space of dSprites.

axis RTD
axis 1 148.1
axis 2 71.3
axis 3 53.4
axis 4 41.2
axis 5 40.5

random 162.8± 18.6

https://github.com/deepmind/dsprites-dataset
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Figure 16: dSprites generated across directions in the latent space, top: random direction, bottom: axis-aligned direction,
corresponds to an interpretable factor of variation.

Figure 17: 2D representations of MNIST produced by UMAP, n neighbors ∈ (10, 20, 50, 100, 200)

between layers within each architecture. We observe that RTD catches architecture’s block structure better than CKA,
SVCCA. The ResNet-50 architecture has sequence of blocks in form [3, 4, 6, 3] and it can be seen that RTD highlights it
with sub-squares of corresponding sizes.

Figure 18: The representation differences between the layer blocks within trained networks, ImageNet-1k dataset. The
columns correspond to the metrics, and the rows – to the architectures.


