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On GNN explanability with activation rules

Luca Veyrin-Forrerl, Ataollah Kamall,
Stefan Duffner', Marc Plantevit? and Céline
Robardet!

Abstract GNNs are powerful models based on node representation learning that
perform particularly well in many machine learning problems related to graphs.
The major obstacle to the deployment of GNNs is mostly a problem of societal
acceptability and trustworthiness, properties which require making explicit the
internal functioning of such models. Here, we propose to mine activation rules in
the hidden layers to understand how the GNNs perceive the world. The problem
is not to discover activation rules that are individually highly discriminating for
an output of the model. Instead, the challenge is to provide a small set of rules
that cover all input graphs. To this end, we introduce the subjective activation
pattern domain. We define an effective and principled algorithm to enumerate
activations rules in each hidden layer. The proposed approach for quantifying the
interest of these rules is rooted in information theory and is able to account for
background knowledge on the input graph data. The activation rules can then be
redescribed thanks to pattern languages involving interpretable features. We show
that the activation rules provide insights on the characteristics used by the GNN
to classify the graphs. Especially, this allows to identify the hidden features built
by the GNN through its different layers. Also, these rules can subsequently be
used for explaining GNN decisions. Experiments on both synthetic and real-life
datasets show highly competitive performance, with up to 200% improvement in
fidelity on explaining graph classification over the SOTA methods.

1 Introduction

Graphs are a powerful and widespread data structure used to represent relational
data. One of their specificity is that their underlying structure is not in a Euclidean
space and has not a grid-like structure (Bronstein et al., [2017)), characteristics fa-
cilitating the direct use of generic machine learning techniques. Indeed, each node
of a graph is characterized by its features, its neighboring nodes, and recursively
their properties. Such intrinsically discrete information cannot be easily used by
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standard machine learning methods to either predict a label associated with the
graph or a label associated with each node of the graph. To overcome this diffi-
culty, Graph Neural Networks (GNNs) learn embedding vectors to represent each
node v in a metric space and ease comparison between nodes. GNN methods (Def-
ferrard et al., [2016; Wu et al., [2021]) employ a message propagation strategy that
recursively aggregates information from nodes to neighboring nodes. This method
produces vectors that represent the ego-graphs centered at each node, in such a
way that the classification task based on these vectors is optimized. These ego-
graphs are induced by nodes that are less than a certain distance from the central
node. These distances are equal to the recursion index and correspond to the layer
indices in the GNN.

Although GNNs have achieved outstanding performance in many tasks, a ma-
jor drawback is their lack of interpretability. The last five years have witnessed a
huge growth in the definition of techniques for explaining deep neural networks
(Burkart and Huber} 2021} [Molnar, 2020)), particularly for image and text data.
However, the explainability of GNNs has been much less explored. Two types of ap-
proaches have recently been proposed and have gained certain visibility. Methods
based on perturbation (Luo et al.| 2020;|Ying et al.,|2019) aim to learn a mask seen
as an explanation of the model decision for a graph instance. They obtain the best
performance for instance explanation. It appears that such masks can lead to unre-
liable explanations, and most importantly, can lead to misleading interpretations
for the end-user. One can be tempted to interpret all the nodes or features of the
mask as responsible for the prediction leading to wrong assumptions. An example
of misleading interpretations is when a node feature is perceived as important for
the GNN prediction, whereas there is no difference between its distribution within
and outside the mask. XGNN (Yuan et al., |2020a) aims at providing model-level
explanations by generating a graph pattern that maximizes a GNN output label.
Yet, this method assumes that there is a single pattern for each target which is not
the case in practice when dealing with complex phenomena. Moreover, these two
types of methods query the GNN with perturbed input graphs to evaluate their
impact on the GNN decision and build their masks from the model output. They
do not study the internal mechanisms of the GNNs, especially the different em-
bedding spaces produced by the graph convolutions, while we are convinced that
the study of GNN activation vectors may provide new insights on the information
used by GNN to achieve the classification of graphs.

In this paper, we consider GNNs for graph binary classification. We introduce
a new method, called INSIDE-GNN, that aims at discovering activation rules in each
hidden layer of the GNN. An activation rule captures a specific configuration in the
embedding space of a given layer that is considered important in the GNN decision,
i.e., discriminant for an output label. The problem is therefore not only to discover
highly discriminant activation rules but also to provide a pattern set that covers
all GNN decisions on the input graphs. To this end, we define a measure, rooted in
the FORSIED framework (De Bie, [2011]) to quantify the information provided by a
rule relative to that supplied by the rules already extracted. The activation pattern
set can then support instance-level explanations as well as providing insights about
the hidden features captured and exploited by the GNN.

Fig. [l]illustrates the main steps of the proposed method. From a trained GNN
model and a set of graphs (ideally following the same distribution as the train-
ing set), (1) a binary activation matrix is derived to encode the activation by the
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Fig. 1 Overview INSIDE-GNN: For each layer, (1) a binary matrix encodes the activation by
nodes of embedding vector components. (2) A background model synthesizes the knowledge
we have of these data: at the beginning, the probabilities of the components to be activated are
independent to the nodes of the graphs. (3) The most informative activation rule (with respect
to the background knowledge) is extracted by INSIDE-GNN. (4) This rule is integrated into
the background knowledge which gradually makes the marginal distributions of the margins of
the background model less and less independent. It is then added to the pattern set (5). Steps
(2-5) are repeated until no rule brings significant information about the data in the table.
Then, the activation rules are used (6) to support instance level explanations or (7) to provide
insights on the model.

graph nodes of the vector components of the GNN. The decision of the GNN is
also associated with the nodes. (2) A background model represents the knowledge
we have of the matrix data. At the initialization, we have no particular knowledge
and we assume that the activations are independent to the nodes of the graphs. (3)
INSIDE-GNN discovers the most informative activation rule based on the activation
matrix and the background model. (4) The background model is updated to reflect
the latest discovered rule that is added to the pattern set (5). Steps (2-5) are re-
peated until no more informative rules are obtained or early termination conditions
are reached. (6) The activation pattern set is then used to provide instance-level
explanations. To this end, several mask strategies involving nodes that support
activation rules are devised. (7) For each activation rule, we use exploratory anal-
ysis techniques (e.g., subgroup discovery on graph propositionalization, subgraph
mining) to characterize the nodes supporting the rules and provide interpretable
insights on what the GNN really captures.
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Our main contributions are as follows. After discussing the most important
related work in Section [2] and introducing the novel problem of mining activa-
tion rule sets in Section [3] we devise a branch-and-bound algorithm that exploits
upper-bound-based pruning properties to discover such rules. We explain how we
characterize the activation rules with graph properties in Section [4f We report an
empirical evaluation in Section [5| which studies the performance and the poten-
tial of the proposed approach for providing instance-level explanations or insights
about the model. INSIDE-GNN is compared against SOTA explanation methods and
outperforms them by up to 200%. We also study the characterization of activation
rules thanks to interpretable pattern languages. We demonstrate that this allows
to obtain good summaries of the hidden features captured by the GNN. Based
on this, we eventually compare our approach against a model-level explanation
method.

2 Related work

GNNs are attracting widespread interest due to their performance in several tasks
as node classification, link prediction, and graph classification (Wu et al., |2020).
Numerous sophisticated techniques allow to improve the performance of such mod-
els as graph convolution (Kipf and Welling, 2017), graph attention (Velickovic
et al. [2018), and graph pooling (Wang and Ji, 2020). However, few researchers
have addressed the problem of the GNN explainability compared to image and
text domains where a plethora of methods have been proposed (Burkart and Hu-
ber| 2021; Molnar}, [2020)). As stated in (Yuan et al., [2020b)), existing methods for
image classification models explanation cannot be directly applied to not grid-like
data: the ones based on the computation of abstract images via back-propagation
(Simonyan et al.,[2014]) would not provide meaningful results on discrete adjacency
matrices; those that learn soft masks to capture important image regions (Olah
et al.l [2017) will destroy the discreteness property when applied to a graph.
Nevertheless, there have been some attempts to propose methods for explain-
ing GNNs in the last three years. Given an input graph, the instance-level methods
aim at providing input-dependent explanations by identifying the important input
features on which the model builds its prediction. One can identify four different
families of methods. (1) The gradient/feature-based methods — widely applied in
image and text data — use the gradients or hidden feature map values to compute
the importance of the input features (Baldassarre and Azizpour, |2019; |Pope et al.|
2019). (2) The perturbation-based methods aim at learning a graph mask by inves-
tigating the prediction changes when perturbing the input graphs. GNNExplainer
(Ying et all [2019)) is the seminal perturbation based method for GNNs. It learns a
soft mask by maximizing the mutual information between the original prediction
and the predictions of the perturbed graphs. Similarly, PGExplainer (Luo et al.,
2020) uses a generative probabilistic model to learn succinct underlying structures
from the input graph data as explanations. (3) The surrogate methods explain an
input graph by sampling its neighborhood and learning an interpretable model.
GrapheLime (Huang et al.[2020) thus extends the LIME algorithm (Ribeiro et al.,
2016) to GNN in the context of node classification. It uses a Hilbert-Schmidt In-
dependence Criterion Lasso as a surrogate model. However, it does not take into
account the graph structure and cannot be applied to graph classification models.
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PGM-Explainer (Vu and Thai, 2020) builds a probabilistic graphical model for
explaining node or graph classification models. Yet, it does not allow to take into
consideration edges in its explanations. These surrogate models can be misleading
because the user tends to generalize beyond its neighbourhood an explanation re-
lated to a local model. Furthermore, the identification of relevant neighborhood in
graphs remains challenging. Finally, (4) the decomposition-based methods (Pope
et al., |2019; |Schnake et al. |2020) start by decomposing the prediction score to
the neurons in the last hidden layer. Then, they back-propagate these scores layer
by layer until reaching the input space. XGNN (Yuan et al., |2020a)) proposes to
provide a model-Level explanation of GNNs by training a graph generator so that
the generated graph patterns maximize the prediction of the model for a given
label. However, it relies on a strong assumption: each label is related to only one
graph generator which is not realistic when considering complex phenomena. This
is further discussed in Section [5| based on some empirical evidence.

GNNExplainer, PGExplainer, and PGM-Explainer are the methods that re-
port the best performance on many datasets. We will compare our contribution
against these methods in the experimental study. Nevertheless, these methods have
some flaws when used in practice. Discretizing the soft mask (i.e., selecting the
most important edges) requires choosing a parameter k which is not trivial to set.
Besides, based on such a mask, the explanation may be misleading because the
user is tempted to interpret what is retained in the mask as responsible for the
decision, and this, even if a node label appears both inside and outside the mask.

Our method aims to mine some activation patterns in the hidden layers of
GNNs. There exists in the literature some rule extraction methods for DNNs
(Tran and d’Avila Garcez, [2018), but not for GNNs. For example, (Tran and
d’Avila Garcezl, [2018]) mine association rules from Deep Belief Networks. Still,
their approach suffers from an explosion of the number of patterns, which makes
the results of frequency-based rule mining mostly unusable in practice. Also, with
its focus on DBNs, the method is not directly applicable to standard GNNs.

3 INSIDE-GNN method
3.1 Graph Neural Networks and activation matrix

We consider a set of graphs G with labels: G = (V, E, M) with V a set of nodes,
E a set of edges in V x V, and M a mapping between the nodes and the labels,
M < V xT, with T the set of labels. The graphs of G are classified in two categories
{c?, ¢!} by a GNN: GNN:G— {c°, c'}. The GNN takes decisions at the level of each
graph on the basis of vectors computed at the level of the nodes. These vectors
embed nodes into a metric space to ease comparisons. More precisely, we consider
Graph Convolutional Networks (GCN) (Kipf and Welling, [2017)) with L layers.
GCNs compute vectors hf,, £ =1...L of dimension K, an hyperparameter of the
method. h! represents the ego-graph centered at node v with radius ¢. This ego-
graph is induced by the nodes that are less than a distance ¢ (in number of edges)
from v. Such vectors are recursively computed by the following formula:

4 Cw,v —1 .
hy = ReLU | W,- )] by |, withdy = ) e
weN (v) dyduw weN (v)
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ev,w 1s the weight of the edge between nodes v and w, M (v) is the set of neighboring
nodes of v including v, ReLU is the rectified linear activation function, and Wy are
the parameters learned during the model training phase. Finally, h is the initial
vector for node v with the one-hot encoding of its labels from set T'.

Each vector is of size K and ¢ ranges from 0 to L (the maximum number
of layers in the GNN), two hyperparameters of the GNN. For a trained GNN,
the vectors hY capture the key characteristics of the corresponding ego-graphs on
which the classification is made. When one of the vector components is of high
value, it plays a role in the decision process. More precisely, activated components
of the vectors — those for which (h%); > 0 — are combined by the neural network in
a path leading to the decision. We are therefore going to construct the activation
matrix corresponding to the activated vector components.

Definition 1 (Activation matrix) The activation matrix H¢ has dimensions (n x
K), with n = > g Vil

-~ 1if (h%), >0
H v, k] = v

[v,k] {0 otherwise

For a given layer ¢, the activated components of h! correspond to the part of
the ego-graph centered at v and of radius ¢ that triggers the decision. Therefore,
we propose in what follows to identify the sets of components that are activated
together for one of the two decisions made by the GNN.

3.2 Activation rules discovery

We propose to adopt a subgroup discovery approach to identify sets of vector
components that are mostly activated in the graphs having the same GNN decision.
Definition 2 (Activation rule and support) An activation rule A® — ¢ is com-
posed of a binary vector A? of size K and c € {c°,c'} a decision class of the GNN.
é\graph G; = (Vi, E;, L;) € G activates the rule if there is a node v in V; such that
H' v, k] = (A%, for (AY), =1 and k € [1, K]. It is denoted Activate(A’ — ¢, v).

The activated graphs with GNN decision ¢ form the support of the rule:

Supp(A° = ¢,G) = {G; € G | v e V;, Activate(A’ — c,v) and GNN(G;) = c}

Exzample 1 Fig. [2| presents the internal GNN representation (h3) of 4 graphs on
the third layer, where K = 6. Non-null components (grey cells) are considered

as activated and encoded by a ’1’ value in the binary activation matrix H3. The

pattern A% = (1,0,0,0,0,1) is activated by nodes 1 and 3 of G; and node 2 of
G2. Thus, Activate(A® — 1,v1) = True, Activate(A® — 1,v3) = True for G1 and
Activate(A® — 1,v2) = True for Go. Supp(4® — 1,G) = {G1, Ga}.

Hence, activated rules are more interesting if their supports are largely ho-
mogeneous in term of GNN decisions, i.e. the graphs of the support are mainly
classified either in class ¢° or in class ¢'. We propose to measure the interestingness
of these rules in a subjective manner. It makes possible to take into account a priori
knowledge on activation components, but also to perform an iterative extraction
of the rules and thus limiting the redundancy between them. These notions are
explained below.
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Fig. 2 Toy example: The internal GNN representation of 4 graphs on the third layer with
K =6.

3.2.1 Measuring the interest of an activation rule

The question now is how to evaluate the interest of the activation rules so as
to obtain a set of non-redundant rules. One way to achieve this is to model the
knowledge extracted from the activation matrix into a background model and to
evaluate the interest of a rule by the knowledge it brings in relation to it. This
is what the FORSIED framework (De Biel [2011)) does. It proposes an operational
way to define the background model and to evaluate the subjectiv&ﬂ interest of
a pattern by using information theory to quantify both its informativeness and
complexity.

We consider the discrete random variable H'[v, k] associated to the activa-

tion matrix H¢[v, k and we model the background knowledge by the probability
P(H'[v,k] = 1). Intuitively, the information content (IC) of an activation rule
should increase when its components are unusually activated for the nodes in the
graphs of its support (it is unlikely that these components are activated when con-
sidering a random node, while this probability increases when considering graphs
supporting the pattern).

1 Subjective means relative to the background knowledge model.
2 We use hats to signify the empirical values.
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Thus, given the probabilities P(H[v,k] = 1) and with the assumption that
all H'[v, k] are independent of each other, we can evaluate the interest of a rule
by the product of P(H'[v,k] = 1) for v activated by the rule and k such that
(AZ);C = 1. Equivalently, we use the negative log-probability. The more probable
the pattern — and therefore the less interesting — the smaller this value. As there
may exist several nodes activated in a single graph, we choose the one maximizing
the measure. This is formalized in the definition below.

Definition 3 (Rule information content) Given a probabilistic background model
P, the information provided by a rule A — ¢ to characterize a set of graphs G is
measured by

I LN = — ¢ =
(A" - ¢, Q) > max >, log(P(H'[v,k] = 1))
G;eSupp(At—c,G) ks.t. (At)=1

Ezample 2 Considering the example of Fig. [2| and the rule 43 — 1 with A3 =
(1,0,0,0,0,1) and the probabilistic background model P given in Table IC(A3 -
1,G) = —1log(0.72) — log(0.34) — log(0.99) — log(0.47) = 3.13.

A pattern with a large IC is more informative, but it may be more difficult for
the user to assimilate it, especially when its description is complex. To avoid this
drawback, the IC value is contrasted by its description length which measures the
complexity of communicating the pattern to the user. The higher the number of
components in A®, the more difficult to communicate it to the user.

Definition 4 (Description length of a rule) The description length of a rule is
evaluated by

DL(A® > ¢) = a(|AY]) + 8

with |A?| the L1 norm of A?, o the cost for the user to assimilate each component
and 3 a fixed cost for the pattern. We set 8 = 1 and a = 0.6, as the constant
parameter 8 does not influence the relative ranking of the patterns, and with a
value of 1, it ensures that the DL value is greater than 1. With a = 0.6, we express
a slight preference toward shorter patterns.

Ezample 3 DL(A% — 1) = 2a + 8 = 2.2.

The subjective interestingness measure is defined as the trade-off between IC
and DL.

Definition 5 (Subjective interestingness of a rule) The subjective interesting-
ness of a rule on the whole set of graphs G is defined by

¢ oy ICA > 6)
SIA = e.0) = FrarS o

However, in order to identify rules specific to a GNN decision, we consider the
difference of subjective interestingness of the measure evaluated on the two groups
of graphs.
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Definition 6 (Differential measure of subjective interest) If we denote by GY
(resp. G') the graphs G; € G such that GNN(G;) = ¢ (resp. GNN(G;) = ¢'), the
subjective interest of the rule A — ¢ with respect to the classes is evaluated by

STI_SG(A® = ¢) = we SI(AY > ¢,G°) — w1 ST(A* = ¢,G17°).

The weights wo and w; are used to counterbalance the measure in unbalanced
decision problems. The rational is to reduce the SI values of the majority class.

1 0
We set wp = max(1, }goi) and w1 = max(1, }gli)

Ezample § SI_SG(A® — 1) = SI(A® - 1,G1) — SI(A® — 1,g0) = [0 =160

DL(A3~>1)
IC(A’>1,6°) _ 313
DL(A3S1) ~ 22

3.2.2 Computing the background model

The background model is initialized with basic assumptions about the activation
matrix and updated as rules are extracted.

Definition 7 (Initial background model) Some components can be activated
more than others on all the graphs, or some nodes can activate a variable number
of components. We assume that this information is known and use it to constrain
the initial background distribution P:

S P o, k] = 1) = 3 P(H v, k] = 1),

S P(H [v,k] = 1) = 3 P(H![v,k] = 1).
k

k

However, these constraints do not completely specify the probability matrix. Among
all the probability distributions satisfying these constraints, we choose the one with
the maximum entropy. Indeed, any distribution P with an entropy lower than the
maximum entropy distribution effectively injects additional knowledge, reducing
uncertainty unduly. The explicit mathematical MaxEnt model solution can be
found in (De Bie, [2009).

The corresponding initial background model of example of Fig. [2]is given in
Table [1I

Once a rule A* - ¢ has been extracted, it brings some information about the
activation matrix that can be integrated into P. The model must integrate the
knowledge carried by this rule, that is to say that all the components with value
1 of AY are activated by the vertices activating the rule.

Definition 8 (Updating the background model) The model P integrates the

rule A — ¢ as follows: Vk such that (A%), = 1 and v such that H’[v,k] = (A%,
P(H'[v,k] = 1) is set to 1.



10 Luca Veyrin-Forrer et al.

= N ) = s ©
I g g g k= I
15} 3 5 ) ) )
S R
Q o N R R o8 o8
3 g g g g g g
Graph Z 3 S ! 3 3 3
1 0.729 | 0.556 | 0.556 | 0.507 | 0.346 | 0.346
2 0.729 | 0.556 | 0.556 | 0.507 | 0.346 | 0.346
G1 3 0.729 | 0.556 | 0.556 | 0.507 | 0.346 | 0.346
4 0.527 | 0.402 | 0.402 | 0.366 | 0.250 | 0.250
5 0.527 | 0.402 | 0.402 | 0.366 | 0.250 | 0.250
1 0.999 | 0.762 | 0.762 | 0.695 | 0.474 | 0.474
2 0.999 | 0.762 | 0.762 | 0.695 | 0.474 | 0.474
Ga 3 0.999 | 0.762 | 0.762 | 0.695 | 0.474 | 0.474
4 0.527 | 0.402 | 0.402 | 0.366 | 0.250 | 0.251
5 0.729 | 0.556 | 0.556 | 0.507 | 0.346 | 0.346
1 0.256 | 0.195 | 0.195 | 0.178 | 0.122 | 0.122
2 0.999 | 0.762 | 0.762 | 0.695 | 0.474 | 0.474
G3 3 0.527 | 0.402 | 0.402 | 0.366 | 0.250 | 0.250
4 0.374 | 0.285 | 0.285 | 0.259 | 0.177 | 0.177
5 0.730 | 0.556 | 0.556 | 0.507 | 0.346 | 0.346
1 0.527 | 0.402 | 0.402 | 0.366 | 0.250 | 0.250
2 0.729 | 0.556 | 0.556 | 0.507 | 0.346 | 0.346
G 3 0.527 | 0.402 | 0.402 | 0.366 | 0.250 | 0.250
4 4 0.527 | 0.402 | 0.402 | 0.366 | 0.250 | 0.250
5 0.527 | 0.402 | 0.402 | 0.366 | 0.250 | 0.250
6 0.374 | 0.285 | 0.285 | 0.259 | 0.177 | 0.177

Table 1 Initial background model P(H*[v,k] = 1) of example of Fig.

3.2.8 Iterative extraction of subjective activation subgroups

We propose to compute the subjective activation rules with an enumerate-and-
rank approach. It consists to compute the rule A — ¢ with the largest SI_SG
value and to integrate it in the background distribution P to take into account
this newly learnt piece of information.

Algorithm [I] sketches the method. First, it sets the output set equal to the
empty set (line 1) and the minSI value to the largest value (line 2). minSI cor-
responds to the smallest SI_SG value of the extracted patterns. A stack of size
K is initialized line 3. The first considered rule A’ is initialized as a bit-vector of
size K containing only 0’s. It corresponds to the rule with no activated compo-
nents. It has an associate attribute Pot that encodes the components that could
still be activated for A%, as it leads a yet unconsidered combination of activated
components. Rule A? is then staked in Stack (lines 4 to 6). Line 7, it computes

the background model P from the activation matrix H HY as defined in Deﬁn1t1onl
Then, in a loop (lines 8 to 11), it computes iteratively the rule A* — ¢ having the
best SI_SG(A* — ¢) value. Then, this best rule is used to update the model P
(line 11). Indeed, once the rule A® is known, its subjective interest falls down to
0. This consists in setting the corresponding probabilities to 1.

Algorithm [2] presents INSIDE-SI that computes the best rule with as activated
components the one’s values of the vector stored in Stack[depth], and even more,
depending on the recursive process. It considers a pattern A stored in the stack at
depth depth. A has 5 attributes:
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Algorithm 1: INSIDE-GNN(I/I\Z, ¢, nbPatt)

[ I B U VS

N

10

11

12

Input: H¢ the activation matrix (see Definition , c the class to be characterized
and nbPatt the number of patterns to extract.
Output: output, up to nbPatt best activation rules A — ¢ w.r.t. SI_SG.
output «—
minSI « 0
Stack.maxsize «— K
A! — a size K bit-vector initialized at 0
At Pot « a size K bit-vector full of 1’s
Stack[0] < A*
P «— Compute_Model(H?)
repeat
A% minST « INSIDE-SI(Stack, P, ¢, minSI , 0, &)
output — output U At
Update_Model (P, A¢)
until ((loutput| = nbPatt) or (minSI < 10));

Algorithm 2: INSIDE-SI(Stack, P, ¢, minSI, depth, Best)

© ® N O O A BN R

Input: Stack a stack of recursively enumerated patterns at depth depth, P the
background distribution, ¢ the class to be characterized, minSI a dynamic
threshold on SI_SG(A* — c).

Output: Best, the best rule w.r.t. SI_SG.

A «— Stack[depth]
Best — A
if ((¢(A) = False) or (UB_SI(A, P,c) < minSI) then
return
if (A.Pot = () then
if Best = ¢ then
if SI_SG(A — ¢) > minSI then
‘ ‘ Best — A
else
if (SI_SG(A — ¢) > SI_SG(Best — c)) then
Best — A
‘ minSI « SI_SG(Best — c)
else
x « first bit of A.Pot set to 1
A.Pot[z] <0
Alz] <1

Stack[depth + 1] — A

INSIDE-SI(Stack, P, ¢, minSI, depth+1)
Alz] <0

Stack[depth + 1] — A

INSIDE-SI(Stack, P, ¢, minSI, depth+1)
return Best, minSI

A.Pot, a vector whose one’s values represent the activated components that
can be further added to A during the enumeration process,

A.G® (resp. A.G'™°) the set of graphs from G¢ (resp. G' ) that support A,
and A.TG (resp. A.TG'~°) the set of graphs that are supporting A and all its
descendants in the enumeration process (there is a node in these graphs that
activates all the components of A and A.Pot).
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The algorithm computes the closure of A using the function ¢. It consists in adding
activated components to A (set some components of A to 1) as long as the set A.G¢
of supporting graphs stays unchanged. Furthermore, if a component has been
removed from A (on line 14) but can be added later to A (i.e. ¢(A)&A.pot + A
with & the bitwise and operation), A is not closed, the function returns False and
the recursion stops.

Line 2, a second criterion based on an upper bound UB_ST makes the recursion
stop if its value is less that the one of the current best found rule. It relies on the
following property.

Property 1 Let A and B be two binary vectors of size K. The components that are
activated for A are also activated for B (i.e., A&B = A, with & the bitwise and
operation). We can upper bound the value ST_SG(B — ¢) and have

SI_SG(B — ¢) < UB_SI(A, P, c) with

YgeA.Ge MaXpeV, = X o ¢ (A A Pot)—1 L0&(P(H [v, k] = 1))
o(|A]) + B
Sgea G- MaXpey, = Sy o4 (a),=1 10&(P(H [v,k] = 1))
a(|A&A.Pot|) + 8

UB_SI(A, P,c) = we

—Wi—c

with |A| the L1 norm of A.

Proof To upper bound the measure SI_SG(B — c), we follow the strategy ex-
plained in (Cerf et al.l [2009). Let

X Z
SI_SG(B —¢) = wc71 - wl—c72
with
X=1 °) = _ o k] =
C(B,G°) > max >, log(P(H'[v,k] = 1))
G;€Supp(B,G°) ks.t. (B)r=1
Z =1C(B,G' ) = 3 max— Y. log(P(H'[v,k] = 1))
GieSupp(B,G1—) "V kst (B)r=1

Y1 =Yz = DL(B) = o(|B|) + B

Similarly, we denote the upper bound function by

UB_SG(A, P,c) = wcl — wl_cE
5 U
Therefore, the largest value of SI_SG(B — c¢) is obtained if:

— X has the maximal possible value, that is to say B = A&A.Pot and all the
graphs of G¢ that support A, also support A& A.Pot. In that case, we have

v = max — > log(P(H*[v, k] = 1))
ged.Ge "9 Lt (AGA. Pot)s—1
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— Y7 has the smallest possible value a(|A|) + 8 (more elements in B will decrease
the value of the fraction)

§=a(lA]) +5

— Z has the smallest possible value and is computed over A, and on the graphs
from G¢ that support A and all its descendants (A.TG'™¢)

e= Y max— Y log(P(H[v,k] =1))

%
geATGI—< Y9 kst (A)p=1

— Y3 has the value a(|A&A.Pot|) + 8 (less elements in B will decrease the value
of the function)

n = a(|A&A.Pot|) + B

It results in the upper bound definition.

Line 4 of Algorithm [2| Best is updated as well as minSI if there are no more
component to enumerate, and if the SI_.SG value of the current rule is better than
the one already found. Otherwise (lines 9 to 16), the enumeration continues either
1) by adding a component from A.Pot to A (lines 9-12) and recursively call the
function (line 13), or 2) by not adding the component while still removing form
A.Pot (line 14) and recursively continue the process (line 16).

4 Characterization of activation rules with subgroups

Once the activation patterns are found, we aim to describe them in an intelligible
and accurate way. We believe that each activation pattern can be linked to hidden
features of the graphs, that are captured by the model as being related to the
class to be predicted. The objective here is to make these features explicit. For
this, we seek to characterize the nodes that support the activation pattern, and
more precisely to describe the singular elements of their neighborhoods. Many
pattern domains can be used to that end. In the following, we consider two of
them: one based on numerical descriptions and the other one based on common
subgraphs. In order to characterize the subgraphs centered on the nodes of the
activation pattern support (called ego-graphs) in a discriminating way compared
to the other subgraphs, we extend the well-known GSPAN algorithm [Yan and Han
(2002) so that it takes into account subgroup discovery quality measure.

4.1 Numerical subgroups

In this approach, we propose to describe each node that supports a given activa-
tion pattern by some topological propertieﬂ We choose to consider its degree, its
betweenness centrality value, its clustering-coefficient measure, and the number
of triangles it is involved in, as characteristic features. These properties can be
extended to the whole ego-graph by aggregating the values of the neighbors. We

3 These attributes are computed with Networkx Python Library https://networkx.org/.
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consider two aggregation functions: the sum and the mean. Thanks to these prop-
erties, we make a propositionalization of the nodes of the graphs and we consider
as target value the fact that the node belongs to the support of the activation rule
(labeled as a positive example) or not (labeled as a negative example). Therefore,
we have a matrix D whose rows denote graph nodes and columns correspond to
numerical attrbutes describing the position of the node in its graph: D[v] € R?,
with p the number of attributes. D is split in two parts D° and D! with v € D iff
Activate(A’ — ¢, v).

To identify the specific descriptions of the support nodes, we propose to use
a subgroup discovery method in numerical data. It makes it possible to find re-
strictions on numerical attributes (less or greater than a numerical value) that
characterize the presence of a node within the support of the activation rule. A
numerical pattern has the form X*_, [a;, b;] (i.e. the pattern language) and a graph
node supports the pattern if Vi = 1...p, a; < D[v,i] < b;.

To discover such subgroups, we use the pysubgroup library [Lemmerich and
Becker| (2018]).

4.2 Graph subgroups

Another approach consists to characterize activation rules by subgraphs that are
common among positive examples in contrast to the negative ones. To this end,
we consider as positive examples the ego-graphs (with a radius equal to the layer)
of nodes that support the activation pattern of interest. By taking the radius into
account, we are not going beyond what the model can actually capture at this layer.
The negative examples are the graphs in G for which none of their vertices support
the activation pattern. Hence, D is a set of graph nodes v associated to ego-graphs
&g = (Vy, Eg, Lg). D is split into D° and D! with v € D¢ iff Activate(A’ — ¢,v).

A graph pattern has the form G = (V,E, L) (i.e. the pattern language) and
a graph node supports the pattern if there exists a graph isomophism between
Eg = (Vy, Eqg, Lg) and its ego-graph &g = (Vy, Eg, Ly).

4.3 Quality measure and algorithms

As for the identification of activation patterns, we could have used subjective in-
terestingness measure to characterize the supporting ego-graphs of the activation
patterns. However, we opt for a more usual measure, the Weighted Relative Ac-
curacy (Lavrac et al. [1999). Given a pattern P of a given language, a dataset D
split into P° and D' and a Supp(P, D) measure that gives all the graph nodes
supporting the pattern P in the data D, the WRAcc measure

_ [Supp(P, D) (ISUDP(RDC)I _ \DC|>
D] [Supp(P,D)|  |D|

W RAcc(P, c)

gives high values to patterns that are mainly supported by nodes of D¢ compared
to the whole dataset D. Then, we use off-the-shelf algorithms to discover the best
subgroups. We compute patterns P such that

W RAcc(P, c) =z min _WRAcc and |Supp(P,D)| = min _sup (1)
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or just the subgroup with the highest WRAcc value.

For the numerical subgroups, we use Pysubgroup library (Lemmerich and Becker,
2018). For graph subgroup dicovery, we integrate the WRAcc measure into the
GSPAN algorithm (Yan and Han},|2002). As W RAcc measure is not anti-monotone,
we use the following upper-bound instead of the W RAcc for pruning:

|Supp(P, D)| ( max (min_sup, IDCI)>
UB(P,c) = 2UPPUL D)L ()
Dl D]
; _ [Supp(P,D)]| |D| : [Supp(P,D°)|
Ifmzn,sup < ‘DC|, then we have []B(F’7 C) = T ( — W) Slnce W <

1, WRAcc(P,¢) < UB(P,c). In the other case, we have:

|Supp(P,D°)| |D° - |Supp(P,D)| min_sup

|Supp(P,D)] D  [Supp(P,D)| D
min_sup _ |D°| _ |Supp(P,D)| _ [Supp(P,D°)|
ID| ID| ~ |Supp(P,D)|  [Supp(P,D)|

1

<~ (|Supp(P,D)| — |[Supp(P,D°
Supp(F 5] SUPP(P. D) ~ [Supp(P. D))

1 .
Dl (min_sup — | D))

The last inequality holds since ﬁ < \SuTI(P,D)W min _sup < |Supp(P,D)|, and
finally |D¢| > [Supp(P, D°)|.

Since UB is not dependent to the Supp(P, D), when |D¢| is much lower than
the |D|, this upper bound is not tight. We can use another upper bound which is
dependent to the |D¢|. Let us call this upper bound U B2:

_ |Supp(P,D%)| _ minsup |D°|

UB2(P,c X
(o) D] B

Since except Supp(P, D°) everything is constant, and Supp(P, D¢) is anti-monotone,
U B2 is anti-monotone too. To show that UB2 is an upper bound for W RAce, note
that "”T% X % < % X % and the first terms of WRAcc and UB2
are equal. In our algorithm we use UB3(P, c¢) = min{UB2(P,c),UB(P,c)} as upper
bound for the WRAce.

5 Experimental study

In this section, we evaluate INSIDE-GNN through several experiments. We first de-
scribe synthetic and real-world datasets and the experimental setup. Then we
present a quantitative study of the patterns provided by INSIDE-GNN. Next, we
show the experimental results on explanations of graph classification against sev-
eral SOTA methods. Finally, we report results on the characterization of activation
rules by human understandable descriptions of what GNN models capture. INSIDE-
GNN has been implemented in Python and the experiments have been performed
on a machine equipped with 8 Intel(R) Xeon(R) W-2125 CPU @ 4.00GHz cores
126GB main memory, running Debian GNU/Linux. The code and the data are
availabld]

4 https://www.dropbox.com/sh/jsri7jbhmkw6c8h/AACKHwcM3GmaPC8iBPMiFehCa?d1=0
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5.1 Datasets and experimental setup

Experiments are performed on six graph classification datasets whose main char-
acteristics are given in Table [2l BA2 (Ying et al., [2019) is a synthetic dataset
generated with Barabasi-Albert graphs and hiding either a 5-cycle (negative class)
or a “house” motif (positive class). The other datasets (Aids (Morris et al., |2020),
BBBP(Wu et al.l |2017), Mutagen (Morris et al.l 2020), DD (Dobson and Doig),
2003)), Proteins (Borgwardt et al., [2005)) depict real molecules and the class iden-
tifies important properties in Chemistry or Drug Discovery (i.e., possible activity
against HIV, permeability and mutagenicity).

A 3-convolutional layer GNN (with K = 20) is trained on each dataset using
80% of the data (train set). The hyperparameters are chosen using a grid-search
on other 10% of the data (validation set). The learned GNN are tested on the
remaining 10% of the data (test set). The corresponding accuracy values are re-
ported in Table [2| INSIDE-GNN mines the corresponding GNN activation matrices
to discover subjective activation pattern set. We extracted at most ten patterns
per layer and for each output value, with a ST_SG value greater than 10.

Table 2 Main characteristics of the datasets.

Avg. Avg. Acc. Acc. Acc.
Dataset #Graphs | (s#neg,#pos) Nodes | Edges | (train)| (test) | (val)
BA2(syn) 1000 (500, 500) 25 50.92 0.995 0.97 1.0
Aids 2000 (400, 1600) 15.69 32.39 0.989 0.99 0.975
BBBP 1640 (389, 1251) 24.08 51.96 0.855 0.787 0.848
Mutagen 4337 (2401, 1936) 30.32 61.54 0.815 0.786 0.804
DD 1168 (681, 487) 268 1352 0.932 0.692 0.760
Proteins 1113 (663, 450) 39 145 0.754 0.768 0.784

5.2 Quantitative study of activation rules

Tablereports general indicators about the discovery of activation rules by INSIDE-
GNN. The execution time ranges from few minutes for simple task (i.e., synthetic
graphs) to two days for more complex ones (i.e., DD). It shows the feasibility of
the proposed method. Notice that this process is performed only once for each
model.

To assess whether the set of extracted rules represent the GNN well and in its
entirety, we used the rules to describe the input graphs (i.e. the graphs (in row) are
described by the rules (in columns) and the data matrix contains the number of
graph nodes supporting the corresponding rule). We then learned the simple and
interpretable model that is the decision tree. Thus, from only the knowledge of
the number of nodes of a graph supporting each of the rules, we can see, in Table
last column, that the decision tree can mimic the GNN decision output with
high accuracy. Obviously, we do not provide an interpretable model yet, since the
decision tree is based on the patterns that capture sets of activated components
of the GNN. Nevertheless, the results demonstrate that the pattern set returned
by INSIDE-GNN captures the inner workings of GNNs well.
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Table 3 Execution time, number of discovered patterns by INSIDE-GNN and the ability of
the pattern set to mimic GNN: the accuracy of a decision tree with activation rules as features
and measured on a test set. The class variable is the GNN output y;. The closer Acc(DTF, y;)
to 1, the better the mimicry.
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Aids 5160 60 0.96
BBBP 6000 60 0.89
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Fig. 3 Boxplot of the number of supporting vertices per graph for layers 1, 2 and 3.

The general characteristics of the activation rules for each dataset are provided
in Figs. One can observe — in Fig. [3] — that a rule is usually supported by
more than one node within a graph. Rules from the first layer of the GNN tend to
involve a higher number of vertices than those in the following layers. It may be
due to the fact that the first layer captures some hidden common features about
the direct neighborhood of the vertices. The features captured by the GNN become
more discriminant with layer indexes, as evidenced by the increasing SI_SG score
with layers in Fig. || For some datasets (e.g., BA2, AIDS, DD, Proteins), some
rules have high discriminative power for the positive class (bottom right corner
in Fig. @ or the negative class (top left corner). Their discriminative power is
less effective for Mutagen and BBBP datasets. The most discriminant rules come
from the last layer of the GNN. Some rules are not discriminant (i.e., around
the diagonal) but remains subjectively interesting. These rules uncover activated
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Fig. 4 Boxplot of the number of components per pattern for layers 1, 2 and 3.

components that capture general properties of the studied graphs. It is important
to note that we study here the discriminative power of a rule according to its
presence in graphs. These rules can be more discriminant if we take into account
the number of occurrences of the rules in the graphs. For instance, a rule that
is not discriminant can becomes highly discriminant if we add a condition on its
number of occurrences in graph, as we did when learning the decision trees in
Table Bl

5.3 Comparison with competitors for explainability of GNN output

We now assess the ability of activation rules to provide good explanations for the
GNN decisions. According to the literature, the best competitors are GNNEx-
plainer (Ying et al., 2019), PGExplainer and PGM-Explainer
(Vu and Thai, 2020). We consider all of them as baseline methods. Furthermore,
we also consider a gradient-based method (Pope et al.| 2019), denoted Grad, even
if it has been shown that such method is outperformed by the three others. There-
fore, we compare INSIDE-GNN against these 4 single-instance-explanation methods
in our experiments.

Evaluating the reliability of an explanation is not trivial due to the lack of
ground truths. In our case, only BA2 is provided with ground truths by construc-
tion. When we have ground truths, we expect a good explanation to match it
perfectly, but sometimes the model captures a different explanation that is just
as discriminating. Moreover, if fully present, ground truths contain only simple
relationships (e.g., BA2) which are not sufficient for a full assessment. Therefore,
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Fig. 5 Boxplot of the SI_SG score of patterns for layers 1, 2 and 3.

to be able to consider synthetic and real-world datasets, we consider a ground
truth free metric. We opt for Fidelity (Pope et all 2019) which is defined as the
difference of accuracy (or predicted probability) between the predictions on the
original graph and the one obtained when masking part of the graph based on the
explanations:

Fid®° = — x

s

(1 - 6(@?1‘\"% :yi))v

2l=

=1

where y; is the original prediction of graph g;, m; is the mask and g;\m; is the
complementary mask, g}fi\mi is the prediction for the complementary mask and
J(Q_gi\mi:y_) equals 1 if both predictions are equal.

"The fidelity can also be measured by studying the raw probability score given
by the model for each class instead of the accuracy:

N
Fid”™® = = % 3 (F(gi)ys — F(o8\midus),
i=1

with f(g)y, is the prediction score for class y;.
Similarly, we can study the prediction change by keeping important features
(i.e., the mask) and removing the others as Infidelity measures do:
1 N
acc _ _ .
Infid"* = = x > S(gmi —yy))

N
InfidP™ = % X Z (f(gi)y: — fF(mi)y,)-

ﬁ
Il
—
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The higher the fidelity, the lower the infidelity, the better the explainer.

Obviously, masking all the input graph would have important impact to the
model prediction. Therefore, the former measures should not be studied without
considering the Sparsity metric that aims to measure the fraction of graph selected
as mask by the explainer:

N
Sparsity = L Z (1 - |mi‘)7
N & |9l

where |m;| denotes the size of the mask m; and |g;| is the size of g; (the size
includes the number of nodes, of edges and the attributes associated to them).
Based on these measures, a better explainability method achieves higher fidelity,
lower infidelity while keeping a sparsity close to 1.

We devise four policies to build a mask from an activation rules:

(1) node: the simplest policy which takes only the nodes that are covered by the
activation rule and the edges adjacent to these nodes.

(2) ego: the ego-graphs of radius ¢ centered on activated nodes, with £ the layer
associated to the pattern.

(3) decay: a continuous mask with a weight associated to the edges that depends
on the distance of its end-points to the activated nodes:

wy = Y, Ql%(m) if d(v,a) < ¢,0 otherwise
aeVy
with V4 the set of activated nodes, d(v, a) the geodesic distance between nodes
vand a and w, ) = Wy + Wo.
(4) top k: a discrete mask containing only the k edges from decay mask with the
highest weights (k = 5 or k = 10 in our experiments).

For each policy, we select the mask (and the related pattern) that maximises the fi-
delity. As GNNExplainer and PGExplainer provide continuous masks, we report,
for fair comparisons, the performance with both continuous and discrete masks
built with the k best edges. Note that the average time to provide an explana-
tion ranges from 8ms to 84ms for INSIDE-GNN. This is faster than PGM-Explainer
(about 5s), GNNExplainer (80ms to 240ms) and Grad (300ms). It remains slightly
slower than PGExplainer (6ms to 20ms). Table a) summarises the performance
of the explainers based on the Fidelity measures. Results show that INSIDE-GNN
outperforms the baselines regardless of policy. On average, the gain of our method
against the best baseline is 231% for Fid?"°® and 207% for Fid*“. These results
must be analysed while considering the sparsity (see Table c)) In most of the
cases, INSIDE-GNN provides sparser explanation than the baselines. Furthermore,
at equal sparsity (top k), INSIDE-GNN obtains higher fidelity values than both com-
petitors. Notice that PGM-Explainer fails on BA2 because this dataset does not
have labeled nodes and this method investigate only the nodes of the graphs.

We provide additional information on the Fidelity in Table [5] The Fidelity
aims to measure the percentage of times that a model decision is changed when
the input graphs is obfuscated by the mask m. In Table [5| we report a polarized
version of the Fidelity for which we count the number of changes between the two
possible decisions of the model. For instance, F°~! measures the percentage of
graphs initially classified as ‘false’ by the model that become classified as ’true’
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when obfuscating the graph with a mask. We can observe a dissymmetry between
the class changes. As an example, INSIDE-GNN has a perfect fidelity on BA2 and DD
when considering only the positive examples, i.e., the mask provided by INSIDE-GNN
makes the model change its decision. When dealing with the negative examples,
we obtain much lower score. Intuitively, some class changes cannot be done by
only removing some vertices or edges. Regarding BA2, it is impossible to obtain
a house motif from a cycle without adding an edge to form a triangle.

The quality of the explanations are also assessed with the Infidelity metrics
in Table [4b). INSIDE-GNN achieves excellent performance on BA2. On the other
datasets, INSIDE-GNN is outperformed by GNNExplainer. INSIDE-GNN obtain similar
scores or outperforms the other competitors (i.e., PGExplainer, PGM-Explainer,
Grad) at equal sparsity on most of the datasets. Notice that, in these experiments,
we made the choice to build mask based on a single activation rule which is not
enough to obtain fully discriminant mask for complex datasets. This is in agree-
ment with what we observed in Fig. [f] We have no fully discriminant activation
rule for the positive and negative classes. Hence, it would be necessary to combine
activation rules to build a more discriminant mask and thus better optimise the
Infidelity.

5.4 Model insights via the (re)description of activation patterns

We argue that activation rules also help provide insight into the model, especially
what the GNN model captures. As discussed in Section [4] this requires charac-
terizing the nodes (and their neighborhood) that support a given activation rule.
In this experimental study, we investigate the obtained numerical subgroups for
BA2 and the subgraph characterizing the activation rules retrieved for Mutagen,
BBBP and Aids datasets.

5.4.1 Numerical subgroups

Each node can be easily described with some topological properties (e.g., its de-
gree, the number of triangles it is involved in). Similarly, we can describe its
neighborhood by aggregating the values of the neighbors. Thanks to such proper-
ties, we make a propositionalization of the nodes of the graphs. Considering the
two most discriminant activation ruleﬂ we use the subgroup discovery algorithm
from pysubgroup library [Lemmerich and Becker| (2018]) to find the discriminating
conditions of the nodes supporting these two patterns. Fig. [7] reports a visuali-
sation of two graphs with activated nodes in red. The best description based on
WRAcc measure of pattern p! (Fig. [7]left) and p® (Fig. [7|right) are given below.
For the House motif (positive class of BA2), the nodes that support activation
rules are almost perfectly described (the WRacc equals to 0.24 while maximum
value is 0.25) with the following conditions: Nodes connected to two neighbors (de-
gree=2) that are not connected between them (clustering coefficient=0), not involved
in a triangle and one of its neighbors is involved in a triangle (triangle2=1). In other

5 p! = {as,a6,ar,a9,a10,a15} (where a; are the activated components of the rule and p is
the set representation of the bitset A¢ of Deﬁnition7 |[Supp(pt, G1)| = 474, |Supp(p*, G°)|
16 and p° = {ag, a1, az,a4,as,as,a11,a17, a1s, a1}, [Supp(p’, G1)| = 137, [Supp(p°®, G%)|
506.
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Table 4 Assessing the explanations with Fidelity, Infidelity and Sparsity metrics.

96°0 788°0 GG8°0 ueu G860 €L6°0 Toureldxg-INDJ

G150 vES0 1750 GG6°0 ars0 6250 wure[dxgnd

G050 10G°0 T0G°0 6190 10G°0 20g°0 Touredxgruu

8L6°0 8€6°0 0160 7080 986°0 766°0 peln

8L6°0 6£6°0 G160 708°0 9860 766°0 (01 doy)NND-AAISNI

6860 6960 GS6°0 206°0 £66°0 L66°0 (g doy) NND-HATSNI

169°0 098°0 0.8°0 010°0 ¥65°0 L1L°0 (£209P) NND-HAISNI

T€L°0 0L8°0 L68°0 200°0 6270 69L°0 (9POU) NND-HAISNT

L1L°0 508°0 2280 1100 0170 7750 (089) NND-HAISNI
uoFejnyy ddadd SPLY evd sue301g aa Aysaedg (2)
8670 vSE0 Y150 260 908°0 290 V670 aveo 6ee0 e0 ovE0 are0 soureldxg-INDd
£ve0 7820 08T°0 9020 ¥50°0 G010 ¥67°0 80€°0 16770 L6T°0 vLY0 £vE0 (01 doy)teurerdxguun
6870 15€°0 £29°0 L¥V°0 908°0 69L°0 V670 YEE0 Gge0 92£°0 ovE0 YrE0 (01 doy)pein
0670 £6€°0 G69°0 01¢°0 908°0 69L°0 ¥67°0 zee0 Gee0 9620 ovE0 £vE0 (g doy)reurerdxgnd
vSE0 1680 6LT°0 9120 150°0 10T°0 V670 12€°0 6650 8220 8670 87€°0 (g doy)seurerdxguurn
G870 95£°0 169°0 1L7°0 908°0 0LL°0 ¥67°0 L2€°0 Gee0 z1e0 ovE0 £vE0 (g doy)pern
G810 181°0 960°0 8600 Z10°0 8€0°0 V670 £8€°0 6£0°0 7200 980°0 280°0 soureldxg D d
w10 o¥T'0 860°0 6600 z10°0 9£0°0 7670 £25°0 9£0°0 120°0 ¥80°0 GLO0 Touredxguun
6870 15€°0 £29°0 L¥¥0 908°0 69L°0 V67°0 vE£0 6ee"0 92£°0 Uz TPE0 pern
GEV'0 62£°0 v25°0 G070 908°0 89L°0 Y670 01£°0 GGe0 1620 ovE0 70 (01 do3)NND-AAISNI
09%°0 €0 ¥28°0 W0 908°0 0LL°0 Y670 £2€°0 Gee'0 L1820 ovE0 We0 (g doy) NND-HAISNI
TLT0 £€T°0 vSH0 29€°0 908°0 L9240 000°0 000°0 2020 z9T°0 16070 ovT0 (£200P) NND-IAISNT
882°0 1£2°0 ¥9%°0 vLE°0 908°0 29L°0 000°0 0000 961°0 091°0 8700 £ET°0 (oPOU) NND-AAISNT
6V€°0 £L2°0 2870 69£°0 908°0 9920 000°0 000°0 88T°0 £9T°0 290°0 £ET°0 (089) NND-HAISNI
50oPYUL | 00uaPYUIL | 5ooPYUL | 00udPYUL | 500PYUTL | 40uaPYUL | 500PYUI | gouaPYUL | 00oPYUL | g0uaPYUI | o0ooPYUI | gouaPYUI Ayrepyur (q)
8€€°0 0920 361°0 2150 820°0 680°0 000°0 0000 2020 9600 6£€°0 €650 toureldxg-INDJ
8670 9020 LIT°0 Q910 0£0°0 £80°0 L1670 902°0 zL0'0 9%0°0 9£0°0 €00 (01 doy)zeurerdxgnd
00%°0 £62°0 ¥01°0 cz1'0 810°0 v20°0 1670 0020 880°0 £50°0 Zv0'0 7€0°0 (01 doy)sourerdxzuun
v$20 £22°0 ZET'0 1LT°0 810°0 8L0°0 Y670 G610 780°0 090°0 680°0 £80°0 (01 doy)pern
920 661°0 gT1'0 SFT'0 6100 990°0 9150 Z81°0 860°0 8£0°0 130°0 120°0 (gdoy)seurerdxgnd
G0£'0 9220 6L0°0 980°0 810°0 090°0 197°0 £8T°0 £60°0 920°0 12070 0200 (gdoy)zeurerdxguun
£92°0 2Te0 L01°0 9210 £10°0 650°0 QL0 L80°0 180°0 zv0°0 G80°0 080°0 (gdoy)pern
6LT°0 LST'0 660°0 8600 0100 2€0°0 000°0 700°0 v€0°0 610°0 z80°0 0L0°0 wouredxgnd
1280 LL1°0 101°0 0010 600°0 9£0°0 861°0 £60°0 L£0°0 120°0 980°0 L20°0 Toure[dxguun
v$2 0 £22°0 ZET'0 1LT°0 810°0 8L0°0 V670 G61°0 ¥80°0 090°0 680°0 £80°0 peIn
009°0 8670 0L2°0 v0£°0 150°0 0910 9670 0230 151°0 2600 STr 0 9650 (01 do1)NND-AAISNI
629°0 0570 092°0 1L2°0 860°0 09T°0 L1670 £88°0 980°0 690°0 1270 9130 (g o) NND-HAISNI
18L°0 7550 920 91£'0 G500 arT0 7670 Tre o 9.5°0 vHE0 G870 L¥F0 (£200p) NND-HAISNI
£€8°0 7890 9£€°0 29€°0 9.0°0 GLT'0 V670 Tveo ¥€9°0 65€°0 1990 0670 (oPOu) NND-AAISNT
1¥9°0 2670 56270 vre0 L60°0 G910 ¥67°0 are o 169°0 290 £99°0 0¥S°0 (089) NND-HAISNI
oooPU] | qoudPld | oovPUd | qoudP | oovPld | qoudPl | oooPUd | qoudPll | oooPl | qoudPld | oowP¥ | qoudPld [PPOIN
uoSenjy ddadd spry evd surey01q aa Ayepid (®)




Luca Veyrin-Forrer et al.

24

Table 5 Polarized fidelity.
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words, the activation rule captures one node of the floor of the “house motif’. We
have similar conditions to identify some nodes of the 5-node cycle (negative class

of BA2): nodes without triangle in their direct neighborhood (clustering2
sum of neighbors’ degree (including itself) equal 7 (degree2 €[7:8]).

0) and whose
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Fig. 7 Nodes (in red) in the support of two activation rules that are discriminant for p!
support, related to the positive target (left), and for p® support, related to the negative target
(right).

Table 6 Characterization of activation rules with numerical subgroups on BA2. We only
report the subgroup whose WRAcc value is greater than 0.1.

[ Layer | Class | Description [ WRAcc |
2 0 degree=3 0.2475
2 1 clustering2=0 AND degree=2 AND triangle2_avg=0 0.207
2 1 betweenness: [0.0:0.00[ AND clustering2=0.0 0.127
3 0 clustering2=0.0 AND degree2: [7:8[ AND degree2_avg: 0.114
[3.50:3.57[

3 0 clustering2=0.0 AND degree=2 AND triangle2=0 0.101

3 0 betweenness2: [0.37:0.38[ AND betweenness2_avg: 0.202
[0.19:0.20[ AND clustering2=0.0

3 0 betweenness2: [0.37:0.39[ AND betweenness2_avg: 0.209
[0.19:0.21[ AND betweenness=0.07608695652173914

3 0 betweenness: [0.29:0.30[ AND clustering2=0.0 AND 0.147
degree==

3 0 betweenness: [0.0:0.00[ AND clustering2=0.0 AND 0.162
degree2_avg: [4.0:4.17[

3 1 clustering=0.0 AND degree=2 AND triangle2_avg=0.5 0.227

3 1 degree2: [7:8[ AND degree2_avg: [3.50:3.60[ AND 0.224
degree=2 AND triangle=0

3 1 degree=2 AND triangle2=1 0.238

3 1 clustering==0.0 AND degree==2 AND triangle2==1 AND 0.240
triangle==0

3 1 degree=2 0.125

3 1 clustering=0.0 AND degree=2 AND triangle2=1 AND 0.232
triangle2_avg=0.5

We report the description in terms of numerical subgroups of the activation
rules in Table [6] It is important to note that even if some activation rules were
found as subjectively interesting according to a specific output of the model, they
may capture some general properties of the BA2 graph that are not so specific of
one of the classes. For instance, the second subgroup is related to the positive class
(i.e., house motif) but what it captured is not specific to house motif (degree=2,
absence of triangle).
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5.4.2 Graph subgroups

Similarly, we can characterize activation rules with graph subgroups. We inves-
tigate the interest of such pattern language for three datasets: Aids, BBBP and
Mutagen. For each activation rule, we compute the graph that has the maximum
WRAcc value, using min _sup = 10 (see Equation . In other words, this graph
has an important number of isomorphisms with ego-graphs that support the rule
and that correspond to the class of the target of the rule. In Fig. [8] we report the
WRAcc values of the discovered graphs that aim to characterize the activation
rules. We can observe that the WRAcc values are rather high (WRAcc ranges
from -1 to 0.25) which demonstrates that these graphs well describe the parts of
the GNN identified by the activation rules.

The subgraphs obtained for Mutagen dataset are summarised in Fig. @ For
each layer and decision, we display the subgraphs whose WRAcc is greater than 0.1
layer by layer. The negative class is related to mutagenic molecules. Several things
can be observed from this figure. First, some subgraphs are known as toxicophores
or fragment of toxicophores in the literature (Kazius et al.,|2005). For instance, the
subgraph with two hydrogen and one azote atoms is a part of an aromatic amine.
Similarly, the subgraph with one azote and two oxygen atoms is an aromatic
nitro. The subgraph involving 6 carbon atoms is a fragment of a bay region or
a k-region. Second, some subgraphs appear several times. It means that several
activation rules are described with the same subgraphs. This can be explained in
several ways. Neural networks are known to have a lot of redundant information,
as evidenced by the numerous papers in the domain that aim to compress or
simplify deep neural networks (Chen et al., 2018} |Pan et al., |2016; [Pasandi et al.|
2020; [Xu et al.l 2018)). Accordingly, this is not surprising to have several parts of
the GNN that are similar and described by the same subgraphs. Notice that this
problem could be an interesting perspective for our work. Another explanation is
that the subgraphs well describe the hidden features captured by the GNN but
from different perspective, i.e., the center is different. For instance, for a simple
chemical bond C-N, one may have the same graph with one centered in C and
the other in N. A last explanation could be that the subgraph language is not
enough powerful to capture the subtle differences between the activation rules.
Once again, the definition of more sophisticated and appropriate languages to
describe the hidden features captured by the GNN is a promising perspective of
research.

These latter experiments show that INSIDE-GNN represents a valuable alter-
native to GNN explainability methods. In addition to providing single instance
explanations, INSIDE-GNN can provide insights about what the GNN perceives. Es-
pecially, it allows to build a summary of the hidden features captured by the model
(e.g., Fig. E[) In relation to this, our method is quite analogous to model explana-
tion methods such as XGNN (Yuan et al., [2020a). This deserves a discussion and
a comparison with XGNN.

5.4.8 Comparison to XGNN

XGNN (Yuan et all 2020a) is a method rooted in reinforcement learning that
generates graphs that maximise the model decision for a given class. For Mutagen,
we generate 20 graphs for each class with a maximum size equal to 6. Considering
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Fig. 8 Boxplot of the WRAcc values of graph subgroups related to activation rules by layer
(left column) or by both layer and model decision (right column) for Aids (first row), BBBP
(second row) and Mutagen (third row).

the 40 generated graphs, we observe that only one of them is a subgraph of at
least one graph of the dataset. The other graphs have on average 60% of partial
inclusion: the maximum common subgraph with molecules from Mutagen uncovers
60% of a generated graph. Therefore, we can conclude that XGNN generates graphs
that are not enough realistic. The only graph that appears within the dataset
involves a carbon atom bonded to 2 others carbon atoms and one hydrogen atom.
With INSIDE-GNN, we obtained two subgraphs characterizing some activation rules
that are super-graphs of this one (see Fig. @ Notice that, we also found this
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Fig. 9 Characterization of activation rules for Mutagen with discriminant subgraphs. We
retain only the subgraphs with a WRAcc value greater than 0.1. Mutagenic chemicals are
classified as False.

subgraph for some activation rules. We did not report it in Fig. [0] because its
WRAcc value is lower than 0.1. Nevertheless, this graph appears in 21100 ego-
graphs in the dataset. It describes a fragment of molecule that is very common.
One can wonder if such a fragment can be mutagenic or if XGNN has just captured
it a biased of the GNN. Furthermore, XGNN has generated graphs that are not
planar, which is not common in Chemistry. Based on these evidences, we argue
that XGNN does not return realistic graphs while our approach — by construction
— provides subgraphs from the dataset.

We search for each pattern produced by INSIDE-GNN the closest pattern in
XGNN according to the Graph Edit Distance (GED) and vice versa. We note that
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the previously described prototype graph (i.e., 3 carbons and 1 hydrogen) is found
in most of the cases as being the closest to the patterns produced by INSIDE-GNN.
In average, the distance between each XGNN prototype and the closest pattern of
INSIDE-GNN is 4.6 while the mean distance between INSIDE-GNN subgraphs and the
closest from XGNN is 3.7. This is rather important since the graphs provided by
XGNN have at most 6 nodes.

We believe that a model decision for a class cannot be summarized into a single
prototype. Several different phenomena can lead to the same class. Furthermore,
as we observed, this can lead to unrealistic prototype even if domain knowledge is
integrated within the graph generation. INSIDE-GNN allows to have deeper insights
from the GNN by considering each hidden feature separately.

6 Discussion and Conclusion

We have introduced a novel method for the explainability of GNNs. INSIDE-GNN
is based on the discovery of relevant activation rules in each hidden layer of the
GNN. Prior beliefs are used to assess how contrastive a rule is. We have proposed
an algorithm that efficiently and iteratively builds a set of activation rules, limiting
the redundancy between them. Extensive empirical results on several real-world
datasets confirm that the activation rules capture interesting insights about how
the internal representations are built by the GNN. Based on these rules, INSIDE-
GNN outperforms the SOTA methods for GNN explainability when considering
Fidelity metric. Furthermore, the consideration of pattern languages involving
interpretable features (e.g., numerical subgroups on node topological properties,
graph subgroups) is promising since it makes possible to summarise the hidden
features built by the GNN through its different layers.

We believe that such method can support knowledge discovery from powerful
GNNs and provide insights on object of study for scientists or more generally
for any user. However, a number of potential limitations need to be considered for
future research to make this knowledge discovery from GNNs effective in practice.

First, assessing explanations without ground truth is not trivial. Our experi-
mental evaluation relies on Fidelity, Infidelity and Sparsity metrics. Fidelity as-
sumes that the GNN decision would change if key part of the graphs are removed.
However, it is not always the case in practice. For instance, it is difficult to obtain
a toxic molecule from a non-toxic one by only removing some atoms. That would
be interesting to investigate other evaluation measures that take into account the
negation (i.e., absence of important features) and evaluation measures based on
the addition of subgraphs.

In this paper, we have devised an exhaustive algorithm for discovering the acti-
vation rules. Even if pruning based on upper bound is featured, the execution time
remains a problem. It ranges from few minutes to two days. This shows only the
feasibility of the proposed method, not its practical application. To overcome this
limitation, the completeness must be relaxed and some heuristic-based algorithms
have to be defined. Beam-search or Monte-Carlo Tree Search-based algorithms are
good alternatives to the one we propose.

Activation rule patterns are the simplest pattern language to deal with activa-
tion matrices since such patterns involve only conjunction of activated components.
Even simple, these activation rules are able to capture the hidden features built
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by the GNN as witnessed by the experiments. We believe that more sophisticated
pattern languages are possible for GNNs. For instance, we observed that taking
into account the number of occurrences within a graph leads to better characteri-
sations. This can be integrated to the pattern language. Considering the negation
(i.e., the absence of activations) is also promising and would offer a deeper de-
scription of the internal mechanism of the GNNs.

With INSIDE-GNN, the activation rules are mined for each layer independently.
As a consequence, the relations between layers are not taken into account in the
discovery of activation rules. This may lead to redundant results when considering
all the layers. To avoid such redundancy, it is necessary to take into account as
prior knowledge the previous layers of a given layer.

Finally, activation rules capture specific configurations in the embedding space
of a given layer that is discriminant for the GNN decision. Experiments demon-
strate that these rules can be directly used to support instance-level model expla-
nation. However, activation rules cannot be easily interpreted by human beings
because of the pattern language itself (i.e., conjunction of activated components
of the hidden layers). The consideration of pattern languages with interpretable
features makes it possible to characterize them. However, this second step can be
improved by query the model itself. Indeed, the current characterization methods
investigate a dataset generated from the support of the activation rules. The model
should be considered in this step to have guarantee that the interpretable pattern
that describes a rule well embeds in the subspace related to this rule.
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