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Introduction

Number theory plays a big role in probability and computer science and is currently part of mathematics courses [START_REF] Andrews | Number Theory[END_REF]. I am do research in theoretical physics alone because of my illnesses. After a heart operation I changed my mind, and I did searches on Google on the sum of the arithmetic series and I found that the methods currently used are very long. I went to have a coffee and I had a simple idea to solve these problems in a simple way. When I came back home, I wrote the article [2] which is the basis of this work with articles [START_REF]The Sum and the Squares of Odd and Natural Numbers[END_REF][START_REF]Derivation of the sum of odd numbers by arithmetic and geometric Methods[END_REF]. The generalization of my work in [START_REF]The Sum and the Squares of Odd and Natural Numbers[END_REF][START_REF]Derivation of the sum of odd numbers by arithmetic and geometric Methods[END_REF] resulted in new formulas on combinatory and arrangements with repetition. Using the well-known formulas of combinatorial analysis

C n m = ( n m ) = n! m!(n-m)! , Γ n m = ( n + m -1 m ) = (n+m-1)! m!(n-1)! (1.1)
The new combinatorial analysis formula is:

𝐶 n m = ∑ C i m-1 , Γ n m = ∑ Γ i m-1 n i=1 n i=1 (1.2)
I want to prove the first series in section one and the second in section two.

The new formula of Combinatory Analysis

We want to determine the relation of binomial coefficient 𝐶 n m :

[ 𝐶 n m = ∑ C i m-1 n i=1 ] (2.1) With 𝑪 n m = ( n m ) = n! m!(n-m)!
I assumed in my work [2] that there is a polynomial

𝑃 𝑛 𝑚 (𝑛) = 𝐶 n m (2.2) With 𝑃 𝑛 𝑚 (𝑛) = 𝑎 1 (𝑛) 𝑚 + 𝑎 2 (𝑛) 𝑚-1 + ⋯ + 𝑎 𝑚+1 (2.3)
To determine the coefficients a i it is sufficient to take n=1,.., m in (2.2). We obtain a linear system whose resolution gives a i .

A-The numbers start from 1.

𝐶 n 0 = 1 because 0! = 1.

(2.4)

B-The summation

𝐶 n 1 = ∑ C i 0 n i=1 = n .

C-The sum of the arithmetic series

𝐶 n 2 = ∑ 𝐶 i 1 n i=1 (2.5)
We are going to follow our method (2.2) which supposes that the polynomial:

𝑃 2 (𝑛) = 𝑥 1 (𝑛) 2 + 𝑥 2 (𝑛) + 𝑥 3 = C n 2 (2.6)
Therefore, we determine the three variables x i by calculating 𝐶 n 2 For n=1, 2, 3 we find that: 𝐶 n 2 is equal to:0, 1, 3, 6. And by solving the linear system which is written in matrix form:

( (2) 2 (2) 1 1 (3) 2 (3) 1 1 (1) 2 (1) 1 1 ) ( 𝑥 1 𝑥 2 𝑥 3 ) = ( 1 3 0 
) the answer is: ( (2.7)

The solution is then: (2.8)

Code de champ modifié

D-Expression of 𝐶 n

3 . The sequence of numbers is 𝐶 n 3 :

(2.9) We will follow my method (2.2) which assumes that:

𝑃 3 (𝑛) = 𝑥 1 (𝑛) 3 + 𝑥 2 (𝑛) 2 + 𝑥 3 (𝑛) + 𝑥 4 = 𝐶 n 3

(2.10) Therefore we determine the three variables x i by calculating 𝐶 n 3 for n=1,2,3,4 and we find: 0,0,1,4. By solving the linear system which is written in matrix form:

(2.12) But:

We can easily continue in the same way to determine 𝐶 n 𝑚 .

2-The new formula of Arrangements With repetition

We will make a summary of my paper [START_REF] Hassan | A new formula on analytic combinatory[END_REF]: A new formula on combinatory analysis.

1-Arrangements with repetition

We want to determine

A-The numbers start from 1.

Γ n 0 = 1 car 0! = 1.

(2.4)

B-The summation

C-Gauss sums of the arithmetic series

We are going to follow our method (2.2) which supposes that the polynomial:

Therefore we determine the three variables x i by calculating Γ n 2

For n=1, 2, 3 we find that: Γ n 2 is equal to: 1, 3, 6. And by solving the linear system which is written in matrix form:

) the answer is:

The solution is then:

The sequence of numbers is Γ n 3 :

(2.9)

We will follow my method (2.2) which assumes that: 𝑃 3 (𝑛) = 𝑥 1 (𝑛) 3 + 𝑥 2 (𝑛) 2 + 𝑥 3 (𝑛) + 𝑥 4 = Γ n 3

(2.10) Therefore we determine the three variables x i by calculating Γ n 3 For n=1,2,3,4 and we find: 1,4,10,20 . And by solving the linear system which is written in matrix form: